2- (2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid Molekülünün Kuantum Kimyasal Karakterizasyonu

Hacer GÜMÜŞ¹

¹Pazarlama ve Reklamcılık Bölümü, Gölcük MYO, Kocaeli Üniversitesi, Kocaeli, Türkiye ⊠: hacer.gumus@kocaeli.edu.tr

Geliş (Received): 08/02/2019	Düzeltme (Revision):07/04/2019	Kabul (Accepted): 06/06/2019
------------------------------	--------------------------------	------------------------------

ÖΖ

Bu çalışmada, 2-(2-hidroksi-5-metoksi-3-nitrobenziliden)-N-metilhidrazin-1-karbotioamid (SL) molekülünün geometrik yapısı taban durumunda Gaussian 09W programı kullanılarak optimize edilmiştir. Optimize edilen moleküler yapının sonuçları sunuldu. X-ışını kırınımı sonuçları ile mukayese edildi. SL molekülünün teorik harmonik titreşimsel dalga boyları hesaplandı ve deneysel değerlerle karşılaştırıldı. Deneysel değerler ve hesaplanan değerler birbiri ile uyum içerisinde bulunmuştur. SL molekülü, optiksel geçişler için UV-görünür spektral çalışmalar ile karakterize edilmiştir. Ayrıca, ¹H ve ¹³C NMR kimyasal kayma değerleri, doğrusal olmayan optik analizi, sınır moleküler yörünge enerjileri, moleküler yüzeyler, Mulliken yükü ve atomik polar tensör bazlı yükler incelenmiştir. Tüm teorik hesaplamalar LanL2DZ temel seti ile B3LYP ve HSEH1PBE yoğunluk fonksiyonel teorisi (DFT) yöntemi kullanılarak hesaplanmıştır.

Anahtar Kelimeler: B3LYP, HSEH1PBE, NMR, UV

Quantum chemical characterization of 2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)-*N*-methylhydrazine-1-carbothioamide molecule

ABSTRACT

In this study, the geometric structure of 2-(2-hydroxy-5-methoxy-3-nitrobenzylidene)-N-methylhydrazine-1carbothioamide (SL) molecule was optimized using Gaussian 09W software in the ground state. The results of the optimized molecular structure were presented. It was compared to the X-ray diffraction data. The theoretical harmonic vibrational wavenumbers of SL molecule were calculated and its values were compared with experimental values. The experimentally and the calculated values were found to be in good agreement. SL molecule was characterized by UV-visible spectral studies for the optical transmission. Also, ¹H and ¹³C NMR chemical shifts values, nonlinear optical analysis, the frontier molecular orbital energies, molecular surfaces, Mulliken charges and atomic polar tensor based charges were investigated. All theoretical calculations were calculated by using LanL2DZ basis set B3LYP and HSEH1PBE density functional theory method.

Keywords: B3LYP, HSEH1PBE, NMR, UV

GİRİŞ

Kuantum mekaniksel yöntemler, deneysel verileri desteklemek amacıyla bağ açısı ve bağ uzunluğu gibi yapısal özellikleri başta olmak üzere, moleküler sistemin elektronik, spektroskopik ve optik özellikleri hakkında faydalı bilgiler sağlamaktadır. Aynı zamanda deneysel olarak belirlenmesi oldukça zor, zaman alıcı ve/veya pahalı olan kimyasal süreçler teorik olarak yorumlanıp kolaylıkla açıklanabilmektedir. Hatta bazı çalışmalar teorik metotların deneysel metotlardan daha hassas veriler elde edildiğini göstermektedir. Teorik hesaplama verileri her zaman deneysel hesaplama verilerini yönlendirici, destekleyici ve aydınlatıcı olmaktadır. Bu sebeple, literatürde mevcut olan SL molekülünün deneysel verilerini destekleme amaçlı molekülün moleküler yapısı, spektroskopik, elektrik ve elektronik özellikleri teorik olarak incelenmistir. Koordinasvon kimvasında ligand olarak kullanılan ve C=N grubu iceren bilesikler, ilk defa 1864 yılında Schiff tarafından sentezlendiği için "Schiff Bazları" olarak bilinmektedir. Geçiş metalleri ile onların koordinasyon kompleksleri polimer kimyası, malzeme bilimi, tıbbi ve endüstriyel kimyada oldukça önemlidir. Schiff bazı bileşikler ve geçiş metalleri ile komplekslerinin çoğu geniş biyolojik ve farmakolojik uygulamaları vardır. Schiff bazı bileşikleri ve metal komplekslerinin Tiyosemikarbazon türevleri çok yönlü bağlanma semalarıyla antibakteriyel, antiviral, antifungal, antimalariyal ve antineoplastik aktiviteler göstermektedir. Bu kompleksler ayrıca antitümör ve antikanser aktiviteleri göstermişlerdir. Üç insan kanser (kolon, meme ve servikal) hücre hattına ve bir normal hücre hattına karşı bölme sitotoksik potansiyelleri anti kanser ajanlar olarak test edilmiştir [1].

MATERYAL ve YÖNTEM

Kristal Yapısı

Schiff bazı bileşiklerden olan ve bu çalışmanın temelini oluşturan SL molekülünün sentezlenmesi A. Arafath ve diğerleri tarafından sentezi gerçekleştirildi. Sentezlenen SL molekülünün deneysel ve kristal yapısı Şekil 1' de gösterilmiştir.

Şekil1. SL molekülünün a) deneysel b) kristal yapısı

SL molekülünün deneysel X-ışını tek kristal yapısı CCDC 1425804 kodu ile Cambridge kristallografik yapı veri tabanında (CSD) bulunmaktadır. SL molekülünün kapalı formülü $[C_{10}H_{12}N_4O_4S]$, moleküler formül ağırlığı 284.29 gmol⁻¹, birim hücresi ortorombik Pna21 kristal yapısında olduğu gözlenmiştir.

Geometrik Optimizasyonu

Teorik hesaplamalar için Cambridge kristallografik yapı veri den CCDC 1425804 kodu ile alınan SL molekülü

GaussView programında açılarak GAUSSIAN 09 paket programı kullanılarak optimize edildi [2]. Yoğunluk Fonksiyonu teorisinin (DFT), B3LYP [3,4] ve HSE1PBE[5-8] metodunun LanL2DZ (Hay ve Wadt ın etkili çekirdek potansiyeli) [9-11] seti ile gaz fazında ve taban durumunda hesaplatılmış ve molekülün optimize geometrisi Şekil 2' de verilmiştir.

Şekil2. B3LYP/LanL2DZ metodu ile hesaplanan SL molekülünün optimize geometrisi

Yapılan geometrik optimizasyon ile moleküldeki atomların uzay yerleşimleri ve uzay yapısı belirlenerek bağ uzunlukları (Å) ve bağ açıları (°) teorik olarak hesaplanmıştır. Hesaplanan bu parametreler deneysel değerler ile birlikte Tablo 1' de listelenmiştir.

Tablo1. SL molekülünün bağ uzunluğu ve bağ açıları.

	Deneysel	Teorik Hesa	plamalar
Bağ Uzunluğu(Å)	X-Işını	B3LYP	HSEH1PBE
S1-C9	1.689(2)	1.72655	1.71859
O1-C2	1.364(3)	1.39018	1.38165
O1-C7	1.434(3)	1.45996	1.44905
O2-N1	1.216(3)	1.27379	1.26274
O3-N1	1.231(3)	1.30625	1.29387
O4-C5	1.346(3)	1.37150	1.36357
N1-C4	1.443(3)	1.45127	1.44333
N2-C8	1.272(3)	1.30651	1.30155
N2-N3	1.379(3)	1.37299	1.36122
N3-C9	1.351(4)	1.39706	1.38895
N4-C9	1.315(4)	1.35473	1.34776
N4-C10	1.459(4)	1.46463	1.45537
C1-C6	1.393(3)	1.40091	1.39558
C1-C2	1.398(3)	1.41452	1.40893
C3-C4	1.397(4)	1.41559	1.40960
C4-C5	1.397(3)	1.42071	1.41430
C5-C6	1.410(3)	1.42818	1.42218
C6-C8	1.457(3)	1.46702	1.45988
Bağ Açıları(°)			
C2-O1-C7	116.9(2)	118.51753	118.15419
O2-N1-O3	122.1(2)	121.82261	122.07825
O2-N1-C4	119.4(2)	119.75369	119.68152
O3-N1-C4	118.4(2)	118.42370	118.24023
C8-N2-N3	115.0(2)	118.62303	118.92103
C9-N3-N2	121.3(2)	120.98391	120.76873
C9-N4-C10	123.3(2)	123.27001	122.76350
C6-C1-C2	121.5(2)	121.69770	121.65626
O1-C2-C3	124.5(2)	124.71195	124.60809
O1-C2-C1	115.7(2)	115.17616	115.36164
C3-C2-C1	119.8(2)	120.11189	120.03027
C2-C3-C4	118.6(2)	118.61873	118.65309
C5-C4-C3	123.1(2)	122.12989	122.20926
C5-C4-N1	120.0(2)	120.30139	120.27661

C3-C4-N1	116.8(2)	117.56872	117.51413
O4-C5-C4	125.7(2)	124.11297	124.28694
O4-C5-C6	116.9(2)	117.59153	117.53778
C4-C5-C6	117.4(2)	118.29550	118.17528
C1-C6-C5	119.6(2)	119.14628	119.27584
C1-C6-C8	121.6(2)	122.66289	122.67010
C5-C6-C8	118.8(2)	118.19083	118.05406
N2-C8-C6	122.3(2)	120.91348	120.78063
N4-C9-N3	117.4(2)	114.93891	115.06500
N4-C9-S1	124.9(2)	125.91350	125.71168
N3-C9-S1	117.8(2)	119.14758	119.22331

SL molekülünün bağ uzunlukları (Å) ve bağ açıları (°) için lineer regresyon analizinden lineer korelasyon katsayıları (R²) hesaplanmıştır. Bu korelasyon katsayılarından bağ uzunluğu için deneysel değerlerin B3LYP metodu ile 0,9658 uyumlu olduğu HSEH1PBE metodu ile 0,9679 uyumlu olduğu belirlenmiştir. Bağ açısı ise deneysel değerlerin B3LYP metodu ile 0,8397 uyumlu olduğu HSEH1PBE metodu ile 0,8384 uyumlu olduğunu yine belirlenmiştir. Bu sonuçlardan görüldüğü gibi Tablo 1' deki moleküler geometrik parametrelerin deneysel ve teorik verileri birbirleriyle uyumludur.

Kızılötesi (IR) Spektrumu

4000-400 cm⁻¹ orta kızılötesi (IR) bölgesinde incelenen SL molekülünün harmonik titreşim frekansları gaz fazında B3LYP/LanL2DZ seviyesinde hesaplanan katı fazda olan deneysel değerleri ile uyumlu olabilmesi 0,9970 katsayısı ile çarpılmıştır. HSEH1PBE/LanL2DZ metodunda ise 0,9614 katsayısı ile çarpılmıştır. SL molekülünün harmonik titreşim frekansları ve işaretlemeleri Tablo 2' de listelenmiştir. C-H₃ asimetrik gerilme titreşim bandlarının deneysel olarak 3016 cm⁻¹ frekans aralığında gözlemlenirken teorik olarak B3LYP metodunda titreşim frekansları 3187 cm⁻¹ ve HSEH1PB E metodunda 3104 cm⁻¹ olarak hesaplandı.

	Deneysel	Teorik	
	IR	B3LYP	HSEH1PB
			E
υ (N-H)	3385	3528	3438
υ (O-H)	3156	3288	3211
$v_a(CH_3)$	3016	3187	3104
υ (C=N)	1578	1618	1593
υ (C=N), υ _s (CH ₃)	1538	1572	1542
υ (O-N-O)	1462	1526	1502
δ (NC ₂)	1271	1250	1228
ρ (C-H)	1158	1153	1136
υ (N-N)	1097	1116	1106
υ (N-C-N)	1049	1054	1036

N-H gerilme titreşim bandı deneysel olarak 3385 cm⁻¹ titreşim frekans aralığında gözlemlenirken teorik olarak B3LYP metodunda 3528 cm⁻¹ ve HSEH1PBE metodunda 3438 cm⁻¹ olarak hesaplandı. C=N gerilme titreşim bantları deneysel olarak 1578 cm⁻¹ aralığında gözlemlenirken B3LYP metodunda 1618 cm⁻¹, HSEH1PBE metodunda 1593 cm⁻¹ olarak hesaplandı. Sonuç olarak, Tablo 2 den kolayca görülebildiği gibi, HSEH1PBE metoduyla hesaplanan değerler B3LYP metoduna göre deneysel değerlere daha yakındır. SL molekülünün hesaplanan harmonik titreşim frekansları Şekil 3' de gösterilmiştir.

Kısaltmalar: υ , gerilme; a, simetrik olmayan; s, simetrik; δ , bükme; ρ , sallanma; γ , düzlem dışı bükme; τ , burulma.

Şekil3. SL molekülünün a) deneysel ve b) teorik IR spektrumları

¹³C ve ¹H NMR Kimyasal Kaymaları

Bütün organik bileşiklerin analizinde NMR spektroskopileri yaygın olarak kullanılmaktadır. Moleküler yapı tayini için önemli rol oynayan NMR spektroskopileri ¹³C ve ¹H NMR kimyasal kayma hesaplamaları için SL molekülünün kararlı moleküler geometrik yapısı elde edilmiştir (TMS ye göre, tüm değerler ppm olarak verilmiştir). Teorik hesaplamalar DFT/B3LYP/LanL2DZ seviyesinde hesaplanmıştır ve deneysel veriler ile birlikte Tablo 3' de listelenmiştir.

UV- görünür ışık spektrumu

Atom veya molekülün dış kabuktaki elektronların geçişleri ile oluşan bir spektrum verir. Elektromagnetik

dalgaların en bilinenidir. İnsan gözünün görebildiği spektrum kısmı olarak tanımlanabilir.

Tabl	o3 .	SL	mo	leki	ilü	nün	kimy	/asal	kay	/mal	ları.
------	-------------	----	----	------	-----	-----	------	-------	-----	------	-------

$^{1}\mathrm{H}$	Deneysel	B3LYP	HSEH1PBE
H _{N3}	11.648	11.016	11.117
H _{O4}	10.258	7.726	7.861
H_{N4}	8.653	7.480	7.623
H _{C8}	8.399	7.031	7.144
H _{C1}	8.051	6.714	6.820
H _{C3}	7.522	5.487	5.602
H_{C7}	3.828	3.228	3.373
H _{C7}	3.828	2.867	2.962
H _{C7}	3.828	2.867	2.962
H_{C10}	3.021	2.417	2.511
H_{C10}	3.021	2.416	2.510
H_{C10}	3.021	1.621	1.760
¹³ C			
C_9	177.82	185.170	180.872
C_8	151.63	147.396	144.001
C_1	145.52	146.926	142.850
C_2	109.14	136.086	132.439
C ₃	109.14	126.313	123.732
C_4	109.14	121.009	118.011
C_5	109.14	119.562	116.610
C_6	109.14	97.861	94.806
C ₇	56.15	52.833	49.342
C ₁₀	30.89	25.564	21.808

Bu dalgalar, 1 µm den 10nm ye kadar olan dalgaboylarına ve 3.10^{14} Hz den 3.10^{16} Hz e kadar olan frekanslara sahiptirler. Görünür ışığın çeşitli dalga boyları, ($\lambda \approx 400$ nm) mordan kırmızıya kadar ($\lambda \approx 700$ nm) değişen renklerle sınıflandırılır. Gözün duyarlılığı, dalga boyunun bir fonksiyonudur. Duyarlılık, 560 nm (sarı-yeşil) civarındaki bir dalga boyunda maksimum olmaktadır. UV-Görünür ışık spektrumu zamana bağlı Yoğunluk Fonksiyon Teorisi (TD-DFT) ile LanL2DZ temel seti ile hesaplanmıştır. SL molekülünün absorbans piki deneysel olarak 330 nm de teorik olarak ise 500 nm de hesaplanmıştır. Deneysel ve teorik olarak elde edilen elektronik spektrum Şekil 4' de gösterilmiştir.

Şekil4. SL molekülünün a) deneysel ve b) teorik elektronik spektrumları

Elektronik Özellikleri

Bir yapının elektron yoğunluğu dağılımına bakılarak, iyonizasyon potansiyeli, elektron ilgisi, kimyasal sertlik ve yumuşaklık parametreleri, elektrostatik potansiyel ve moleküler orbital şekilleri hakkında bilgi edinilebilir. Moleküler orbitaller HOMO-LUMO diye adlandırılır. Buradaki HOMO molekülün elektronu verme eğilimidir ve dolu olan en yüksek enerjili orbitaldir. LUMO ise molekülün elektron alma eğilimidir ve boş olan en düşük E_{HOMO} en yüksek dolu orbital, E_{LUMO} en düşük enerjili orbitaldir. boş molekül orbital olarak adlandırılır. en yüksek enerjili orbital ve molekülün elektronu verme eğilimidir.

SL molekülünün DFT/B3LYP ve DFT/HSEH1PBE metotları ile LanL2DZ setinde Gaussian 09W programı kullanılarak E_{HOMO} ve E_{LUMO} enerji değerleri hesaplatılmıştır. Hesaplatılan E_{HOMO} ve E_{LUMO} enerjilerinin elektron yoğunluğu dağılımına bakılarak, enerji farkı (ΔE), iyonizasyon potansiyeli (I), elektron ilgisi (A), elektronegatiflik (χ), kimyasal sertlik (η) ve kimyasal yumuşaklık (S) parametreleri formüller yardımı ile hesaplanmıştır. Bu parametrelerin formülleri; $I = -E_{HOMO}$, $A = -E_{LUMO}$, I + A I - A 1

$$\chi = \frac{I+A}{2}, \ \eta = \frac{I-A}{2}$$
 ve $S = \frac{1}{2\eta}$ [12] dir. Bu

formülleri kullanarak DFT/B3LYP ve DFT/HSE1PBE metotlarında hesaplatılan E_{HOMO} ve E_{LUMO} enerji değerlerinden Tablo 4' deki parametreler bulunmuştur.

Tablo4. SL molekülünün teorik olarak hesaplanan elektronik yapı parametreleri.

	B3LYP	HSEH1PBE
E _{HOMO} (eV)	-5.850	-5.736
E _{LUMO} (eV)	-3.782	-3.964
$\Delta E = E_{LUMO} - E_{HOMO} (eV)$	2.068	1.772
I (eV)	5.850	5.736
A (eV)	3.782	3.964
χ (eV)	4.816	4.850
η (eV)	1.034	0.886
$S(eV^{-1})$	0.085	0.087
E _{TOTAL} (a.u)	-918.039	-917.104

Molekülün enerji farkı (ΔE) büyük olduğunda elektron dağılımı daha az değişime uğrar ve kutuplanma düşük olur. ΔE enerji farkı küçük olduğunda ise; elektron dağılımı daha fazla değişime uğrar ve kutuplanma yüksek olur. Tablo 4'de verilen HOMO ile LUMO enerji farkının 1.5 eV dan büyük olması termodinamik açıdan molekülün kararlı ve dayanıklı olduğunu gösterir. Ayrıca molekül kendi kendileri ile reaksiyon vermez, dimerleşme, polimerleşme gerçekleştirmez. Teorik olarak B3LYP metoduyla elde edilen HOMO ve LUMO dağılımlarının gösterimi Şekil 5' de gösterilmiştir.

Şekil5. SL molekülünün HOMO ve LUMO dağılımları

Lineer Olmayan Optik Özellikleri

Lineer olmayan optik (NLO) özellik gösteren moleküllerin tasarımı, modern iletişim teknolojisinde ve optik veri depolama alanlarında güncel bir araştırma konusudur. Alıcı-verici grup bağlı iki kutuplu moleküller en çok araştırılmış NLO malzemeleridirler. NLO malzemeleri yarı iletken tabakalı yapılar olarak kategorize edilir. Bu nedenle, inorganik, organik ve organometalik moleküler sistemlerin birçok çeşidi NLO aktivitesi icin incelenmektedir. Molekül üzerindeki π elektron bulutunun delokalizasyonu artarsa. moleküllerin kutuplanabilirlik değeri artar [13]. Kutuplanabilirlik, uygulanan bir dış elektrik alana karşı molekülün statik dipol momentinin gösterdiği tepki olarak tanımlanır. Molekülün elektron dağılımı ve yük yoğunluğu gibi özelliklerinin bir ölçüsü olan kutuplanabilirlik moleküler spektroskopide kullanılan önemli bir niceliktir.

Toplam statik dipol moment;

$$\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2\right)^{1/2}$$

Uygulanan elektrik alanın yönünden bağımsız bir şekilde molekülün biçimsel bozulmasına neden oluyorsa izotropik kutuplanabilirlik olarak adlandırılır. Molekülün biçimsel bozulması uygulanan elektrik alanın yönünden bağımsız değilse anizotropik kutuplanabilirlik olarak adlandırılır.

Kutuplanabilirlik ve yüksek mertebeli kutuplanabilirlik değerlerinin kartezyen bileşenleri (a.u.) biriminde hesaplanarak, bu kartezyen bileşen değerlerinden;

kutuplanabilirlik

$$\langle \alpha \rangle = \left(\frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3} \right)$$

yönelime bağlı kutuplanabilirlik

$$\Delta \alpha = \left(\frac{(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2}{2}\right)^{1/2}$$

ile ifade edilir [14]. Bir molekülün yüksek mertebe kutuplanabilirliği, molekülün dipol momentinin uygulanan bir dış elektrik alana karşı gösterdiği doğrusal olmayan tepkinin bir ölçüsüdür.

Temel durumda yüksek mertebeli kutuplanabilirlik

$$\langle \beta \rangle = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)^{1/2}$$

ile ifade edilir. Burada
$$\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$$

$$\beta_y = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$$

$$\beta_z = \beta_{zzz} + \beta_{xxz} + \beta_{yyz}$$

plarak verilmektedir [14]

olarak verilmektedir [14].

Tablo5.	SL	molekülünün	teorik	olarak	hesaplanar
elektrikse	el pai	rametreleri.			

anlayabilmek için moleküllerin atomik yükleri hesaplatılarak Tablo 6' da listelenmiştir.

	B3LYP	HSEH1PBE
μ _x	0.991 a.u.	1.061 a.u.
μ _y	2.162 a.u.	2.110 a.u.
μ_z	0.002 a.u.	0.002 a.u.
μ	6.047 Debye	6.003 Debye
~	261.60 a.u	254.06 a.u
α_{xx}	301.00 a.u.	554.00 a.u.
α_{yy}	200.40 a.u.	196./3 a.u.
α_{zz}	146.67 a.u.	71.64a.u.
<a>	31.28×10^{-24} esu.	30.74×10^{-24} esu.
Δα	26.40×10 ⁻²⁴ esu.	25.68×10 ⁻²⁴ esu.
ß	5862.49 a.u.	5752.37 a.u.
β	600.83 a.u.	574.57 a.u.
β _{xzz}	55.90 a.u.	57.06 a.u.
β _{ννν}	-212.62 a.u.	-190.19 a.u.
β _{xxy}	1111.48 a.u.	1107.91 a.u.
β _{yzz}	53.06 a.u.	52.36 a.u.
β _{zzz}	-0.05 a.u.	-0.05 a.u.
β_{xxz}	-9.01 a.u.	-8.57 a.u.
β _{yyz}	-1.83 a.u.	-1.70 a.u.
<β>	569×10 ⁻³⁵ esu.	558×10 ⁻³⁵ esu.

Tablo 6. SL molekülünün Mulliken ve APT yük dağılımları.

	Mulliken		А	.PT
	B3LYP HSEH1P		B3LYP HSEH1	
		BE		Ε
S_1	-0.10549	-0.08822	-0.64475	-0.65308
O_1	-0.30535	-0.32217	-0.8424	-0.85059
O_2	-0.21437	-0.21858	-0.63557	-0.6496
O ₃	-0.29796	-0.3095	-0.62518	-0.64451
O_4	-0.04089	-0.04857	-0.26759	-0.27202
N_1	0.06864	0.07076	1.26658	1.3058
N_2	-0.0358	-0.0573	0.39023	0.39292
N_3	0.02659	0.0048	-0.90421	-0.91036
N_4	0.04865	0.02088	-0.51936	-0.52358
C_1	-0.2142	-0.21155	0.07553	0.08171
C_2	0.40672	0.414	0.37591	0.37319
C_3	-0.19985	-0.1994	-0.01989	-0.01691
C_4	0.30227	0.31334	-0.33436	-0.33885
C_5	-0.01136	0.04047	0.37617	0.38385
C_6	0.42174	0.38116	0.15839	0.15101
C_7	0.19534	0.1952	0.47577	0.48000
C_8	-0.09672	-0.06931	-0.01075	-0.00596
C_9	-0.10201	-0.07983	1.32218	1.33321
C ₁₀	0.15407	0.16382	0.36329	0.36376

SL molekülünün B3LYP ve HSEH1PBE metotları kullanarak dipol moment (μ), kutuplanabilirlik (< α >), yönelime bağlı kutuplanabilirlik ($\Delta \alpha$) ve temel durumda yüksek mertebeli kutuplanabilirlik (<β>) değerleri hesaplanmıştır ve Tablo 5 de listelenmiştir. (1a.u.= $0,1482 \times 10^{-24}$ esu ve 1 a.u. = $8,6393 \times 10^{-33}$ esu).

Mulliken ve APT Yük Analizleri

Mulliken popülasyon analizleri yapılarak elde edilen Mulliken yükleri birçok bilgisayar programında bulunması sebebi ile en eski ve yaygın olarak kullanılan analiz yöntemlerinden biridir. Mulliken yükleri, kısmi atom yüklerinin hesaplanmasıyla elde edilir. Bu metot atomik orbitallerin lineer kombinasyonuyla moleküler orbitallerin elde edilmesi yöntemine dayanmaktadır [15]. SL moleküller arası etkileşimlerini daha iyi

Mulliken ve APT yüklerine bakacak olursak negatif vükler elektronegativitesi en vüksek olan Oksijen (O) ve Karbon (C) atomları üzerinde toplanmıştır. Tablo 6' da Mulliken yük dağılımlarından görüldüğü gibi O1 atomunun negatif yükü yaklaşık olarak B3LYP metodu için -0.30535 ve HSEH1PBE metodu için -0.32217 olarak hesaplanmıştır. Bu değer, diğer oksijen atomlarının negatif yüklerinden daha küçüktür ve molekül içi hidrojen bağında verici olarak bulunur. B3LYP ve HSEH1PBE metodları ile hesaplanan Mulliken ve atomik polar tensör (APT) yük analizleri daha iyi anlaşılabilmesi için yük dağılımları çizdirilip Şekil 6 da gösterilmiştir.

Şekil6. SL molekülünün Mulliken ve APT yük dağılımlarının gösterimi

Moleküler Elektrostatik Potansiyel Yüzey (MEPs) Analizleri

Moleküler elektrostatik potansiyel molekülün yerel kutupluluğu hakkında bilgi vermektedir [15]. Bir elektrostatik potansiyeli, moleküler etkileşimler ve kimyasal reaksiyonlarda güçlü bir etkiye sahiptir. MEPs özellikle büyük moleküller için hesaplanabilir; ayrıca moleküler şeklin ve çoğunlukla biyo moleküllerin kutuplanmış bölgeleri arasındaki sterik etkileşmeleri ifade etmek için de kullanılır [16]. Moleküler elektrostatik potansiyel yüzeyler (MEPs), moleküler davranışların reaktifliği, yapı aktifliği ve hidrojen bağlarını açıklamakta kullanılan faydalı bir metoddur. Kırmızı bölgeler (-) yüklü elektrostatik potansiyel

moleküllerin elektron yoğunluğu bölgelerdir ve derişikliği tarafından protonun çekimini (tek çiftlenim, π bağları) temsil eder. Mavi bölgeler (+) yüklü elektrostatik potansiyel bölgelerdir ve düşük elektron yoğunluğunun ve nükleer yükün tam olarak korunmamış olduğu bölgelerde atom çekirdekleri tarafından protonun itmesine karsılık gelir. Hesaplanan kısmi vükler ise sarı alanlar (-), kırmızı alanlar ise (+) olmak üzere protonlar ve (+) yüklere yaklaşılmasıyla molekülün nasıl bir etkilesim icinde olabileceğini gösterir. SL molekülünün B3LYP/LanL2DZ metodu ile optimize olan yapılarının 3 boyutlu moleküler elektrostatik potansiyel yüzey haritaları Şekil 7' de gösterildi.

Şekil7. SL molekülünün moleküler yüzey haritaları

Termodinamik Özellikleri

Gaussian programında yapılan optimizasyon işleminde sistemlerin termokimyasal parametreleri de elde edilir. Toplam enerji, entalpi ve entropi gibi termodinamik parametreler kimyasal türlerin oluşabilirliğini ön görmede kullanılabilir. Termokimyasal özelliklerden ısı oluşumu en önemli parametrelerden biridir.

Termodinamik açıdan ısı etkilerinin incelenmesinin zor oluşu sebebi ile çoğu organik bileşiklerde ısı oluşumu değerleri bilinmemektedir. Bu durum teorik hesaplamalarda kuantum kimyasal metotların önemini artırmaktadır. Kuantum kimyasal sonuçlarının ısı etkilerine bakılarak, kimyasal reaksiyonun olup olmayacağına karar verilebilir. Termodinamik kuantum kimyasal veriler organik bileşiklerin reaksiyon mekanizmalarının incelenmesinde yaygın bir şekilde kullanılmaktadır. SL molekülünün termodinamik parametreleri B3LYP/LanL2DZ ve HSEH1PBE/LanL2DZ metotlarıyla Gaussian 09W programı kullanarak hesaplatılmıştır ve verileri Tablo 7' de listelenmiştir.

TARTIŞMA ve SONUÇ

Bu çalışmada, SL molekülünün yapısal, elektrik ve elektronik özelliklerini açıklamak için Gaussian programı yardımı ile kuantum kimyasal hesaplamalar yapılmıştır. Molekülün geometrik yapısı HSEH1PBE ve B3LYP metotları ile belirlenmiştir. **Tablo7**. SL molekülünün Termodinamik parametreleri.

Parametreler	B3LYP	HSEH1PBE
Termal enerji: E (Kcal/mol)		
Dönme	0.889	0.889
Ötelenme	0.889	0.889
Titreșim	155.011	156.80
Toplam	156.789	158.58
Isı sığası: C _v (cal/molK)		
Dönme	2.981	2.981
Ötelenme	2.981	2.981
Titreșim	61.978	61.118
Toplam	67.939	67.080
Entropi: S (cal/molK)		
Dönme	42.830	42.830
Ötelenme	34.870	34.834
Titreșim	66.648	65.390
Toplam	144.349	143.06
Dönme sabitleri (GHz)		
Α	0.58372	0.5914
В	0.13520	0.1368
С	0.10993	0.1112
Dönme sıcaklıkları (Kelvin)		
А	0.02801	0.0284
В	0.00649	0.0066
С	0.00528	0.0053
Termal özellikler (Hartree/parça	cık)	
Sıfır nokta düzeltmesi	0.231209	0.2343
Enerji için termal düzeltme	0.249859	0.2527
Entalpi için termal düzeltme	0.250803	0.2536
Gibbs serbest enerjisi için		
termal düzeltme	0.182218	0.1856
Elektronik ve sıfır nokta		
enerjiler toplamı	-917.8073	-916.87
Elektronik ve termal enerjiler		
toplamı	-917.7886	-916.8
Elektronik ve termal entalpiler		
toplamı	-917.7877	-916.8
Elektronik ve termal serbest		
enerjiler toplamı	-917.8563	-916.9
Sıfır nokta titreşim enerjisi		
(kcal/mol)	145.08614	147.02

Hesaplanan bağ uzunlukları deneysel değerler ile yaklaşık 0.96, bağ açılarının ise yaklaşık 0.84 uyumlu olduğu gözlenmiştir. Titreşim spektrumu ve harmonik teorik hesaplamaları titreșim analizinin gerçekleştirilmiştir ve titreşim işaretlemeleri deneysel değerler ile karşılaştırılmıştır. Elektronik özelliğinden HOMO/LUMO enerji değerleri B3LYP metodunda -5.850/-3.782 ve HSEH1PBE metodunda ise-5.736/-3.964 dir. HOMO/LUMO enerji değerleri arasındaki fark B3LYP metodunda 2.0 HSEH1PBE metodunda 1.7 dir. Bu değerler SL molekülünün termodinamik açıdan kararlı ve dayanıklı olduğunu gösterir. SL molekülünün kutuplanabilirlik değeri B3LYP metodunda 31.28×10-24 esu., HSEH1PBE metodunda ise 30.74×10⁻²⁴ esu. olarak hesaplandı. Bu değer bize SL molekülünün üzerindeki π -elektron bulutunun delokalizasyonu yüksek olduğunu gösterir. Mulliken atom yükleri popülasyon analizinden görüldüğü gibi O1 atomunun negatif yükü yaklasık olarak -0.3 dür. Oksijen atomlarının negatif yüklerinden küçük olan bu değer molekül içi hidrojen bağında verici olarak bulunduğunu gösterir. Ayrıca Entalpi, gibbs serbest enerjileri, entropi gibi termodinamik özellikleri

ve moleküler elektrostatik potansiyel enerji yüzey hesaplatılmıştır. haritası (MEPS) Tüm hesaplamalarımızda DFT/B3LYP ve DFT/HSEH1PBE metodunun LanL2DZ temel setini kullanılmıştır. Ağır atomlu çekirdeklerde, çekirdeğe yakın bölgelerdeki elektronlara, yaklaşık olarak etkili çekirdek potansiyeli (ECPs) gibi davranılır. Bu davranıs, bu atomlar için önemli olan bazı göreli etkileri icerir. LanL2DZ temel ivi bilineni seti bunların en olduğu icin hesaplamalarımızda bu set kullanılmıştır.

ORCID

Hacer GUMUS Dhttps://orcid.org/0000-0002-6486-0515

KAYNAKÇA

- [1] Arafath Md. A., Adam F., Razali M. R., Hassan L. E. A., Ahamed M. B. K., Majid A. M. S. A. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from Nmethylhydrazinecarbothioamide and 2-hydroxy-5methoxy-3-nitrobenzaldehyde, Journal of Molecular Structure 1130, 791-798, 2017.
- [2] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A, Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J.E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J. B., Ortiz, J.V., Cioslowski, J. Ve Fox D.J., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford Ct., 2009.
- [3] Lee, C., Yang, W. Parr R.G. Development Of The Colle-Salvetti Correlation-Energy Formula Into A Functional Of The Electron Density. Phys. Rev. B, 37, 785, 1988.
- [4] Becke, A. D. Density-Functional Thermochemistry. In. The Role Of Exact Exchange. J. Chem. Phys., 98, 5648, 1993.
- [5] Heyd, J. Scuseria G. Efficient Hybrid Density Functional Calculations In Solids: Assessment Of The Heyd-Scuseria-Ernzerhof Screened Coulomb Hybrid Functional. J. Chem. Phys., 121, 1187, 2004.
- [6] Heyd J. And Scuseria G.E. Assessment And Validation of A Screened Coulomb Hybrid Density Functional. J. Chem. Phys., 120, 7274, 2004.
- [7] Heyd J., Peralta J. E., Scuseria G. E., And Martin R. L. Energy Band Gaps And Lattice Parameters Evaluated With The Heyd-Scuseria-Ernzerhof Screened Hybrid Functional. J. Chem. Phys., 123, 174101, 2005.

- [8] Heyd J., Scuseria G. E., Ernzerhof M. Hybrid Functionals Based On A Screened Coulomb Potential. J. Chem. Phys., 124, 219906, 2006.
- [9] P.J. Hay, W.R. Wadt. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, J. Chem. Phys. 82, 270-283, 1985.
- [10] Wadt W.R., Hay P.J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys. 82, 284-298, 1985.
- [11] Hay P.J., Wadt W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys. 82 299-310, 1985.
- [12] Pir H., Günay N., Avcı D. Quantum chemical computational studies on bisthiourea zinc chloride, Indian J. Phys., 86, 1049, 2012.
- [13] Kariper S. E. Alkin Birimli Piridil Ligantları İçeren Bazı Dinükleer Metal Karbonillerin Kuantum Kimyasal Hesaplama Yöntemleriyle Yapısal, Spektroskopik Ve Optik Özelliklerinin İncelenmesi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, p. 103.
- [14] Maroulis, G. Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules, J. Chem. Phys., 113, 5, 2000.
- [15] Pearson, R. Absolute electronegativity and hardness: applications to organic chemistry, J. Org. Chem., 54, 1423-1430, 1989.
- [16] Cramer, J.C. Essentials of Computational Chemistry, Theory And Models, John Wiley And Sons, Usa, 596, 2002.