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Abstract − The paper introduces direct product in fuzzy multigroup setting as an
extension of direct product of fuzzy subgroups. Some properties of direct product of
fuzzy multigroups are explicated. It is established that the direct product of fuzzy
multigroups is a fuzzy multigroup. The notion of homomorphism and some of its
properties in the context of direct product of fuzzy multigroups are introduced.
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1. Introduction

The concept of set theory put forward by a German mathematician George Cantor (1845-1918) is a
linchpin for the whole of mathematics. Notwithstanding, an element of a set must be distinct and
definite in a collection, which is not consistent with real-life issues. The ”famous” fuzzy set proposed
by Zadeh [1] is a veritable tool for handling uncertainty and/or imprecision in real-life problems. Fuzzy
set theory posited that there are cases where an element would not be definite in a collection. The
theory of fuzzy set has grown tremendously over time giving birth to some algebraic structures like
fuzzy group introduced by Rosenfeld [2]. Some properties of the fuzzy groups have been discussed in
details in [3,4], etc. In the same vein, multiset theory [5–7] violated the rule that an element must be
distinct in a collection, i.e., the idea of multisets allows repetition of elements.

Motivated by Zadeh [1], fuzzy multiset was proposed by Yager [8] as a generalization of fuzzy set.
The idea of fuzzy multisets allows the repetition of membership function of an element in multiset
framework, unlike the case in fuzzy set where membership function of an element does not allow to
repeat. Some details of the notion of fuzzy multisets can be found in [9–11]. Subsequently, Shinoj et al.
[12] followed the footsteps of Rosenfeld [2] and introduced a non-classical group called fuzzy multigroup,
which constitutes an application of fuzzy multiset to the theory of group. The idea of abelian fuzzy
multigroups was proposed and studied in [13, 14]. Ejegwa [15] introduced fuzzy multigroupoids, the
ideas of center and centralizer in fuzzy multigroup context with some related results. The notions
of fuzzy submultigroups and normal fuzzy submultigroups were explicated in [15, 16] with a number
of results. Also, the concept of homomorphism of fuzzy multigroups and its properties have been
explored with some results [17].

This paper is motivated by the work of Ray [18] on product of fuzzy subgroups, which was extended
from group theory but presented in the light of fuzzy groups. In the same vein, we are spurred to
propose direct product in fuzzy multigroup structure as an extension of the work in [18], and explicate
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some of it properties in details. The rest of the paper are thus outline: Section 2 provides some
preliminaries while Section 3 proposes direct product in fuzzy multigroup setting, discusses some
of its properties and outline some related results. Finally, Section 4 contains the conclusion and
recommendations for future studies.

2. Preliminaries

This section presents some foundational concepts which are germane to the subject under considera-
tion.

Definition 2.1. [8] Suppose X is a nonempty set. Then, a fuzzy bag/multiset A drawn from X can
be characterized by a count membership function CMA where

CMA : X → Q

and Q is the set of all crisp bags or multisets from the unit interval I = [0, 1].
A fuzzy multiset can also be characterized by a high-order function. In particular, a fuzzy multiset

A can be characterized by a function

CMA : X → N I or CMA : X → [0, 1] → N,

where I = [0, 1] and N = N ∪ {0}.
By [19], it follows that CMA(x) for x ∈ X is given as

CMA(x) = {µ1
A(x), µ

2
A(x), ..., µ

n
A(x), ...},

where µ1
A(x), µ

2
A(x), ..., µ

n
A(x), ... ∈ [0, 1] where µ1

A(x) ≥ µ2
A(x) ≥ ... ≥ µn

A(x) ≥ ..., whereas in a finite
case, we write

CMA(x) = {µ1
A(x), µ

2
A(x), ..., µ

n
A(x)},

for µ1
A(x) ≥ µ2

A(x) ≥ ... ≥ µn
A(x).

A fuzzy multiset A can be represented by

A = {⟨CMA(x)

x
⟩ | x ∈ X} orA = {⟨x,CMA(x)⟩ | x ∈ X}.

In short, a fuzzy multiset A of X is characterized by the count membership function CMA(x) for
x ∈ X, that takes the value of a multiset of a unit interval I = [0, 1] [20,21].

We denote the set of all fuzzy multisets by FMS(X).

Definition 2.2. [10] Suppose A,B ∈ FMS(X). Then, A is called a fuzzy submultiset of B denoted
by A ⊆ B if CMA(x) ≤ CMB(x)∀x ∈ X. Also, if A ⊆ B and A ̸= B, then A is called a proper fuzzy
submultiset of B and denoted as A ⊂ B.

Definition 2.3. [11] Suppose A and B are fuzzy multisets of a set X. Then, the intersection and
union of A and B, denoted by A ∩ B and A ∪ B, respectively, are defined by the rules that for any
object x ∈ X,

(i) CMA∩B(x) = CMA(x) ∧ CMB(x),

(ii) CMA∪B(x) = CMA(x) ∨ CMB(x),

where ∧ and ∨ denote minimum and maximum respectively.

Definition 2.4. [10] Let A,B ∈ FMS(X). Then, A and B are comparable to each other if and only
if A ⊆ B or B ⊆ A, and A = B ⇔ CMA(x) = CMB(x)∀x ∈ X.

Definition 2.5. [12] Suppose X is a group. Then, a fuzzy multiset A of X is a fuzzy multigroup of
X if

(i) CMA(xy) ≥ CMA(x) ∧ CMA(y)∀x, y ∈ X,

(ii) CMA(x
−1) ≥ CMA(x)∀x ∈ X.
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It follows immediately that,
CMA(x

−1) = CMA(x),∀x ∈ X

since
CMA(x) = CMA((x

−1)−1) ≥ CMA(x
−1).

Also,
CMA(e) ≥ CMA(x)∀x ∈ X

because
CMA(e) = CMA(xx

−1) ≥ CMA(x) ∧ CMA(x) = CMA(x)

and
CMA(x

n) ≥ CMA(x)∀x ∈ X

since

CMA(x
n) = CMA(x

n−1x) ≥ CMA(x
n−1) ∧ CMA(x)

≥ CMA(x) ∧ ... ∧ CMA(x)

= CMA(x).

Every fuzzy multigroup is a fuzzy multiset but the converse is not true. We denote the set of all fuzzy
multigroups of X by FMG(X).

Definition 2.6. [15] Suppose A ∈ FMG(X). Then, a fuzzy submultiset B of A is a fuzzy submulti-
group of A denoted by B ⊑ A if B a fuzzy multigroup. A fuzzy submultigroup B of A is a proper
denoted by B < A, if B ⊑ A and A ̸= B.

Remark 2.7. [15] If A ∈ FMG(X) and B ⊑ A, then B ∈ FMG(X). Again, suppose C ∈ FMS(X)
and C ⊆ B. Then C ⊑ A ⇔ C ⊑ B.

Definition 2.8. [13] A fuzzy multiset A of a set X is commutative if CMA(xy) = CMA(yx) for all
x, y ∈ X.

Definition 2.9. [12,15] Suppose A ∈ FMG(X). Then, A∗ and A∗ are defined by

(i) A∗ = {x ∈ X | CMA(x) > 0} and

(ii) A∗ = {x ∈ X | CMA(x) = CMA(e)}, where e is the identity element of X.

Proposition 2.10. [12, 15] Suppose A ∈ FMG(X), then A∗ and A∗ are subgroups of X.

Definition 2.11. [16] Let A,B ∈ FMG(X) such that A ⊆ B. Then, A is a normal fuzzy submulti-
group of B if for all x, y ∈ X,

CMA(xyx
−1) ≥ CMA(y).

Proposition 2.12. [16] Let A,B ∈ FMG(X). Then, the following statements are equivalent.

(i) A is a normal fuzzy submultigroup of B.

(ii) CMA(xyx
−1) = CMA(y)∀x, y ∈ X.

(iii) CMA(xy) = CMA(yx)∀x, y ∈ X.

Definition 2.13. [16] Let A,B ∈ FMG(X). We say A and B are conjugate to each other if for all
x, y ∈ X,

CMA(x) = CMB(yxy
−1) and CMB(y) = CMA(xyx

−1).

Definition 2.14. Suppose A ∈ FMG(X). Then, A[α] and A(α) defined by

(i) A[α] = {x ∈ X | CMA(x) ≥ α} and

(ii) A(α) = {x ∈ X | CMA(x) > α}

are called strong upper alpha-cut and weak upper alpha-cut of A, where α ∈ [0, 1].
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Definition 2.15. Let A ∈ FMG(X). Then, A[α] and A(α) defined by

(i) A[α] = {x ∈ X | CMA(x) ≤ α} and

(ii) A(α) = {x ∈ X | CMA(x) < α}

are called strong lower alpha-cut and weak lower alpha-cut of A, where α ∈ [0, 1].

Theorem 2.16. Suppose A ∈ FMG(X). Then A[α] is a subgroup of X if α ≤ CMA(e) and A[α] is a
subgroup of X if α ≥ CMA(e), where e is the identity element of X and α ∈ [0, 1].

Definition 2.17. Suppose A,B ∈ FMG(X) such that A ⊆ B. Then, A is a characteristic (fully
invariant) fuzzy submultigroup of B if

CMAθ(x) = CMA(x) ∀x ∈ X

for every automorphism, θ of X. That is, θ(A) ⊆ A for every θ ∈ Aut(X).

Proposition 2.18. Suppose X is a group. Every characteristic fuzzy submultigroup of a fuzzy
multigroup B of X is normal.

Definition 2.19. [17] Suppose X and Y are groups and let f : X → Y be a homomorphism. Suppose
A and B are fuzzy multigroups of X and Y respectively, then f induces a homomorphism from A to
B which satisfies

(i) CMA(f
−1(y1y2)) ≥ CMA(f

−1(y1)) ∧ CMA(f
−1(y2)) ∀y1, y2 ∈ Y ,

(ii) CMB(f(x1x2)) ≥ CMB(f(x1)) ∧ CMB(f(x2)) ∀x1, x2 ∈ X,

where

(i) the image of A under f , denoted by f(A), is a fuzzy multiset over Y defined by

CMf(A)(y) =

{ ∨
x∈f−1(y)CMA(x), f−1(y) ̸= ∅

0, otherwise

for each y ∈ Y .

(ii) the inverse image of B under f , denoted by f−1(B), is a fuzzy multiset over X defined by

CMf−1(B)(x) = CMB(f(x))∀x ∈ X.

Theorem 2.20. [17] Suppose X and Y are groups and f : X → Y is an isomorphism. Then

(i) A ∈ FMG(X) ⇔ f(A) ∈ FMG(Y ).

(ii) B ∈ FMG(Y ) ⇔ f−1(B) ∈ FMG(X).

3.Main results

Suppose X and Y are two groups. Then, the direct product, X × Y is the Cartesian product of
ordered pair (x, y) such that x ∈ X and y ∈ Y , and the group operation is component-wise, so
(x1, y1) × (x2, y2) = (x1x2, y1y2). The resulting algebraic structure satisfies the axioms for a group.
Since the ordered pair (x, y) such that x ∈ X and y ∈ Y is an element of X × Y , we simply write
(x, y) ∈ X × Y . In this section, we discuss the notion of direct product of two fuzzy multigroups
defined over X and Y , respectively.

Definition 3.1. Suppose A ∈ FMG(X) and B ∈ FMG(Y ) where X and Y are groups. The direct
product of A and B depicted by A×B is a function

CMA×B : X × Y → Q

defined by
CMA×B((x, y)) = CMA(x) ∧ CMB(y)∀x ∈ X, ∀y ∈ Y,

where Q is the set of all multisets from the unit interval I = [0, 1].
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Example 3.2. Let X = {1, x} be a group, where x2 = 1 and Y = {e, a, b, c} be a Klein 4-group,
where a2 = b2 = c2 = e. Suppose

A = {⟨1, 0.8
1

⟩, ⟨0.8, 0.5
x

⟩}

and

B = {⟨1, 0.9
e

⟩, ⟨0.6, 0.5
a

⟩, ⟨0.7, 0.6
b

⟩, ⟨0.6, 0.5
c

⟩}

are fuzzy multigroups of X and Y by Definition 2.5. Now

X × Y = {(1, e), (1, a), (1, b), (1, c), (x, e), (x, a), (x, b), (x, c)}

is a group from the classical sense. By Definition 3.1, we get

A×B = {⟨1, 0.8
(1, e)

⟩, ⟨0.6, 0.5
(1, a)

⟩, ⟨0.7, 0.6
(1, b)

⟩, ⟨0.6, 0.5
(1, c)

⟩, ⟨0.8, 0.5
(x, e)

⟩, ⟨0.6, 0.5
(x, a)

⟩, ⟨0.7, 0.5
(x, b)

⟩, ⟨0.6, 0.5
(x, c)

⟩}.

Certainly, A×B is a fuzzy multigroup of X × Y in accordance to Definition 2.5.

Next, we consider an example to investigate what happens of the direct product of a fuzzy multi-
group of a group X and a fuzzy multiset of a group Y .

Example 3.3. Let X and Y be groups as in Example 3.2. Suppose we have a fuzzy multigroup of X
given as

A = {⟨1, 0.5
1

⟩, ⟨0.7, 0.4
x

⟩},

and a fuzzy multiset of Y as

B = {⟨0.7, 0.5
e

⟩, ⟨0.6, 0.4
a

⟩, ⟨0.7, 0.6
b

⟩, ⟨0.6, 0.4
c

⟩}.

Synthesizing Definitions 2.5 and 3.1, we get

A×B = {⟨0.7, 0.5
(1, e)

⟩, ⟨0.6, 0.4
(1, a)

⟩, ⟨0.7, 0.5
(1, b)

⟩, ⟨0.6, 0.4
(1, c)

⟩, ⟨0.7, 0.4
(x, e)

⟩, ⟨0.6, 0.4
(x, a)

⟩, ⟨0.7, 0.4
(x, b)

⟩, ⟨0.6, 0.4
(x, c)

⟩},

and it follows that A×B is a fuzzy multigroup of X × Y although B is not a fuzzy multigroup of Y .

Theorem 3.4. Let A ∈ FMG(X) and B ∈ FMG(Y ), respectively. Then for all α ∈ [0, 1],

(i) A×B)[α] = A[α] ×B[α].

(ii) (A×B)[α] = A[α] ×B[α].

Proof. (i) Let (x, y) ∈ (A×B)[α]. Using Definition 2.14, we have

CMA×B((x, y)) = (CMA(x) ∧ CMB(y)) ≥ α.

This implies that CMA(x) ≥ α and CMB(y) ≥ α, then x ∈ A[α] and y ∈ B[α]. Thus,

(x, y) ∈ A[α] ×B[α].

Also, let (x, y) ∈ A[α] ×B[α]. Then CMA(x) ≥ α and CMB(y) ≥ α. That is,

(CMA(x) ∧ CMB(y)) ≥ α.

This yields us (x, y) ∈ (A×B)[α]. Therefore, (A×B)[α] = A[α] ×B[α] ∀α ∈ [0, 1].

(ii) Similar to (i).

Corollary 3.5. Suppose A ∈ FMG(X) and B ∈ FMG(Y ), then

(i) (A×B)∗ = A∗ ×B∗,

(ii) (A×B)∗ = A∗ ×B∗.

Proof. Similar to Theorem 3.4.
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Theorem 3.6. Suppose A ∈ FMG(X) and B ∈ FMG(Y ). Then A × B is a fuzzy multigroup of
X × Y .

Proof. Let (x, y) ∈ X × Y and let x = (x1, x2) and y = (y1, y2). We have

CMA×B(xy) = CMA×B((x1, x2)(y1, y2))

= CMA×B((x1y1, x2y2))

= CMA(x1y1) ∧ CMB(x2y2)

≥ ∧(CMA(x1) ∧ CMA(y1), CMB(x2) ∧ CMB(y2))

= ∧(CMA(x1) ∧ CMB(x2), CMA(y1) ∧ CMB(y2))

= CMA×B((x1, x2)) ∧ CMA×B((y1, y2))

= CMA×B(x) ∧ CMA×B(y).

Also,

CMA×B(x
−1) = CMA×B((x1, x2)

−1) = CMA×B((x
−1
1 , x−1

2 ))

= CMA(x
−1
1 ) ∧ CMB(x

−1
2 ) = CMA(x1) ∧ CMB(x2)

= CMA×B((x1, x2)) = CMA×B(x).

Hence, A×B ∈ FMG(X × Y ).

Corollary 3.7. Let A1, B1 ∈ FMG(X1) and A2, B2 ∈ FMG(X2), respectively such that A1 ⊆ B1

and A2 ⊆ B2. If A1 and A2 are normal fuzzy submultigroups of B1 and B2, then A1 ×A2 is a normal
fuzzy submultigroup of B1 ×B2.

Proof. By Theorem 3.6, A1×A2 is a fuzzy multigroup ofX1×X2. Also, B1×B2 is a fuzzy multigroup
of X1×X2. We show that A1×A2 is a normal fuzzy submultigroup of B1×B2. Let (x, y) ∈ X1×X2

such that x = (x1, x2) and y = (y1, y2). Then we get

CMA1×A2(xy) = CMA1×A2((x1, x2)(y1, y2))

= CMA1×A2((x1y1, x2y2))

= CMA1(x1y1) ∧ CMA2(x2y2)

= CMA1(y1x1) ∧ CMA2(y2x2)

= CMA1×A2((y1x1, y2x2))

= CMA1×A2((y1, y2)(x1, x2))

= CMA1×A2(yx).

Hence, the result follows by Proposition 2.12.

Theorem 3.8. Suppose A and B are fuzzy multigroups of X and Y , respectively. Then

(i) (A×B)∗ is a subgroup of X × Y ,

(ii) (A×B)∗ is a subgroup of X × Y ,

(iii) (A×B)[α] is a subgroup of X × Y , ∀ α ≤ CMA×B(e, e
′) and α ∈ [0, 1],

(iv) (A×B)[α] is a subgroup of X × Y , ∀ α ≥ CMA×B(e, e
′) and α ∈ [0, 1].

Proof. Combining Proposition 2.10, Theorems 2.16 and 3.6, the results follow.

Corollary 3.9. Suppose A,C ∈ FMG(X) such that A ⊆ C and B,D ∈ FMG(Y ) such that B ⊆ D,
respectively. If A and B are normal, then

(i) (A×B)∗ is a normal subgroup of (C ×D)∗,

(ii) (A×B)∗ is a normal subgroup of (C ×D)∗,

(iii) (A×B)[α] is a normal subgroup of (C ×D)[α], ∀ α ≤ CMA×B(e, e
′) and α ∈ [0, 1],



Journal of New Theory 28 (2019) 62-73 / Direct Product of Fuzzy Multigroups 68

(iv) (A×B)[α] is a normal subgroup of (C ×D)[α], ∀ α ≥ CMA×B(e, e
′) and α ∈ [0, 1].

Proof. Combining Proposition 2.10, Theorems 2.16, 3.6 and Corollary 3.7, the results follow.

Proposition 3.10. Let A ∈ FMG(X) and B ∈ FMG(Y ), respectively. Then ∀(x, y) ∈ X × Y , we
have

(i) CMA×B((x
−1, y−1)) = CMA×B((x, y)),

(ii) CMA×B((e, e
′)) ≥ CMA×B((x, y)),

(iii) CMA×B((x, y)
n) ≥ CMA×B((x, y)),

where e and e′ are the identity elements of X and Y , respectively and n ∈ N.

Proof. Let x ∈ X, y ∈ Y and (x, y) ∈ X×Y . By Theorem 3.6, it follows that A×B ∈ FMG(X×Y ).
Now,
(i)

CMA×B((x
−1, y−1)) = CMA(x

−1) ∧ CMB(y
−1)

= CMA(x) ∧ CMB(y)

= CMA×B((x, y)).

Clearly, CMA×B((x
−1, y−1)) = CMA×B((x, y)) ∀(x, y) ∈ X × Y .

(ii)

CMA×B((e, e
′)) = CMA×B((x, y)(x

−1, y−1))

≥ CMA×B((x, y)) ∧ CMA×B((x
−1, y−1))

= CMA×B((x, y)) ∧ CMA×B((x, y))

= CMA×B((x, y)) ∀(x, y) ∈ X × Y.

Hence, CMA×B((e, e
′)) ≥ CMA×B((x, y)).

(iii)

CMA×B((x, y)
n) = CMA×B((x

n, yn))

= CMA×B((x
n−1, yn−1)(x, y))

≥ CMA×B((x
n−1, yn−1)) ∧ CMA×B((x, y))

≥ CMA×B((x
n−2, yn−2)) ∧ CMA×B((x, y)) ∧ CMA×B((x, y))

≥ CMA×B((x, y)) ∧ CMA×B((x, y)) ∧ ... ∧ CMA×B((x, y))

= CMA×B((x, y)),

⇒ CMA×B((x, y)
n) = CMA×B((x

n, yn)) ≥ CMA×B((x, y)) ∀(x, y) ∈ X × Y .

Theorem 3.11. Let A and B be fuzzy multisets of groups X and Y , respectively. Suppose that e
and e′ are the identity elements of X and Y , respectively. If A × B is a fuzzy multigroup of X × Y ,
then at least one of the following statements hold.

(i) CMB(e
′) ≥ CMA(x) ∀x ∈ X,

(ii) CMA(e) ≥ CMB(y) ∀y ∈ Y .

Proof. Let A× B ∈ FMG(X × Y ). By contrapositive, suppose that none of the statements holds.
Then suppose we can find a in X and b in Y such that

CMA(a) > CMB(e
′) and CMB(b) > CMA(e).
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From these we have

CMA×B((a, b)) = CMA(a) ∧ CMB(b)

> CMA(e) ∧ CMB(e
′)

= CMA×B((e, e
′)).

Thus, A × B is not a fuzzy multigroup of X × Y by Proposition 3.10. Hence, either CMB(e
′) ≥

CMA(x) ∀x ∈ X or CMA(e) ≥ CMB(y) ∀y ∈ Y . This completes the proof.

Theorem 3.12. Let A and B be fuzzy multisets of groupsX and Y , respectively, such that CMA(x) ≤
CMB(e

′) ∀x ∈ X, e′ being the identity element of Y . If A × B is a fuzzy multigroup of X × Y, then
A is a fuzzy multigroup of X.

Proof. Let A×B be a fuzzy multigroup of X × Y and x, y ∈ X. Then (x, e′), (y, e′) ∈ X × Y . Now,
using the property CMA(x) ≤ CMB(e

′) ∀x ∈ X, we get

CMA(xy) = CMA(xy) ∧ CMB(e
′e′)

= CMA×B((xy, e
′e′))

= CMA×B((x, e
′)(y, e′))

≥ CMA×B((x, e
′)) ∧ CMA×B((y, e

′))

= ∧(CMA(x) ∧ CMB(e
′), CMA(y) ∧ CMB(e

′))

= CMA(x) ∧ CMA(y).

Also,

CMA(x
−1) = CMA(x

−1) ∧ CMB(e
′−1) = CMA×B((x

−1, e′−1))

= CMA×B((x, e
′)−1) = CMA×B((x, e

′))

= CMA(x) ∧ CMB(e
′) = CMA(x).

Hence, A is a fuzzy multigroup of X. This completes the proof.

Theorem 3.13. Let A and B be fuzzy multisets of groupsX and Y , respectively, such that CMB(x) ≤
CMA(e) ∀x ∈ Y , e being the identity element of X. If A×B is a fuzzy multigroup of X × Y, then B
is a fuzzy multigroup of Y .

Proof. Similar to Theorem 3.12.

Corollary 3.14. Let A and B be fuzzy multisets of groups X and Y , respectively. If A×B is a fuzzy
multigroup of X × Y , then either A is a fuzzy multigroup of X or B is a fuzzy multigroup of Y .

Proof. Combining Theorems 3.11, 3.12 and 3.13, the result follows.

Theorem 3.15. If A and C are conjugate fuzzy multigroups of a group X, and B and D are conjugate
fuzzy multigroups of a group Y . Then A×B is a conjugate of C ×D.

Proof. Since A and C are conjugate, it implies that for g1 ∈ X, we have

CMA(x) = CMC(g
−1
1 xg1) ∀x ∈ X.

Also, since B and D are conjugate, for g2 ∈ Y , we get

CMB(y) = CMD(g
−1
2 yg2) ∀y ∈ Y.

Now,

CMA×B((x, y)) = CMA(x) ∧ CMB(y) = CMC(g
−1
1 xg1) ∧ CMD(g

−1
2 yg2)

= CMC×D((g
−1
1 xg1), (g

−1
2 yg2))

= CMC×D((g
−1
1 , g−1

2 )(x, y)(g1, g2))

= CMC×D((g1, g2)
−1(x, y)(g1, g2)).

This completes the proof.
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Theorem 3.16. Let A ∈ FMG(X) and B ∈ FMG(Y ). Suppose C and D are two fuzzy submultisets
of A and B, respectively. Then C ×D is a fuzzy submultigroup of A × B if and only if both C and
D are fuzzy submultigroups of A and B, respectively.

Proof. Suppose C andD are two fuzzy submultigroups ofA andB, respectively. Then C ∈ FMG(X)
and D ∈ FMG(Y ) by Remark 2.7. It then follows that C × D ∈ FMG(X × Y ) by Theorem 3.6.
Since A×B is a fuzzy multigroup of X × Y by the same reason, and C ⊑ A and D ⊑ B, thus, C ×D
is a fuzzy submultigroup of A×B.

Conversely, If C ×D is a fuzzy submultigroup of A×B. Then, it follows that C ⊑ A and D ⊑ B.
These complete the proof.

Corollary 3.17. Let A ∈ FMG(X) and B ∈ FMG(Y ). Suppose C and D are two fuzzy submulti-
groups of A and B, respectively. Then C ×D is a normal fuzzy submultigroup of A× B if and only
if both C and D are normal fuzzy submultigroups of A and B, respectively.

Proof. Combining both Definition 2.11, Theorems 3.6 and 3.16, the proof follows.

Corollary 3.18. Let A ∈ FMG(X) and B ∈ FMG(Y ). Suppose C and D are two fuzzy submulti-
groups of A and B, respectively. Then C ×D is a characteristic fuzzy submultigroup of A×B if and
only if both C and D are characteristic fuzzy submultigroups of A and B, respectively.

Proof. Combining both Theorems 3.6 and 3.16, the proof follows.

Remark 3.19. With the same hypothesis as in Corollary 3.18, it follows that C × D is a normal
fuzzy submultigroup of A × B if both C and D are characteristic fuzzy submultigroups of A and B,
respectively.

Corollary 3.20. Let A ∈ FMG(X) and C be a fuzzy submultiset of A. Then C × C is a fuzzy
submultigroup of A×A if and only if C is a fuzzy submultigroup of A.

Proof. The proof is straightforward from Theorem 3.16.

Remark 3.21. Let A ∈ FMG(X) and C be a fuzzy submultigroup of A. Then

(i) C×C is a normal fuzzy submultigroup of A×A if and only if C is a normal fuzzy submultigroup
of A.

(ii) C ×C is a characteristic fuzzy submultigroup of A×A if and only if C is a characteristic fuzzy
submultigroup of A.

(iii) C ×C is a normal fuzzy submultigroup of A×A if C is a characteristic fuzzy submultigroup of
A.

Theorem 3.22. Let A and B be fuzzy multigroups of groups X and Y , respectively. Then A and B
are commutative if and only if A×B is a commutative fuzzy multigroup of X × Y .

Proof. Suppose A and B are commutative. We show that A×B is a commutative fuzzy multigroup
of X × Y . It is a known fact that A×B ∈ FMG(X × Y ) by Theorem 3.6. Let (x, y) ∈ X1 ×X2 such
that x = (x1, x2) and y = (y1, y2). Then we get

CMA×B(xy) = CMA×B((x1, x2)(y1, y2))

= CMA×B(x1y1, x2y2)

= CMA(x1y1) ∧ CMB(x2y2)

= CMA(y1x1) ∧ CMB(y2x2)

= CMA×B(y1x1, y2x2)

= CMA×B((y1, y2)(x1, x2))

= CMA×B(yx).

Hence, A×B is a commutative fuzzy multigroup of X × Y by Definition 2.8.
Conversely, suppose A × B is a commutative fuzzy multigroup of X × Y . Then, it is clear that

both A and B are commutative fuzzy multigroups of groups X and Y , respectively.
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Now, we present some homomorphic properties of direct product of fuzzy multigroups. This is an
extension of the notion of homomorphism in fuzzy multigroup setting (cf. Definition 2.19) to direct
product of fuzzy multigroups.

Definition 3.23. Let W ×X and Y ×Z be groups and let f : W ×X → Y ×Z be a homomorphism.
Suppose A×B ∈ FMS(W ×X) and C ×D ∈ FMS(Y × Z), respectively. Then

(i) the image of A×B under f , denoted by f(A×B), is a fuzzy multiset of Y × Z defined by

CMf(A×B)((y, z)) =

{ ∨
(w,x)∈f−1((y,z))CMA×B((w, x)), f−1((y, z)) ̸= ∅

0, otherwise,

for each (y, z) ∈ Y × Z.

(ii) the inverse image of C × D under f , denoted by f−1(C × D), is a fuzzy multiset of W × X
defined by

CMf−1(C×D)((w, x)) = CMC×D(f((w, x))) ∀(w, x) ∈ W ×X.

Theorem 3.24. Let W,X, Y, Z be groups, A ∈ FMS(W ), B ∈ FMS(X), C ∈ FMS(Y ) and D ∈
FMS(Z). If f : W ×X → Y × Z is an isomorphism, then

(i) f(A×B) = f(A)× f(B),

(ii) f−1(C ×D) = f−1(C)× f−1(D).

Proof. (i) Let (w, x) ∈ W ×X. Suppose ∃ (y, z) ∈ Y × Z such that

f((w, x)) = (f(w), f(x)) = (y, z).

Then we get

CMf(A×B)((y, z)) = CMA×B(f
−1((y, z)))

= CMA×B((f
−1(y), f−1(z)))

= CMA(f
−1(y)) ∧ CMB(f

−1(z))

= CMf(A)(y) ∧ CMf(B)(z)

= CMf(A)×f(B)((y, z))

Thus, f(A×B) ⊆ f(A)× f(B). Hence, the result follows by symmetry.
(ii) For (w, x) ∈ W ×X, we have

CMf−1(C×D)((w, x)) = CMC×D(f((w, x)))

= CMC×D((f(w), f(x)))

= CMC(f(w)) ∧ CMD(f(x))

= CMf−1(C)(w) ∧ CMf−1(D)(x)

= CMf−1(C)×f−1(D)((w, x)).

Hence, f−1(C ×D) ⊆ f−1(C)× f−1(D).

Similarly,

CMf−1(C)×f−1(D)((w, x)) = CMf−1(C)(w) ∧ CMf−1(D)(x)

= CMC(f(w)) ∧ CMD(f(x))

= CMC×D((f(w), f(x)))

= CMC×D(f((w, x)))

= CMf−1(C×D)((w, x)).

Again, f−1(C)× f−1(D) ⊆ f−1(C ×D). Therefore, the result follows.
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Theorem 3.25. Suppose f : W ×X → Y ×Z is an isomorphism, A,B,C and D be fuzzy multigroups
of W,X, Y and Z, respectively. Then, the following statements hold.

(i) f(A×B) ∈ FMG(Y × Z).

(ii) f−1(C)× f−1(D) ∈ FMG(W ×X).

Proof. (i) Since A ∈ FMG(W ) and B ∈ FMG(X), then A×B ∈ FMG(W ×X) by Theorem 3.6.
From Theorem 2.20 and Definition 3.23, it follows that, f(A×B) ∈ FMG(Y × Z).

(ii) Combining Theorems 2.20, 3.6, Definition 3.23 and Theorem 3.24, the result follows.

Corollary 3.26. Suppose X and Y are groups, A ∈ FMG(X) and B ∈ FMG(Y ), respectively. If

f : X ×X → Y × Y

be homomorphism, then

(i) f(A×A) ∈ FMG(Y × Y ),

(ii) f−1(B ×B) ∈ FMG(X ×X).

Proof. Similar to Theorem 3.25.

4. Conclusion

The idea of direct product in fuzzy multigroup setting have been successfully established and lucidly
exemplified. Some related results were obtained and proved accordingly. Homomorphism and some
of its properties were proposed in the context of direct product of fuzzy multigroups. The idea of
generalized direct product of fuzzy multigroups could be exploited.
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