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1. INTRODUCTION
The structural elements of the pressure vessels used in engi-
neering areas such as aerospace and petroleum are impor-
tant in engineering applications such as cylinder and sphere. 
As a result, the internal loads are one of the main problems 
of industrial structures. It may lead to stress gradient and / 
or cracked nuclei occurring in the stress distribution of the 
specified loads. By the analysis of the structures under the 
influence of the internal pressure, it facilitates the determi-
nation of the density of the points affected by the stress and 
the unsuitable stress distributions. Previous research has 
provided analytical solutions for homogeneous isotropic 
and orthotropic members. Tranter [1], Mirsky [2], Klosner 
and Dym [3], Ahmed [4] and Ghosh [5] have pioneered their 
work in the cylinders, discs and spheres due to axial sym-
metry.

The functional graded materials (FGM) are more advanced 
structural materials in determining the material properties 
in the direction of the thickness in the solution of problems 
due to the composite materials interfaces. In recent years, 
thermal stresses, free and forced vibration analysis have 
been successfully applied to mechanical problems with dif-
ferent structures such as FGMs, circular fins [6], irregular 

piezoelectric and nonhomogeneous rods [7-9] and func-
tionally graded beams [10]. Güven and Baykara [11] ex-
plained the mechanical stress distribution of the isotropic 
functional grade thick walled sphere under the influence of 
internal pressure. Tutuncu and Ozturk [12] presented exact 
solutions in the form of stresses occurring in functionally 
graded pressure vessels. A study close to this work was also 
published by Horgan and Chan [13]. Obata and Noda [14] 
submitted the studies of constant thermal stresses in order 
to understand the design of the functional graded thick-
walled spheres and cylinders and the effects of the stresses. 
Tutuncu and Temel [15] functional-grade hollow cylinders 
have solved the displacements and stresses of the disc and 
spheres using an analytical method. Differential equations 
and systems obtained in the analysis of stress distributions 
are not easy to solve with analytical methods. In most cases, 
this is impossible. Therefore, numerical methods are applied 
in case of large equation systems, non-linearity and complex 
geometry. Therefore, it is a good option to select a numerical 
method to determine the stress distributions of FGM cylin-
ders and spheres.

In many problems of physics and engineering, linear and 
non-linear systems of first or higher order differential equa-
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tions are presented. Many methods are used in the solution 
of these systems. In the recent years, more useful methods 
based on serial solution have been introduced. In this way, 
convergent results can be obtained more quickly. One of 
these methods is the differential transform method (DTM). 
DTM was first introduced by Zhou [16]. It was used to solve 
both linear and non-linear initial value problems in electri-
cal propagation analysis. The major advantage of this met-
hod is that it can be easily applied using initial conditions in 
linear or nonlinear ordinary and partial differential equati-
ons and systems of equations. DTM is one of the effective 
mathematical methods used to solve ordinary and partial 
differential equations. This method is a semi-analytical met-
hod that uses Taylor’s series expansion. By using DTM, it 
is possible to obtain very convergent and accurate results 
and to obtain exact solutions for differential or combined 
differential equations [17]. By using this method, valid dif-
ferential equations can be reduced to repetition relations 
and boundary conditions can be transformed into a group 
of algebraic equations. Some researchers have successfully 
applied the DTM in solving the eigenvalue problems [18–
20]. Yeh et al. [21] evaluated free vibration of the rectangular 
thin plates, using a hybrid method which merges the finite 
difference and the differential transformation techniques. 
Yeh et al. [22] studied large deflections of the orthotropic 
rectangular thin plates, engaging a like hybrid method. Shin 
et al. [23] utilized the universal differential quadrature ap-
proach and the DTM for vibration analysis of circular arches 
with variable cross-section.

The solution of the non-linear vibration problem was con-
ducted by Chen et al. [24]. Chen and Ho [25] solved par-
tial differential equations by two- dimensional differential 
transform method. For some eigenvalue problems, the aut-
hor who applied DTM was Ref. [26]. With the method as a 
powerful tool in the literature, differential equations, diffe-
rential equations, fluid mechanics, and many other areas of 
high-grade boundary value problems have produced soluti-
ons [27-30].

In this study, we present the application of DTM as a numer-
ical method for stress and displacement solutions of FGM 
cylinders and spheres of variable thickness. As a material 
feature, the change in thickness of the modulus of elasticity 
( 0( ) rE r E eβ= ) is defined. The results were compared with 
FEM compared with the results. The non-homogeneous β  
values were used to indicate the distribution over the stress. 
The inhomogeneity constant  β    used in the study does not 
represent a specific material. The accuracy of the numerical 
method is tested for an attached analytical solution for a ho-
mogeneous cylinder with a constant elasticity modulus and 
a poison ratio. A comparison was made with FEM (ANSYS) 
to determine the accuracy and effectiveness of the numeri-
cal method. 

2. BASIC EQUATION
The stress and displacement distribution in a thick-walled 
hollow cylinder will be considered as the inner radius Ri and 

the outer radius Ro. The elasticity modules vary throughout 
the thickness.

2.1. Basic Formulation of FGM Cylinders
Strain-displacement and basic equations considering the as-
sumption of plane strain are [12] 

,r
du
dr

ε =
   

,u
rθε =

  
(1)

( ) ( )11 12 ,r rC r C r θσ ε ε= +     (2)
( ) ( )12 11 ,rC r C rθ θσ ε ε= +     (3)

 where, with 0ν  the Poisson’s ratio,
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The only nontrivial equilibrium equation under assump-
tions can be inscribed in the following form [5], 
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Using Eqs.(1)-(3), basic equation of radial displacement be-
comes
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where ,
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.

with boundary conditions in radial directions 

0
 and   0

i
r rr R r R
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= =

= − =   (6)

2.2. Basic Formulation of FGM Spheres
The strain-displacement and constitutive equations for 
spheres case are [12], 

r
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  (7a)

u
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  (7b)

0r rθ ϕ θϕγ γ γ= = =   (7c)
( ) ( ) ( )11 12 12r rC r C r C rθ ϕσ ε ε ε= + +   (8a)

( ) ( ) ( )12 11 12rC r C r C rθ ϕ θ ϕσ σ ε ε ε= = + +   (8b)
 with 0ν being the Poisson’s ratio,
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The only nontrivial equilibrium equation is [12]
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Similarly, using Eqs. (7)-(8), according to stress equilibrium 
equations, the governing equation of displacement becomes 
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 where ( )
( )
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3. FUNDAMENTALS OF DTM

( )y x :  original function 

( )Y k : the transformed function. 

( ) ( )

0

1 .
!

k

k
x x

d y x
Y k

k dx
=

 
=   

    
(12) 

The inverse differential transform of ( )Y k  is defined as
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Putting together Eqs. (12) and (13), we get
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When we look at Eq. (8), it is seen that the notion of dif-
ferential transformation is caused by the expansion of Tay-
lor series. But, it is a method that does not calculate its 
derivatives symbolically. In the present embodiments, the 
function ( )y x  is represented by a finite power series and 
Eq.(14) can be rewritten as follows

( ) ( )

0

00

1 .( ) .
!

k
N k

kk
x x

d y x
y x x x

k dx=
=

 
= −  

 
∑

  
(15) 

Eq. (15) suggest that

( ) 01
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Y k x x∞

= +
−∑   (16) 

is negligibly small, where N  is series size.

Mathematical operations done by DTM are listed in Table 1.

Table 1. Operations of DTM 

Original function Transformed function

( ) ( ) ( )f x g x h x= ±  ( ) ( ) ( )F k G k H k= ±
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4. FORMULATION WITH DTM AND SOLUTION 
PROCEDURE

4.1. Cylindrical Structures
The resulting differential equation that is presented in Eq. 
(5) basic DTM rules are converted to provide the following 
repetition:
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where 
1( ), ( ) andU k H k ( )2H k  correspond to the differential 

transforms of ( )u r , the functions
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respectively. In addition, DTM is applied to Eq.(5) using 
the theorems given in Table 1 and the following converted 
boundary conditions are obtained from
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Utilizing Eq.(6),  ( )1H k  values for arbitrary k can easily 
evaluated in terms of β . These values are obtained by  using 
the Mathematica computer package as follows:

( )1
25 3 90
9 5 25

H β = + 
 

,
 

( )1
250 3 9 25 61 1
27 5 25 9 5

H β β    = − + + +    
    

,
 

( )1
1 1250 3 9 50 500 62 1 ,
2 27 5 25 9 27 5

H β β β    = + + − +          
and so on. Similarly, using Eq. (12), ( )2H k  values  for ar-
bitrary k can easily evaluated in terms of β  and ν as fol-
lows:

( )2
25 30 1
9 5

H βν = − + 
 

,
 

( )2
25 250 31 1

9 27 5
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H βν βν  = − + − +      and so on.
Applying the repetition relation Eq.(17) and the transformed 
boundary conditions Eqs.(20)-(21), and by using the inverse 
transform rule in Eq.(13), the first few components of the 
differential transform solution for ( )u r  is derivatived as 
follows:

( )
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     



 
where, according to Eq.(6), ( ) 60

10
A U u  = =  

 
 and 

( ) 61 '
10

B U u  = =  
 

. The constants A and B are estimated from 
the  boundary conditions given in Eqs.(20)-(21). These val-
ues are not given here because of their lengthy.

Stress statements take the following form
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( ) r
r r eβ

θσ ε νε= +

( ) r
r eβ

θ θσ νε ε= +
 

4.2. Spherical Structures
Unlike cylindrical structural elements, it is the variable la-
yers in the differential equation. By following the same steps, 
displacement solutions can be expressed using boundary 
condition.

i
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=
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   and 

0
r r R

σ
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=   at Some components of DTM 
for ( )u r  is derived as follows:
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5. PROVISION OF SOLUTION METHOD
The efficiency and reality of numerical methods is first 
checked with the analytical results obtained for thick 
walled homogeneous vessels with E=200 GPa, ν=0.3 and R0 
=2.0,[15]. This benchmark solution is given in the Appendix 
expressed using the notation of the present study. The radial 
displacement u, radial stress rσ  and hoop stress θσ  are cal-
culated at 11 collocation points through the thickness (10 
divisions) and comparisons are given in Table 2. It is clearly 
seen from comparison that the results are in good agree-
ment with each other, which demonstrate the validity of the 
numerical solutions used in this work.

Table 2. Comparison of DTM results with analytical results for homogene-
ous cylinder.

r
u

rσ  (GPa) θσ  (GPa)

Analytical DTM Analytical DTM Analytical DTM

1.0 0.009533 0.009532 -1. -0,999999 1.666667 1.666666

1.1 0.008832 0.008831 -0.768595 -0.768594 1.435262 1.435261

1.2 0.008262 0.008261 -0.592593 -0.592592 1.259259 1.259258

1.3 0.007793 0.007792 -0.455621 -0.455620 1.122288 1.122287

1.4 0.007404 0.007403 -0.346939 -0.346938 1.013605 1.013604

1.5 0.007078 0.007077 -0.259259 -0.259258 0.925926 0.925925

1.6 0.006803 0.006802 -0.187499 -0.187498 0.854167 0.854166

1.7 0.006571 0.006570 -0.128028 -0.128027 0.794694 0.794693

1.8 0.006375 0.006374 -0.078189 -0.078188 0.744856 0.744855

1.9 0.006208 0.006207 -0.036011 -0.036010 0.702678 0.702677

2.0 0.006067 0.006066 0. 0.000000 0.666667 0.666666

6.  RESULTS 
Figures (1,6) show comparison of the methods and evo-
lution of radial stress rσ  , circumferential stress 

θσ  and 
radial displacement  * 0

11 rU C u=  for
( )

( )( )
0 00

11 0
0 0

1
 ,  0.3, 0.6, 1.0

1 1 2 i

E v
C R R

v v
ν

 −
= = = =  + − 

 

and 1,2,3.β =  The boundary conditions for stresses are as-

sumed as  ( )0.6 1rσ = − ; ( )1.0 0rσ = . In accordance with the 
material and geometric properties used in the numerical 
method model, commercial (ANSYS) finite element code 
was compared and generated [31]. Due to the symmetry in 
the cylinder and sphere, four of the four geometries formed 
in the finite element model are considered. In the finite ele-
ment model, an 8-axis axial symmetric rectangular element 
(Plane82) is used. Because as the density of the element in-
creases in the process of dividing into finite elements, the 
solution is more meshed by using high density elements 
in order to obtain the stresses with high accuracy. Since 
the modulus of elasticity of the FGM cylinder and sphere 
changes due to a function in the radial direction, it is nec-
essary to distribute it as a function of the radius using the 
linear distribution of the nodes along the cross-section. By 
assigning points in the material model window (Elasticity 
module), ANSYS is provided to express the elasticity mod-
ule as a function of the radius. A MACRO called a subpro-
gram was used in ANSYS, which automates the assignment 
process of this radius-elasticity module relationship. For the 
modeling of the cylindrical and spherical structures FGM, 
each layer was applied with 20 layers having a fixed material 
property value.
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 β =1 [DTM]    β =2 [DTM]    β =3 [DTM]  
                                               FEM

Fig. 1. Displacement of FG cylinder with exponential variable properties
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Fig. 2. Radial stresses of FG cylinder with exponential variable properties

Positive β stands for increased rigidity in the radial direc-
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tion.  Fig. 1 shows the displacement of FG cylinder with 
exponential variable properties. There is a decrease in the 
value of radial displacement as β  increases. Fig. 2 illustrates 
the radial stresses of FG cylinder with exponential variable 
properties. As β  increases, a decrease occurs in the value 
of radial stress. The circumferential stresses of FG cylinder 
with exponential variable properties is plotted in Fig. 3. Ap-
proximately, for 1β > , the hoop stress increases as the ra-
dius increases whereas for 1β <  it decreases.
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1,6

1,8

2,0

2,2

 

 

σ θ

r

 β =1 [DTM]   β =2 [DTM]   β =3 [DTM]
                                     FEM

Fig. 3. Circumferential stresses of FG cylinder with exponential variable 

properties 
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                                      FEM

Fig. 4. Displacement of FG sphere with exponential variable properties

Fig. 4 shows displacement of FG sphere with exponential 
variable properties. It is obvious in this curve that the radial 
displacement decreases as β  increases at the same posi-
tion. In Fig. 5 radial stresses of FG sphere with exponential 
variable properties is shown. It is perceived that the radial 
stress increases for higher values of β . In Fig. 6 circumfer-
ential stresses of FG sphere with exponential variable prop-
erties for different values of β  is plotted. Here, it should 
be noted that in the same situation, approximately, for r < 
0.65, the value of the circumferential stress decreases as β  
increases, whereas for r < 0.65 this situation was reversed.
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                                      FEM

Fig.  5. Radial stresses of FG sphere with exponential variable properties
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Fig. 6. Circumferential stresses of FG sphere with exponential variable 
properties

It is seen that the results of DTM solutions are overlapping 
with the model created using a commercial finite element 
code, ANSYS [31].

7. CONCLUSION 
Numerical model of FGM cylinders and spheres for stresses 
and displacement are obtained and solved by DTM. The ef-
ficacy and adequacy of the present method is first compared 
to analytical results presented for constant Elastic Modulus 
and Poisson Ratio. The solution procedure can be applied 
to any continuous grading function option. The solution te-
chnique and procedure are simple, efficient and well struc-
tured, in addition to providing low cost accuracy. We have 
seen that FGM thick-walled cylindrical and spherical engi-
neering structures with exponential variable properties have 
a significant effect on mechanical behavior. In particular, the 
positive inhomogeneity constant has a major effect on the 
stress distribution. Although the inhomogeneity parameter 
is a useful parameter in design, it can be applied for speci-
al applications in order to control stress distributions and 
displacements.

Appendix A. Analytical benchmark solutions
For a linear elastic material, we know that the exact solution 
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of the radial displacement is given by this expression:
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The following expressions are derived for a unit inside pres-
sure for homogeneous cylinder.
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