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ABSTRACT
Specific energy has been widely used to assess the rock cuttability for mechanical rock 
excavation. In mechanical rock excavation processes, engineers need to predict, of machine 
performance based on specific energy using easy applicable, more economical and simple 
sample preparation methods. In this study, P-wave velocity (Vp) and Schmidt hammer hardness 
(RL) tests are used as predictors for prediction of specific energy, which are thought to be a 
practical, simple and inexpensive test. For this purpose, rock cutting and Vp and RL tests were 
performed on 24 different rock samples. The Vp and RL values were correlated with specific 
energy values using simple and multiple regression analysis with SPSS 15.0. As a result of 
this evaluation, there is a strong relation between specific energy, Vp and RL values of rocks. 
According to the statistical analyses, specific energy values can be reliably predicted by using Vp 
and RL values of rocks based on laboratories studies. 

ÖZ
Spesifik enerji değeri mekanik kayaç kazısında kayaçların kesilebilirlik özelliklerini belirlemek için 
yaygın olarak kullanılmaktadır. Mekanik kayaç kazısı işlemlerinde mühendisler, spesifik enerji 
değerine bağlı olarak makine performansını tahmin etmek için kolay uygulanabilir, daha ekonomik 
ve basit örnek hazırlama yöntemlerinin kullanıldığı yöntemlere ihtiyaç duyarlar. Bu çalışmada, 
spesifik enerjinin tahmini için pratik, basit ve ucuz bir test olduğu düşünülen kayaçların P-dalga 
hızı (Vp) ve Schmidt çekici sertlik (RL) değerleri değişken olarak önerilmiştir. Bu amaçla 24 farklı 
kaya numunesi üzerinde kaya kesme ile Vp ve RL testleri yapılmıştır. Elde edilen Vp ve RL ile 
spesifik enerji değerleri SPSS 15.0 programı kullanılarak basit ve çoklu regresyon analizi ile 
değerlendirilmiştir. Bu değerlendirme sonucunda kayaçların spesifik enerji, Vp ve RL değerleri 
arasında güçlü bir ilişki olduğu belirlenmiştir. İstatistiksel analizlere göre, laboratuar çalışmalarına 
bağlı olarak kayaların Vp ve RL değerleri kullanılarak spesifik enerji değerleri güvenilir bir şekilde 
tahmin edilebilir.
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INTRODUCTION

Specific energy is a commonly accepted measure 
of cutting efficiency and when obtained under a 
standardized condition, provides a realistic and 
meaningful measure of rock cuttability. Specific 
energy is defined as the energy required to cut a 
unit volume of rock, being an important indicator 
of rock cuttability (Rostami et al., 1994; Fowell and 
McFeat-Smith, 1976; McFeat-Smith and Fowell, 
1977; 1979; Copur et al., 2001; Balci et al., 2004; 
Balci and Bilgin, 2007; Dursun, 2012; Dursun and 
Gokay, 2016).

Many prediction models have been developed 
for specific energy using some rock properties. 
Several rock properties such as, uniaxial 
compressive strength, Brazilian tensile strength, 
P-wave velocity, Schmidt hammer hardness, shore  
hardness, cone indenter hardness, static and 
dynamic elastic modulus, rock quality designation, 
point load strength, brittleness index, and density 
have been used for prediction of specific energy in 
many studies up to present (Rostami et al., 1994; 
Fowell and McFeat-Smith, 1976; McFeat-Smith and 
Fowell, 1977; 1979; Copur et al., 2001; Altindag, 
2003; Balci et al., 2004; Tiryaki and Dikmen, 2006; 
Balci and Bilgin, 2007; Tumac et al., 2007; Copur, 
2010; Copur et al., 2011; Dursun, 2012; Comakli 
et al., 2014; Tumac, 2014; Dursun and Gokay, 
2016) In these models, Vp and RL values of rocks 
have been used as predictors fewer than the other 
properties of rocks for prediction of specific energy.

Determination of specific energy values of 
rocks, prediction of excavation performance and 
physical and mechanical properties of rocks are 
very important for the studies of mine or tunnel 
projects. In the rock excavation technology, project 
engineers need to consider specific energy value 
and physical and mechanical properties of rocks 
to determine the relation between these properties 
of rocks and cutting machine performance. So, 
determination of specific energy values and 
physical and mechanical properties of rocks 
becomes a necessity for developing performance 
prediction models in rock excavation process. 

Specific energy value is usually determined with 
the aid of laboratory cutting equipment which needs 
highly sophisticated instrumentation (Bilgin et al., 
1997a; 1997b) and research engineers are always 

interested in finding a method to predict specific 
energy from one of the simple rock properties. 
Since sound velocity and Schmidt hardness tests 
can be applied both in laboratory and in the field 
and these techniques are nondestructive and 
easy to apply, these methods are frequently used 
by engineers working in mining, and construction 
industries. Especially in mining, Vp value have 
increasingly been used to determine the dynamic 
properties of rocks in rock mechanics tests and 
mining applications due to easy applicable, 
simple sample preparation and more economical 
experimental studies (Brich, 1960; Thill and Bur, 
1969; Inoue and Ohomi, 1981; Kopf et al., 1985; 
Young, et al., 1985; Gaviglio, 1989; King et al., 
1995; Apuani et al., 1997; Chrzan, 1997; Boadu, 
2000; Kahraman, 2001; Kahraman, 2002a; 2002b; 
Kahraman et al., 2005; Karakus and Tutmez, 
2006; Kahraman, 2007; Cobanoglu and Celik, 
2008; Kahraman and Yeken, 2008; Vasconcelos 
et al., 2008; Khandelwal and Singh, 2009; Yagiz, 
2011; Altindag, 2012). As for RL value is  a quick 
and inexpensive measure of rock hardness, which 
may be widely used for estimation of mechanical 
properties of rock materials such as strength, 
cuttability, sawability, and drillability  (Schmidt, 
1951; Kidybinski, 1968; Tarkoy and Hendron, 
1975; Poole and Farmer, 1978; Farmer et al., 
1979; Howarth, et al., 1986; Shahriar, 1988; Bilgin 
et al., 1990; Kahraman, 1999; Kahraman et al., 
2000; Bilgin et al., 2002; Kahraman et al., 2003; 
Aydın and Basu, 2005; Goktan and Gunes, 2005; 
Karakus and Tutmez, 2006).

Predicting specific energy is a crucial issue for the 
accomplishment of mechanical tunnel projects, 
excavating tunnels and galleries for the purpose 
of mining and civil projects. Many models and 
equations have previously been introduced to 
estimate specific energy based on properties of 
rock using various statistical analysis techniques. 
In the related literature, properties of rock are the 
most widely parameters used for prediction of 
specific energy. Because, mechanical excavators 
are excavated efficiently and economically based 
on properties of rocks.

Schmidt hammer rebound hardness and seismic 
velocity tests are very simple and inexpensive test 
to conduct, RL and Vp values are good indicator 
of mechanical properties of rock material (Bilgin 
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et al., 2002). Schmidt hardness value is widely 
used in determining the performance of tunnel 
boring machines, impact hammers, roadheaders, 
and it is generally very successful in rock cutting 
applications for predicting the performance of 
the cutting process (Poole and Farmer, 1978; 
Howarth, et al., 1986; Bilgin et al., 1990; Bilgin 
et al., 2002; Aydın and Basu, 2005; Tuncdemir, 
2008).

In the past, some prediction models for specific 
energy based on laboratory studies were developed 
for particular rock conditions which involved rock 
properties as predictors. However, literature 
surveys revealed that Vp and RL values of rocks 
have been used less than the other properties of 
rocks for prediction of specific energy. This paper 
is concerned with correlation between Vp, RL and 
specific energy values of rocks obtained from 
sophisticated laboratory equipment and developed 
a new specific energy prediction methods. This 
study is aimed to investigate using Vp and RL values 
which can be applied easily and economically to 
determine specific energy value by using linear 
regression analyses.

In the first stage of this study, through the rock 
cutting tests performed in unrelieved cutting mode, 
the specific energy values have been calculated 
by two different methods. One of these methods 
is mechanical specific energy (SEMec) calculated 
from cutting forces and the other is electrical 
specific energy (SEElec) calculated from electrical 
parameters such as current and voltage values 
in the cutting tests. This study is different from the 
similar work done in the past because of these 
research activities. The second stage of this study 
was prediction of specific energy using Vp and RL 
values of rocks based on statistical analysis.

1. LABORATORY STUDIES

The testing program in this study included rock 
cutting, sound velocity and Schmidt hardness 
tests. A total of 24 different natural stones including 
travertine, marble, and tuff were collected from 
different quarries around Konya, Turkey. The 
standard testing procedures suggested by the 
ISRM (International Society for Rock Mechanics) 
were applied for rock cutting, sound velocity, and 
hardness testing (Ulusay and Hudson, 2007). 

Cylindrical core specimens were prepared from 
block samples for rock mechanics tests and block 
samples were prepared for rock cutting tests. 
According to thin sections, the marble samples 
are composed of calcite minerals. Granoblastic 
texture has been created with re-crystallization 
of calcite minerals. The travertine samples are 
composed of high fossil recorder and calcite 
crystals. The matrix of rocks has been created 
completely from carbonates. The tuff samples 
are composed of quartz, biotite and feldspar 
minerals, different rock fragments and pumice 
grains. The groundmass of rocks is composed of 
volcanic glass.

1.1. Sound Velocity Tests

Sound velocity tests were performed on cylindrical 
core specimens NX (54 mm) in diameter which 
were prepared from block samples by drilling 
in such a way that the drilling direction was 
perpendicular to the plane of the thin section. And 
then end surfaces of the core samples were cut 
and polished sufficiently smooth plane to provide 
good coupling. Vp values of rocks were determined 
using the MATEST test equipment and two 
transducers (a transmitter and a receiver) having 
a frequency of 55 kHz on core samples and having 
both surfaces parallel to each other (Figure 1). 
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Figure 1. Sound velocity test equipment 

 

During the tests the both surfaces of the core 
samples were applied with gel as a coupling agent 
in this study. After the applying gel the core 
samples were located between the transducers. 
And the transducers were pressed to either end of 
the sample and the pulse transit time was 
recorded. Vp values were calculated by dividing the 
length of core to the pulse transit time as Eq.(1) 
The Vp values of the rocks were summarized in 
Table 1. 

Vp = d/t 
 

(1) 
 

where Vp is the P-wave velocity in km/sec, d the 
length of core in cm, t the pulse transit time in sec. 
 
1.2. Schmidt hammer hardness tests 

 

Schmidt hammer rebound tests were applied on 
the test samples having an approximate 
dimension of 30 x 30 x 20 cm3. The tests were 
performed with a Proceq L-type digital Schmidt 
hammer with impact energy of 0.735 Nm (Fig. 2). 
The hammer is equipped with a sensor that 
measures the rebound value of a test impact with 
high resolution and repeatability. Basic settings 
and measured values are shown on the display 
unit. The measured data can be transmitted easily 
by a serial RS 232 cable to a normal printer or to a 
PC with the appropriate software. All the tests 
were conducted with the hammer by holding 
vertically downwards and at right angles to the 
horizontal rock surface. In the tests, the ISRM 
(Ulusay and Hudson, 2007) recommendations 
were applied for each rock type. ISRM suggested 
that 20 rebound values from single impacts 
separated by at least a plunger diameter should be 
recorded, and the upper 10 values averaged. The 
RL values of the rocks were summarized in Table 
1. 
 

Figure 1. Sound velocity test equipment

During the tests, both surfaces of the core samples 
were applied with gel as a coupling agent in this 
study. After the applying gel the core samples 
were placed between the transducers. And the 
transducers were pressed to either end of the 



176

A.E.Dursun and H. Terzioğlu / Scientific Mining Journal, 2019, 58(3), 173-187

sample and the pulse transit time was recorded. 
Vp values were calculated by dividing the length of 
core to the pulse transit time as (Equation 1) The 
Vp values of the rocks were summarized in Table 1.

Vp = d/t          (1)

where Vp is the P-wave velocity in km/sec, d the 
length of core in cm, t the pulse transit time in 
sec.

1.2. Schmidt Hammer Hardness Tests

Schmidt hammer rebound tests were applied 
on the test samples having an approximate 
dimension of 30 x 30 x 20 cm3. The tests were 
performed with a Proceq L-type digital Schmidt 
hammer with impact energy of 0.735 Nm (Figure 
2). The hammer is equipped with a sensor that 
measures the rebound value of a test impact with 
high resolution and repeatability. Basic settings 
and measured values are shown on the display 
unit. The measured data can be transmitted easily 
by a serial RS 232 cable to a normal printer or to 
a PC with the appropriate software. All the tests 
were conducted with the hammer by holding 
vertically downwards and at right angles to the 
horizontal rock surface. In the tests, the ISRM 
(Ulusay and Hudson, 2007) recommendations 
were applied for each rock type. ISRM has 
suggested that 20 rebound values from single 
impacts separated by at least a plunger diameter 
should be recorded, and the upper 10 values 
were averaged. The RL values of the rocks were 
summarized in Table 1.
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Figure 3. Small-scale rock cutting test machine 

Data collection system included two load cells 
(cutting and normal), a current and a voltage 
transducer, a power analyzer, an AC power speed 
control system, a laser sensor, a data acquisition 
card and a computer. Block diagrams were 
prepared in Matlab Simulink for obtained the 
electrical and mechanical data during the cutting 
tests. 

The data collection phase of this study was 
included two parts: the electrical data was 
obtained from by using current and voltage 
transducer and the mechanical data (tool forces) 
was obtained from by using platform type load cell 
with capacity of 750 kg. Three tests were carried 
out on each rock sample in which cutting forces, 
electrical current and voltage were recorded in 
unrelieved cutting mode. After each cutting test, 
the length of cut was measured and the rock 
cuttings by cut was collected and weighed for 
determination of specific energy. The electrical 
parameters in the cutting such as current and 
voltage values were recorded by current and 
voltage transducer which are located on the power 
line that transfers electric to the shaping machine. 
Additionally, during the time the chisel tool is cut 
the rock sample, the electrical data were begun to 
record the data by using laser sensor which is 
located between current transducer with power 
line. And, when the chisel tool got through the 
cutting operation, the laser sensor has been 
finished to collect the electrical data. In this way, 
the data were obtained from both the more 
sensitively and were gained time for data 
processing. Specific energy is defined as the 
amount of energy required to excavate unit volume 
of rock and it is one of the most important factors 
in determining the efficiency of a cutting system 
and optimum cutting geometry, and estimating net 
cutting rates. The specific energy values are 
calculated by using the Eqs. (2) and (3);  

( )c -1
Mec

F *L
SE = *10

V
⎡ ⎤
⎢ ⎥
⎣ ⎦

           (2) 

( )
Elec

P*h
SE = *3,6

V
⎡ ⎤
⎢ ⎥
⎣ ⎦

           (3)  

where SEMec is the mechanical specific energy in 
MJ/m3, SEElec is the electrical specific energy in 
MJ/m3, FC the average cutting force acting on the 
tool in kN, L the cutting length in cm, P the average 
net power in kW, (P=√3IVcosϕ), I the average 
current during the cutting in A, V the average 
voltage in V, h the cutting time in sec, V the volume 
cut, in cm3 (V= Y/D), Y the yield in gr, D the density 
in gr/cm3. The small-scale rock cutting test results 
are given in Table 1. 
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The data collection phase of this study included 
two parts: the electrical data was obtained from 
by using current and voltage transducer and the 
mechanical data (tool forces) was obtained from 
by using platform type load cell with capacity of 
750 kg. Three tests were carried out on each rock 
sample in which cutting forces, electrical current, 
and voltage were recorded in unrelieved cutting 
mode. After each cutting test, the length of cut 
was measured and the rock cuttings by cut was 
collected and weighed for determination of specific 
energy. The electrical parameters in the cutting 
such as current and voltage values were recorded 
by current and voltage transducer which are 
located on the power line that transfers electric to 
the shaping machine. Additionally, during the time 
the chisel tool cut, the rock sample, the electrical 
data were recorded by using laser sensor which 
is located between current transducer with power 
line. And, when the chisel tool got through the 
cutting operation, the laser sensor finished to 
collect the electrical data. In this way, the data were 
obtained  more sensitively and in a shorter time for 
data processing. Specific energy is defined as the 
amount of energy required to excavate unit volume 
of rock and it is one of the most important factors 
in determining the efficiency of a cutting system 
and optimum cutting geometry, and estimating 
net cutting rates. The specific energy values are 
calculated by using the (Equations 2 and 3). 
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out on each rock sample in which cutting forces, 
electrical current and voltage were recorded in 
unrelieved cutting mode. After each cutting test, 
the length of cut was measured and the rock 
cuttings by cut was collected and weighed for 
determination of specific energy. The electrical 
parameters in the cutting such as current and 
voltage values were recorded by current and 
voltage transducer which are located on the power 
line that transfers electric to the shaping machine. 
Additionally, during the time the chisel tool is cut 
the rock sample, the electrical data were begun to 
record the data by using laser sensor which is 
located between current transducer with power 
line. And, when the chisel tool got through the 
cutting operation, the laser sensor has been 
finished to collect the electrical data. In this way, 
the data were obtained from both the more 
sensitively and were gained time for data 
processing. Specific energy is defined as the 
amount of energy required to excavate unit volume 
of rock and it is one of the most important factors 
in determining the efficiency of a cutting system 
and optimum cutting geometry, and estimating net 
cutting rates. The specific energy values are 
calculated by using the Eqs. (2) and (3);  

( )c -1
Mec

F *L
SE = *10

V
⎡ ⎤
⎢ ⎥
⎣ ⎦

           (2) 

( )
Elec

P*h
SE = *3,6

V
⎡ ⎤
⎢ ⎥
⎣ ⎦

           (3)  

where SEMec is the mechanical specific energy in 
MJ/m3, SEElec is the electrical specific energy in 
MJ/m3, FC the average cutting force acting on the 
tool in kN, L the cutting length in cm, P the average 
net power in kW, (P=√3IVcosϕ), I the average 
current during the cutting in A, V the average 
voltage in V, h the cutting time in sec, V the volume 
cut, in cm3 (V= Y/D), Y the yield in gr, D the density 
in gr/cm3. The small-scale rock cutting test results 
are given in Table 1. 
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Results of the basic descriptive statistical analysis 
performed on input parameters are given in Table 
2. First, the correlation matrix was obtained 
as a result of applying the bivariate correlation 
technique to the test data. Pearson’s correlation 
coefficients (r-values) between specific energies 
(SEMec, SEElec), Vp and RL values are given in Table 
3. As shown in Table 3, very strong correlations 
were found between specific energies (SEMec, 
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SEElec), Vp and RL values of rocks. According 
to the correlation analysis, Vp and RL are the 
most significant property affecting on specific 
energy. Correlation coefficients between specific 

energies, Vp and RL are greater than 0.90 at 99% 
confidence level, which shows the strong relation 
between these three parameters.

Table 1. Rock cutting and rock mechanics tests results

Rock Code 
Number Rock Type Vp (km/s) RL UCS (MPa) ρ

(g/cm3)
SEMec
(MJ/m3)

SEElec
(MJ/m3)

1 Travertine 4.03 ±0.17 47.78 ±4.49 18.56 ±2.57 2.16 29.75 30.06

2 Travertine 4.16 ±0.28 45.63 ±2.17 27.55 ±4.06 2.26 28.48 26.15

3 Travertine 4.70 ±0.21 53.30 ±2.15 30.69 ±5.19 2.36 36.17 32.52

4 Travertine 5.22 ±0.37 61.67 ±1.87 32.23 ±4.83 2.40 43.89 39.70

5 Travertine 4.88 ±0.28 52.71 ±3.15 25.95 ±8.60 2.33 28.68 30.13

6 Travertine 5.38 ±0.14 49.16 ±0.82 28.11 ±10.46 2.39 38.95 38.70

7 Travertine 4.57 ±0.18 48.05 ±1.02 14.82 ±3.84 2.24 32.45 26.44

8 Travertine 4.31 ±0.36 45.52 ±3.42 19.22 ±6.58 2.46 31.24 25.98

9 Travertine 4.19 ±0.19 51.29 ±1.51 22.45 ±6.02 2.48 34.81 34.85

10 Travertine 4.92 ±0.08 53.93 ±1.33 28.19 ±5.47 2.52 38.65 33.10

11 Travertine 4.12 ±0.06 53.52 ±1.93 43.95 ±8.45 2.48 32.40 34.54

12 Marble 6.58 ±0.15 70.14 ±1.23 71.98 ±11.41 2.71 63.45 59.02

13 Marble 6.54 ±0.03 65.49 ±1.80 80.73 ±25.88 2.70 62.19 55.07

14 Marble 5.98 ±0.44 69.63 ±2.19 56.16 ±12.77 2.66 62.68 60.13

15 Marble 6.26 ±0.30 61.44 ±1.33   54.63 ±8.61 2.74 42.15 40.91

16 Marble 4.22 ±0.34 70.50 ±1.95 58.87 ±12.98 2.77 47.75 41.66

17 Marble 6.39 ±0.16 80.26 ±2.86 71.18 ±9.79 2.77 60.08 58.43

18 Tuff 2.63 ±0.06 47.75 ±4.73 19.67 ±4.94 1.82 17.42 17.70

19 Tuff 1.88 ±0.08 26.66 ±0.92 4.44 ±1.18 1.43   5.68 11.08

20 Tuff 2.17 ±0.03 27.27 ±0.88 7.86 ±1.27 1.50   6.15 11.65

21 Tuff 2.28 ±0.03 33.79 ±0.87 11.86 ±0.79 1.67 11.07 11.20

22 Tuff 2.23 ±0.14 28.59 ±2.13 11.23 ±2.10 1.72   9.84 11.83

23 Tuff 2.21 ±0.05 30.21 ±2.18 8.23 ±1.72 1.66 10.24 12.34

24 Tuff 2.29 ±0.04 25.95 ±2.17 9.35 ±0.36 1.57   7.27   8.22

	

		

 
Figure 4. Relation between SEMec and SEElec obtained from unrelieved cutting mode 
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In the first stage of regression analyses, specific 
energy values SEMec and SEElec obtained from 
unrelieved cutting were analyzed with simple 
and multiple regression analysis techniques 
depending on Vp and RL values of rocks. The 
models developed for the SEMec estimation are 
given in (Equations 4-6). 

Model 1: SEMec = 11.395Vp – 15.935 (4)

Model 2: SEMec = 1.140RL – 24.441 (5)

Model 3:SEMec = 5.696Vp + 0.634RL – 23.357 (6)

In these models, R2 values are 0.898, 0.909, 
and 0.954 respectively. In these models, which 
revealed the regression equation, the regression 
parameters are all considered as significant (p = 
0.000), (Figure 5). According to the correlation 
coefficients obtained, these models predicting the 
SEMec value were strong and reliable. A summary 
of the models generated for regression analysis 
is given in Table 4, ANOVA results are given in 
Table 5 and signifiance of model components are 
given in Table 6.

Table 4. Summary of the generated models for linear regression analysis of SEMec

Model Predictors R R2 Adjusted R2 Std Error of the estimate

1 Vp 0.947 0.898 0.893 6.04476

2 RL 0.953 0.909 0.905 5.70206

3 Vp, RL 0.977 0.954 0.949 4.15752

Table 5. ANOVA results for SEMec

Model Predictors Sum of 
squares

df Mean 
square

F Signifiance of F

1 Vp regression

residual

total

7046.325

803.861

7850.186

1

22

23

7046.325

36.539

-

192.843 0.000

2 RL regression

residual

total

7134.888

715.297

7850.186

1

22

23

7134.888

32.514

-

219.444 0.000

3 Vp, RL regression

residual

total

7487.202

362.984

7850.186

2

21

23

3743.601

17.285

-

216.582 0.000
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Table 6. Signifiance of model components and confidince intervals for SEMec

Regression 
models

Unstandardized 
coefficients

Standardized 
coefficients

t Significance 
of  t

95% 
Confidence 
interval for B

B Std. error Beta Lower 
bound

Upper 
bound

1 (Constant)
Vp

-15.935
 11.395

3.704
0.821

-
0.947

-4.302
13.887

0.000
0.000

-23.616
   9.693

-8.254
 13.097

2 (Constant)
RL

-24.441
   1.140

4.020
0.077

-
0.953

-6.080
14.814

0.000
0.000

-32.778
   0.980

-16.104
   1.300

3 (Constant)
Vp
RL

-23.357
   5.696
   0.634

2.941
1.262
0.125

-
0.474
0.530

-7.942
4.515
5.050

0.000
0.000
0.000

-29.474
   3.072
  0.373

-17.241
   8.320
   0.894
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Figure 5. Prediction of SEMec using P-wave velocity (a) and Schmidt hardness (b) values of rocks 
 

 
2.2. Prediction of SEElec values of rocks 
 
The models developed for the SEElec estimation 
are given in Eqs. (7)-(9). In these models, R2 
values are 0.882, 0.898 and 0.904 respectively. In 
these models, which revealed the regression 
equation, the regression parameters all significant 
(p = 0.000), (Fig. 6). According to the correlation 
coefficients obtained, these models predicting the 
SEElec value were strong and reliable. A summary 
of the models generated for enter regression 
analysis is given in Table 7, ANOVA results are 
given in Table 8 and signifiance of model 
components are given in Table 9.  

 
 
Model 4: SE1Elec = 9.866Vp – 10.678 (7) 

Model 5: SE1Elec = 0.990RL – 18.171 (8) 
Model 6: SE1Elec = 4.816Vp + 0.561RL – 
17.255 (9) 

 
 
 
 
 
 
 
 

 
 

	

		

 
(a) 

 

 
(b) 

Figure 5. Prediction of SEMec using P-wave velocity (a) and Schmidt hardness (b) values of rocks 
 

 
2.2. Prediction of SEElec values of rocks 
 
The models developed for the SEElec estimation 
are given in Eqs. (7)-(9). In these models, R2 
values are 0.882, 0.898 and 0.904 respectively. In 
these models, which revealed the regression 
equation, the regression parameters all significant 
(p = 0.000), (Fig. 6). According to the correlation 
coefficients obtained, these models predicting the 
SEElec value were strong and reliable. A summary 
of the models generated for enter regression 
analysis is given in Table 7, ANOVA results are 
given in Table 8 and signifiance of model 
components are given in Table 9.  

 
 
Model 4: SE1Elec = 9.866Vp – 10.678 (7) 

Model 5: SE1Elec = 0.990RL – 18.171 (8) 
Model 6: SE1Elec = 4.816Vp + 0.561RL – 
17.255 (9) 

 
 
 
 
 
 
 
 

 
 

(a)

(b)
Figure 5. Prediction of SEMec using P-wave velocity (a) and Schmidt hardness (b) values of rocks



182

A.E.Dursun and H. Terzioğlu / Scientific Mining Journal, 2019, 58(3), 173-187

2.2. Prediction of SEElec Values of Rocks

The models developed for the SEElec estimation 
are given in (Equations 7-9). In these models, R2 
values are 0.882, 0.898, and 0.904 respectively. 
In these models, which revealed the regression 
equation, the regression parameters all significant 
(p = 0.000), (Figure 6). According to the correlation 
coefficients obtained, these models predicting the 
SEElec value were strong and reliable. A summary 
of the models generated for enter regression 
analysis is given in Table 7, ANOVA results 
are given in Table 8 and signifiance of model 
components are given in Table 9. 

Model 4: SE1Elec = 9.866Vp – 10.678 (7)

Model 5: SE1Elec = 0.990RL – 18.171 (8)

Model 6: SE1Elec = 4.816Vp + 0.561RL – 
17.255 (9)

Table 7. Summary of the generated models for linear 
regression analysis of SEElec

Model Predictors R R2 Adjusted 
R2

Std 
Error 
of the 
estimate

4 Vp 0.939 0.882 0.876 5.67319
5 RL 0.947 0.898 0.893 5.28167
6 Vp, RL 0.969 0.940 0.934 4.15112

Table 8. ANOVA results for SEElec

Model Predictors Sum of squares df Mean 
square

F Signifiance 
of F

4 Vp regression

residual

total

5281.914

708.072

5989.986

1

22

23

5281.914

32.185

-

164.111 0.000

5 RL regression

residual

total

5376.274

613.713

5989.986

1

22

23

5376.274

27.896

-

192.725 0.000

6 Vp, RL regression

residual

total

5628.101

361.885

5989.986

2

21

23

2814.051

17.233

-

163.298 0.000

Table 9. Signifiance of model components and confidince intervals for SEElec

Regression 
models

Unstandardized 
coefficients

Standardized 
coefficients

t Significance 
of  t

95% 
Confidence 
interval 
for B

B Std. error Beta Lower 
bound

Upper 
bound

4 (Constant)
   Vp

-10.678
9.866

3.476
0.770

-
0.939

 -3.072
12.811

0.000
0.000

-17.887
   8.269

3.469
  11.463

5 (Constant)
 RL

-18.171
0.990

3.724
0.071

-
0.947

 -4.880
13.883

0.000
0.000

-25.894
   0.842

-10.449
   1.137

6 (Constant)
   Vp
   RL

-17.255
4.816
0.561

2.936
1.260
0.125

-
0.458
0.537

 -5.876
  3.823
  4.482

0.000
0.000
0.000

-23.362
   2.196
   0.301

-11.148
   7.436
   0.822
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models were carried out. To justify the accuracy of 
the developed equations, F-test was  also applied 
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where var symbolizes the variance, oi is the 
measured value, ti is the predicted value and N is 
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The interpretation of the above performance 
indexes are as follows: the higher the VAF, the 
better the model performs. For example, a VAF of 

100% means that the measured output has been 
predicted exactly. VAF = 0 means that the model 
performs as poorly as a predictor using simply the 
mean value of the data. The lower the RMSE, the 
better the model performs (Gokceoglu, 2002; 
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RMSE also accounts for a bias in the model, i.e. 
an offset between the measured and predicted 
data. Theoretically, the excellent prediction 
capacities are 100% for VAF, 0 for RMSE and 1 
for r. 
When the VAF and RMSE performance indexes 
are considered for each predictive model (Table 
10), it’s clear that the developed linear regression 
models employing RL and Vp values are found to 
be reliable and accurate models. As utilizing the 
results given in Table 10, it is too difficult to select 
the best model within these 6 models for the 
specific energy prediction. These models have a 
lower standard error of estimate and a higher 
correlation coefficient (r). Therefore, it can be said 
that linear regression methods are the best 
prediction models for the estimation of SEMec and 
SEElec values from RL and Vp values for this study. 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6. Prediction of SEElec using P-wave velocity (a) and Schmidt hardness (b) values of rocks

a

a

2.3. Model Results and Performances

In this study, linear regression analyses were 
constructed to predict the SEMec and SEElec values 
from RL and Vp values of rocks. In this section, 
some performance indices such as root mean 
square error (RMSE) and variance account 
for VAF were calculated and compared. Every 
specific energy values were evaluated separately 
with RL and Vp values by using linear regression 
method. Approximately, 6 different predictive 

models were carried out. To justify the accuracy 
of the developed equations, F-test was  also 
applied with 99% confidence level to three of 
relations and they revealed statistically significant 
correlations.

In order to check and compare the prediction 
performances of linear regression based models, 
the variance account for VAF (Equation 10) and 
the root mean square error RMSE (Equation 11)
performance indexes were used:



184

A.E.Dursun and H. Terzioğlu / Scientific Mining Journal, 2019, 58(3), 173-187

	

		

 
(b) 

 
Figure 6. Prediction of SEElec using P-wave velocity (a) and Schmidt hardness (b) values of rocks 
 
 
2.3. Model results and performances 
 
In this study, linear regression analyses were 
constructed to predict the SEMec and SEElec values 
from RL and Vp values of rocks. In this section, 
some performance indices such as root mean 
square error (RMSE) and variance account for 
VAF were calculated and compared. Every 
specific energy values were evaluated separately 
with RL and Vp values by using linear regression 
method. Approximately, 6 different predictive 
models were carried out. To justify the accuracy of 
the developed equations, F-test was  also applied 
with 99% confidence level to three of relations and 
they revealed statistically significant correlations. 
In order to check and compare the prediction 
performances of linear regression based models, 
the variance account for VAF (Eq. (10)) and the 
root mean square error RMSE (Eq. (11)) 
performance indexes were used: 

 
( )( )
( )

var
VAF= 1- *100

var
i i

i

o t
o

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (10) 

 
( )2

1

1RMSE=
N

N

i i
i
o t

=

−∑
 

(11) 

 
where var symbolizes the variance, oi is the 
measured value, ti is the predicted value and N is 
the number of samples.  
The interpretation of the above performance 
indexes are as follows: the higher the VAF, the 
better the model performs. For example, a VAF of 

100% means that the measured output has been 
predicted exactly. VAF = 0 means that the model 
performs as poorly as a predictor using simply the 
mean value of the data. The lower the RMSE, the 
better the model performs (Gokceoglu, 2002; 
Gokceoglu and Zorlu, 2004). Contrary to VAF, 
RMSE also accounts for a bias in the model, i.e. 
an offset between the measured and predicted 
data. Theoretically, the excellent prediction 
capacities are 100% for VAF, 0 for RMSE and 1 
for r. 
When the VAF and RMSE performance indexes 
are considered for each predictive model (Table 
10), it’s clear that the developed linear regression 
models employing RL and Vp values are found to 
be reliable and accurate models. As utilizing the 
results given in Table 10, it is too difficult to select 
the best model within these 6 models for the 
specific energy prediction. These models have a 
lower standard error of estimate and a higher 
correlation coefficient (r). Therefore, it can be said 
that linear regression methods are the best 
prediction models for the estimation of SEMec and 
SEElec values from RL and Vp values for this study. 
 
 
 
 
 
 
 
 
 
 

 
 
 

where var symbolizes the variance, oi is the 
measured value, ti is the predicted value and N is 
the number of samples. 

The interpretation of the above performance 
indexes are as follows: the higher the VAF, the 
better the model performs. For example, a VAF of 
100% means that the measured output has been 
predicted exactly. VAF = 0 means that the model 
performs as poorly as a predictor using simply 
the mean value of the data. The lower the RMSE, 
the better the model performs (Gokceoglu, 2002; 
Gokceoglu and Zorlu, 2004). Contrary to VAF, 
RMSE also accounts for a bias in the model, i.e. 
an offset between the measured and predicted 
data. Theoretically, the excellent prediction 
capacities are 100% for VAF, 0 for RMSE and 1 
for r.

When the VAF and RMSE performance indexes 
are considered for each predictive model (Table 
10), it’s clear that the developed linear regression 
models employing RL and Vp values are found 
to be reliable and accurate models. As utilizing 
the results given in Table 10, it is too difficult to 
select the best model within these 6 models for 
the specific energy prediction. These models 
have a lower standard error of estimate and a 
higher correlation coefficient (r). Therefore, it 

Table 10. Results of the statistical performance analysis for generated models

Model Specific energy 
values (MJ/m3)

Predictors VAF 
(%)

RMSE Correlation 
coefficient (r)

Standard error 
of estimation

1 SEMec RL 97.24 5.46 0.953 5.702

2 SEMec Vp 96.91 5.79 0.947 6.044

3 SEMec RL, Vp 98.58 3.89 0.977 4.158

4 SEElec RL 97.46 5.06 0.947 5.282

5 SEElec Vp 97.08 5.43 0.939 5.673

6 SEElec RL, Vp 98.49 3.88 0.969 4.151

can be said that linear regression methods are 
the best prediction models for the estimation of 
SEMec and SEElec values from RL and Vp values 
for this study.

CONCLUSIONS AND SUGGESTIONS

In this study, rock mechanics and rock cutting 
tests were carried out on twenty four different rock 
samples. According to these test results, marble 
samples were found to be tougher and stronger 
than travertine and tuff samples. By using the 
rock properties such as VP and RL obtained from 
these tests, simple and multiple regressions 
method was used to predict the SEMec and SEElec 
values of the rocks. 

Firstly, the correlation between SEMec and SEElec 
values of rocks was determined. According to 
this, the correlation between SEMec and SEElec was 
evaluated and R2 value was found as 0.977. 

In this study, the experimental results and the 
prediction model analyses show that the specific 
energy obtained by using small-scale rock cutting 
machine can be measured reliably from electrical 
and mechanical methods. 

And then, Vp and RL values have been used as 
predictors for SEMec and SEElec values based 
on simple and multiple regressions methods. 
According to simple regression method, R2 values 
were found 0.898, 0.909 between Vp, SEMec and 
SEElec values respectively. In the same regression 
method, R2 values were found 0.909, 0.898 
between RL, SEMec and SEElec values respectively. 
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According to multiple regression method using 
together Vp and RL values, R2 values were found 
0.954 for SEMec and 0.940 for SEElec values 
respectively. 

In the regression analysis these rock properties 
were also found statistically significant in 
estimating specific energy both individually 
and together, depending on the results of linear 
regression analysis, ANOVA and Student’s t-tests, 
and R2 values. RL and Vp values were in positive 
correlations statistically significant with specific 
energies at 99% confidence level. The proposed 
simple and multiple regression-based models  
performed best when VAF changed between 
96.91-98.58, RMSE changed between 3.88-
5.79, correlation coefficient changed between 
0.939-0.977 and standard error of estimation 
changed between 4.151-6.044 are considered. 
The statistical tests showed that both simple and 
multiple regression models were valid. These 
models can be reliably used for prediction of 
specific energy especially for the preliminary 
studies. 

It was recommended that the predicting specific 
energy values by using these rock properties will 
be also easier and more practical because the 
two rock mechanics tests mentioned above can 
be performed practically both in laboratory and on 
field.

Rock cutting tests are expensive and time-
consuming and also they require complex 
laboratory facilities using high quality samples in 
the tests. Therefore, it is important to predict the 
specific energy using some easy and practical 
rock mechanics tests without the need to use a 
rock cutting test equipment. 

For the practitioner, each experiment means high 
cost and time consumption. Therefore, in practice, 
it is quite important to develop a model that best 
predicts with the fewest parameters.
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