

RESEARCH ARTICLE

Hopf algebra structure on superspace $SP_a^{2|1}$

Salih Celik

Department of Mathematics, Yıldız Technical University, Davutpasa-Esenler, 34220 Istanbul, Turkey

Abstract

Super-Hopf algebra structure on the function algebra on the extended quantum symplectic superspace $\mathrm{SP}_q^{2|1}$, denoted by $\mathbb{F}(\mathrm{SP}_q^{2|1})$, is defined. A quantum Lie superalgebra derived from $\mathbb{F}(\mathrm{SP}_q^{2|1})$ is explicitly obtained.

Mathematics Subject Classification (2010). 16W30, 16T20, 17B37, 17B66, 20G42, 58B32

Keywords. quantum symplectic superspace, super *-algebra, super-Hopf algebra, quantum supergroup, quantum Lie superalgebra

1. Introduction

Quantum supergroups and quantum superalgebras are even richer mathematical subjects as compared to Lie supergroups and Lie superalgebras. A quantum superspace is a space that quantum supergroup acts with linear transformations and whose coordinates belong to a noncommutative associative superalgebra [7].

Some algebras have been considered which are covariant with respect to the quantum supergroups in [4]. Using the corepresentation of the quantum supergroup $OSP_q(1|2)$, some non-commutative spaces covariant under its coaction have been constructed [2]. In the present work, we set up a super-Hopf algebra structure on an algebra which appears in both paper. We denote this algebra by $O(SP_q^{2|1})$. As is known, the matrix elements of the quantum supergroups $OSP_q(1|2)$ and $OSP_q(2|1)$ are the same and they act both quantum superspaces $SP_q^{1|2}$ and $SP_q^{2|1}$. But these two quantum superspaces are not the same. A study on $SP_q^{1|2}$ was made in [3]. Here we will work on the quantum symplectic superspace $SP_q^{2|1}$.

2. Review of quantum symplectic group

In this section, we will give some information about the structures of quantum symplectic groups as much as needed.

The algebra $\mathbb{O}(\text{OSP}_q(1|2))$ is generated by the *even* elements a, b, c, d and *odd* elements α, δ . Standard FRT construction [5] is obtained via the matrix R given in [6]. Using the RTT-relations and the q-orthosymplectic condition, all defining relations of $\mathbb{O}(\text{OSP}_q(1|2))$ are explicitly obtained in [2]:

Email address: sacelik@yildiz.edu.tr

Received: 20.12.2018; Accepted: 27.03.2019

Theorem 2.1. The generators of $\mathbb{O}(OSP_q(1|2))$ satisfy the relations

$$\begin{aligned} ab &= q^{2}ba, \ ac = q^{2}ca, \ a\alpha = q\alpha a, \\ a\delta &= q\delta a + (q - q^{-1})\alpha c, \ ad = da + (q - q^{-1})[(1 + q^{-1})bc + q^{-1/2}\alpha\delta], \\ bc &= cb, \ bd &= q^{2}db, \ b\alpha = q^{-1}\alpha b, \ b\delta = q\delta b, \end{aligned}$$
(2.1)
$$cd &= q^{2}dc, \ c\alpha = q^{-1}\alpha c, \ c\delta = q\delta c, \\ d\alpha &= q^{-1}\alpha d + (q^{-1} - q)\delta b, \ d\delta = q^{-1}\delta d, \\ \alpha\delta &= -q\delta\alpha + q^{-1/2}(q^{2} - 1)bc, \ \alpha^{2} = q^{1/2}(q - 1)ba, \ \delta^{2} = q^{1/2}(q - 1)dc. \end{aligned}$$

In (2.1), the relations involving the elements γ , e and β are not written. They can be found in [2]. Other relations that we need in this study are given below:

$$[e, \alpha]_{q} = q^{1/2}(q-1)(\gamma b + \beta a), \quad [e, \beta]_{q^{-1}} = q^{-1/2}(q^{-1}-1)(\delta b + \alpha d),$$

$$[e, \gamma]_{q} = q^{1/2}(1-q)(\delta a + \alpha c), \quad [e, \delta]_{q^{-1}} = q^{-1/2}(1-q^{-1})(\gamma d + \beta c), \quad (2.2)$$

$$\beta^{2} = q^{1/2}(q-1)db, \quad \gamma^{2} = q^{1/2}(q-1)ca,$$

$$e^{2} = 1 - q^{-1/2}[\alpha, \delta]_{q} = 1 + q^{1/2}[\beta, \gamma]_{q^{-1}}$$

where $[u, v]_Q = uv - Qvu$.

The quantum superdeterminant is defined by

$$D_q = ad - qbc - q^{1/2}\alpha\delta$$
$$= da - q^{-1}bc + q^{-1/2}\delta\alpha.$$

The element D_q is a central element of $\mathbb{O}(OSP_q(2|1))$.

If \mathbb{A} and \mathbb{B} are \mathbb{Z}_2 -graded algebras, then their tensor product $\mathbb{A} \otimes \mathbb{B}$ is the \mathbb{Z}_2 -graded algebra whose underlying space is \mathbb{Z}_2 -graded tensor product of \mathbb{A} and \mathbb{B} . The following definition gives the product rule for tensor product of algebras. Let us denote by $\tau(a)$ the grade (or degree) of an element $a \in \mathbb{A}$.

Definition 2.2. If A is a \mathbb{Z}_2 -graded algebra, then the product rule in the \mathbb{Z}_2 -graded algebra $\mathbb{A} \otimes \mathbb{A}$ is defined by

$$(a_1 \otimes a_2)(a_3 \otimes a_4) = (-1)^{\tau(a_2)\tau(a_3)}a_1a_3 \otimes a_2a_4$$

where a_i 's are homogeneous elements in the algebra \mathbb{A} .

Definition 2.3. A super-Hopf algebra is a vector space \mathbb{A} over \mathbb{K} with three linear maps $\Delta : \mathbb{A} \longrightarrow \mathbb{A} \otimes \mathbb{A}$, called the coproduct, $\epsilon : \mathbb{A} \longrightarrow \mathbb{K}$, called the counit, and $S : \mathbb{A} \longrightarrow \mathbb{A}$, called the coinverse, such that

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta, \tag{2.3}$$

$$m \circ (\epsilon \otimes \mathrm{id}) \circ \Delta = \mathrm{id} = m \circ (\mathrm{id} \otimes \epsilon) \circ \Delta, \tag{2.4}$$

$$m \circ (S \otimes \mathrm{id}) \circ \Delta = \eta \circ \epsilon = m \circ (\mathrm{id} \otimes S) \circ \Delta, \tag{2.5}$$

together with $\Delta(\mathbf{1}) = \mathbf{1} \otimes \mathbf{1}$, $\epsilon(\mathbf{1}) = 1$, $S(\mathbf{1}) = \mathbf{1}$ and for any $a, b \in \mathbb{A}$

$$\Delta(ab) = \Delta(a)\Delta(b), \epsilon(ab) = \epsilon(a)\epsilon(b), S(ab) = (-1)^{\tau(a)\tau(b)}S(b)S(a)$$
(2.6)

where $m : \mathbb{A} \otimes \mathbb{A} \longrightarrow \mathbb{A}$ is the product map, $\mathrm{id} : \mathbb{A} \longrightarrow \mathbb{A}$ is the identity map and $\eta : \mathbb{K} \longrightarrow \mathbb{A}$.

778

3. Quantum symplectic superspace $SP_q^{2|1}$

In this section, we define a super-Hopf algebra structure on the extended function algebra of the quantum superspace $\mathrm{SP}_q^{2|1}$.

3.1. The algebra of polynomials on the superspace $SP_a^{2|1}$

The elements of the symplectic superspace are supervectors generated by two even and an odd components. We define a \mathbb{Z}_2 -graded symplectic space $\mathrm{SP}^{2|1}$ by dividing the superspace $\mathrm{SP}^{2|1}$ of 3x1 matrices into two parts $\mathrm{SP}^{2|1} = V_0 \oplus V_1$. A vector is an element of V_0 (resp. V_1) and is of grade 0 (resp. 1) if it has the form

$$\begin{pmatrix} x\\0\\y \end{pmatrix}$$
, resp. $\begin{pmatrix} 0\\ heta\\0 \end{pmatrix}$.

While the even elements commute to everyone, the odd element satisfies the relation $\theta^2 = 0$.

In [3], the quantum superspace $SP_q^{2|1}$ is considered as the dual space of quantum superspace $SP_q^{1|2}$ and then relations (3.1) below are obtained by interpreting the coordinates as differentiations.

Definition 3.1. Let $\mathbb{K}\langle x, \theta, y \rangle$ be a free associative algebra generated by x, θ, y and I_q be a two-sided ideal generated by $x\theta - q\theta x$, $xy - q^2yx$, $y\theta - q^{-1}\theta y$, $\theta^2 - q^{1/2}(q-1)yx$. The quantum superspace $\mathrm{SP}_q^{2|1}$ with the function algebra

$$\mathbb{O}(\mathrm{SP}_q^{2|1}) = \mathbb{K}\langle x, \theta, y \rangle / I_q$$

is called \mathbb{Z}_2 -graded quantum symplectic space (or quantum symplectic superspace).

Here the coordinates x and y with respect to the \mathbb{Z}_2 -grading are of grade 0 (or even), the coordinate θ with respect to the \mathbb{Z}_2 -grading is of grade 1 (or odd).

According to the above definition, if $(x, \theta, y)^t \in SP_a^{2|1}$ then we have

$$x\theta = q\theta x, \quad \theta y = qy\theta, \quad yx = q^{-2}xy, \quad \theta^2 = q^{1/2}(q-1)yx$$
 (3.1)

where q is a non-zero complex number. This associative algebra over the complex numbers is known as the algebra of polynomials over quantum (2+1)-superspace.

It is easy to see the existence of representations that satisfy (3.1); for instance, there exists a representation $\rho : \mathbb{O}(\mathrm{SP}_q^{2|1}) \to \mathrm{M}(3,\mathbb{C})$ such that matrices

$$\rho(x) = \begin{pmatrix} q & 0 & 0 \\ 0 & q^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \rho(\theta) = \begin{pmatrix} 0 & q-1 & 0 \\ 0 & 0 & 0 \\ q^{1/2} & 0 & 0 \end{pmatrix}, \ \rho(y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

representing the coordinate functions satisfy the relations (3.1).

Note that the last two relations in (3.1) can be also written as a single relation. Therefore, we say that $\mathbb{O}(\mathrm{SP}_q^{2|1})$ is the superalgebra with generators x_{\pm} and θ satisfying the relations [4]

$$x_{\pm}\theta = q^{\pm 1}\theta x_{\pm}, \quad [x_{+}, x_{-}] = q^{-1/2}(q+1)\theta^{2}.$$
 (3.2)

where $x_+ = x$ and $x_- = y$.

Definition 3.2 ([4]). The quantum supersphere on the quantum symplectic superspace is defined by

$$r = q^{1/2}x_{-}x_{+} + \theta^{2} - q^{-1/2}x_{+}x_{-}.$$

3.2. A *-structure on the algebra $\mathbb{O}(SP_a^{2|1})$

Here we define a \mathbb{Z}_2 -graded involution on the algebra $\mathbb{O}(\mathrm{SP}_a^{2|1})$.

Definition 3.3. Let \mathbb{A} be an associative superalgebra. A \mathbb{Z}_2 -graded linear map $\star : \mathbb{A} \longrightarrow \mathbb{A}$ is called a superinvolution (or \mathbb{Z}_2 -graded involution) if

$$(ab)^{\star} = (-1)^{\tau(a)\tau(b)}b^{\star}a^{\star}, \qquad (a^{\star})^{\star} = a$$

for any elements $a, b \in \mathbb{A}$. The pair (\mathbb{A}, \star) is called a \mathbb{Z}_2 -graded \star -algebra.

If the parameter q is real, then the algebra $\mathbb{O}(\mathrm{SP}_q^{2|1})$ becomes a \star -algebra with involution determined by the following proposition.

Proposition 3.4. If q > 0 then the algebra $\mathbb{O}(SP_q^{2|1})$ supplied with the \mathbb{Z}_2 -graded involution determined by

$$x_{+}^{\star} = q^{1/2} x_{-}, \quad \theta^{\star} = \mathbf{i} \, \theta, \quad x_{-}^{\star} = q^{-1/2} x_{+}$$

becomes a super \star -algebra where $\mathbf{i} = \sqrt{-1}$.

Proof. We must show that the relations (3.2) are invariant under the star operation. If q is a positive number, we have

$$(x_{\pm}\theta - q^{\pm 1}\theta x_{\pm})^{\star} = (\mathbf{i}\,\theta)(q^{\pm 1/2}x_{\mp}) - q^{\pm 1}(q^{\pm 1/2}x_{\mp})(\mathbf{i}\,\theta) = q^{\pm 1/2}\mathbf{i}\,(\theta x_{\mp} - q^{\pm 1}\theta x_{\mp})$$

and since $[x_+, x_-]^* = [x_+, x_-]$

$$[x_+, x_-] = [x_+, x_-]^* = q^{-1/2}(q+1)(-\theta^*\theta^*) = q^{-1/2}(q+1)\theta^2.$$

Hence the ideal $(x_{\pm}\theta - q^{\pm 1}\theta x_{\pm}, [x_+, x_-] - q^{-1/2}(q+1)\theta^2)$ is *-invariant and the quotient algebra $\mathbb{K}\langle x_+, \theta, x_- \rangle / (x_{\pm}\theta - q^{\pm 1}\theta x_{\pm}, [x_+, x_-] - q^{-1/2}(q+1)\theta^2)$ becomes a *-algebra. \Box

3.3. The super-Hopf algebra structure on $SP_a^{2|1}$

We define the extended \mathbb{Z}_2 -graded quantum symplectic space to be the algebra containing $\mathrm{SP}_q^{2|1}$, the unit and x_+^{-1} , the inverse of x_+ , which obeys $x_+x_+^{-1} = \mathbf{1} = x_+^{-1}x_+$. We will denote the unital extension of $\mathbb{O}(\mathrm{SP}_q^{2|1})$ by $\mathbb{F}(\mathrm{SP}_q^{2|1})$. The following theorem asserts that the superalgebra $\mathbb{F}(\mathrm{SP}_q^{2|1})$ is a super-Hopf algebra:

Theorem 3.5. The algebra $\mathbb{F}(\mathrm{SP}_q^{2|1})$ is a \mathbb{Z}_2 -graded Hopf algebra. The definitions of a coproduct, a counit and a coinverse on the algebra $\mathbb{F}(\mathrm{SP}_q^{2|1})$ are as follows (i) the coproduct $\Delta : \mathbb{F}(\mathrm{SP}_q^{2|1}) \longrightarrow \mathbb{F}(\mathrm{SP}_q^{2|1}) \otimes \mathbb{F}(\mathrm{SP}_q^{2|1})$ is defined by

$$\Delta(x_+) = x_+ \otimes x_+, \quad \Delta(\theta) = \theta \otimes \mathbf{1} + \mathbf{1} \otimes \theta, \quad \Delta(x_-) = x_+^{-1} \otimes x_- + x_- \otimes x_+^{-1}, \quad (3.3)$$

(ii) the counit $\epsilon : \mathbb{F}(\mathrm{SP}_q^{2|1}) \longrightarrow \mathbb{C}$ is given by

$$\epsilon(x_+) = 1, \quad \epsilon(\theta) = 0, \quad \epsilon(x_-) = 0,$$

(iii) the algebra $\mathbb{F}(\mathrm{SP}_q^{2|1})$ admits a \mathbb{C} -algebra antihomomorphism $S : \mathbb{F}(\mathrm{SP}_q^{2|1}) \longrightarrow \mathbb{F}(\mathrm{SP}_{q^{-1}}^{2|1})$ defined by

$$S(x_{+}) = x_{+}^{-1}, \quad S(\theta) = -\theta, \quad S(x_{-}) = -x_{+}x_{-}x_{+}.$$

Proof. The axioms (2.3)-(5) are satisfied automatically. It is also not difficult to show that the co-maps preserve the relations (3.2). In fact, for instance,

$$\Delta([x_+, x_-]) = \Delta(x_+ x_- - x_- x_+) = \mathbf{1} \otimes [x_+, x_-] + [x_+, x_-] \otimes \mathbf{1}$$
$$= q^{-1/2}(q+1)(\mathbf{1} \otimes \theta^2 + \theta^2 \otimes \mathbf{1})$$
$$\Delta(\theta^2) = \mathbf{1} \otimes \theta^2 + \theta^2 \otimes \mathbf{1},$$

780

and

$$S([x_+, x_-]) = -[x_+, x_-], \quad S(\theta^2) = -\theta^2.$$

Since $S^2(a) = id(a)$ for all $a \in \mathbb{F}(SP_q^{2|1})$, the coinverse S is of second order.

The set $\{x^k \theta^l y^m : k, l, m \in \mathbb{N}_0\}$ form a vector space basis of $\mathbb{F}(\mathrm{SP}_q^{2|1})$. The formula (3.3) gives the action of the coproduct Δ only on the generators. The action of Δ on product on generators can be calculated by taking into account that Δ is a homomorphism.

Corollary 3.6. For the quantum supersphere r, we have

 $\Delta(r) = r \otimes \mathbf{1} + \mathbf{1} \otimes r, \quad \epsilon(r) = 0, \quad S(r) = -r.$

Proof. Using the definition of Δ , as an algebra homomorphism, on the generators of $\mathbb{F}(\mathrm{SP}_q^{2|1})$ in (3.3), it is easy to see that the element $r \in \mathbb{F}(\mathrm{SP}_q^{2|1})$ is a primitive element, that is,

$$\begin{split} \Delta(r) &= q^{1/2} (x_{+}^{-1} \otimes x_{-} + x_{-} \otimes x_{+}^{-1}) (x_{+} \otimes x_{+}) + (\theta \otimes \mathbf{1} + \mathbf{1} \otimes \theta) (\theta \otimes \mathbf{1} + \mathbf{1} \otimes \theta) \\ &- q^{-1/2} (x_{+} \otimes x_{+}) (x_{+}^{-1} \otimes x_{-} + x_{-} \otimes x_{+}^{-1}) \\ &= q^{1/2} (\mathbf{1} \otimes x_{-} x_{+} + x_{-} x_{+} \otimes \mathbf{1}) + \theta^{2} \otimes \mathbf{1} + \mathbf{1} \otimes \theta^{2} - q^{-1/2} (\mathbf{1} \otimes x_{+} x_{-} + x_{+} x_{-} \otimes \mathbf{1}) \\ &= \mathbf{1} \otimes (q^{1/2} x_{-} x_{+} + \theta^{2} - q^{-1/2} x_{+} x_{-}) + (q^{1/2} x_{-} x_{+} + \theta^{2} - q^{-1/2} x_{+} x_{-}) \otimes \mathbf{1}. \end{split}$$

Since $\epsilon(\mathbf{1}) = 1$ and

1 10

$$m(\mathrm{id}\otimes\epsilon)\Delta(r) = r\epsilon(\mathbf{1}) + \epsilon(r)\mathbf{1} = r = m(\epsilon\otimes\mathrm{id})\Delta(r)$$

we obtain $\epsilon(r) = 0$. Finally, using the fact that S is an anti-homomorphism we get

$$S(r) = q^{1/2} x_{+}^{-1} (-x_{+} x_{-} x_{+}) - (-\theta)(-\theta) - q^{-1/2} (-x_{+} x_{-} x_{+}) x_{+}^{-1}$$

= $-(q^{1/2} x_{-} x_{+} + \theta^{2} - q^{-1/2} x_{+} x_{-}),$

as desired.

3.4. Coactions on the quantum symplectic superspace

Let $a, b, c, d, e, \gamma, \alpha, \delta, \beta$ be elements of an algebra \mathbb{A} . Assuming that the generators of $\mathbb{O}(\text{OSP}_q(2|1))$ super-commute with the elements of $\mathbb{O}(\text{SP}_q^{2|1})$, define the components of the vectors $X' = (x', \theta', y')^t$ and $X'' = (x'', \theta'', y'')^t$ using the following matrix equalities

$$X' = T X \quad \text{and} \quad (X'')^t = X^t T \tag{3.4}$$

where $X = (x, \theta, y)^t \in SP_q^{2|1}$ and $T \in OSP_q(2|1)$. If we assume that $q \neq 1$ then we have the following theorem proving straightforward computations.

Theorem 3.7. If the transformations in (3.4) preserve the relations (3.1), then the entries of T satisfy the relations (2.1) and then generate the algebra $\mathbb{O}(OSP_q(2|1))$ together with q-orthosymplectic condition.

A left quantum space (or left comodule algebra) for a Hopf algebra H is an algebra \mathbb{X} together with an algebra homomorphism (left coaction) $\delta_L : \mathbb{X} \longrightarrow H \otimes \mathbb{X}$ such that

$$(\mathrm{id}\otimes\delta_L)\circ\delta_L=(\Delta\otimes\mathrm{id})\circ\delta_L$$
 and $(\epsilon\otimes\mathrm{id})\circ\delta_L=\mathrm{id}.$

Right comodule algebra can be defined in a similar way.

Theorem 3.8. (i) The algebra $\mathbb{O}(SP_q^{2|1})$ is a left and right comodule algebra of the Hopf algebra $\mathbb{O}(OSP_q(2|1))$ with left coaction δ_L and right coaction δ_R such that

$$\delta_L(X_i) = \sum_{k=1}^3 t_{ik} \otimes X_k, \quad \delta_R(X_i) = \sum_{k=1}^3 X_k \otimes t_{ki}. \tag{3.5}$$

(ii) The quantum supersphere r belongs to the center of $\mathbb{O}(\mathrm{SP}_q^{2|1})$ and satisfies $\delta_L(r) = \mathbf{1} \otimes r$ and $\delta_R(r) = r \otimes \mathbf{1}$.

Proof. (i) These assertions are obtained from the relations in (2.1) and (2.2) together with (3.1).

(ii) That r is a central element of $\mathbb{O}(\mathrm{SP}_q^{2|1})$ is shown by using the relations in (3.1). To show that $\delta_L(r) = \mathbf{1} \otimes r$ and $\delta_R(r) = r \otimes \mathbf{1}$ we use the definitions of δ_L and δ_R in (3.5) and the relations (2.1) and (2.2) with $D_q = \mathbf{1}$.

4. An *h*-deformation of the superspace $SP^{2|1}$

In this section, we introduce an *h*-deformation of the superspace $SP^{2|1}$ from the *q*-deformation via a contraction following the method of [1]. Consider the *q*-deformed algebra of functions on the quantum superspace $SP_q^{2|1}$ generated by x_{\pm} and θ with the relations (3.2).

We introduce new coordinates X_{\pm} and Θ by

$$\mathbf{x} = \begin{pmatrix} x_+\\ \theta\\ x_- \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ \frac{h}{q-1} & 0 & 1 \end{pmatrix} \begin{pmatrix} X_+\\ \Theta\\ X_- \end{pmatrix} = g \,\mathbf{X}.$$

When the relations (3.2) are used, taking the limit $q \to 1$ we obtain the following exchange relations, which define the *h*-superspace $SP_h^{2|1}$:

Definition 4.1. Let $\mathbb{O}(\mathrm{SP}_h^{2|1})$ be the algebra with the generators X_{\pm} and Θ satisfying the relations

$$X_{+}\Theta = \Theta X_{+}, \quad X_{-}\Theta = \Theta X_{-} - 2h\Theta X_{+}, \quad X_{+}X_{-} = X_{-}X_{+} + 2\Theta^{2}$$
 (4.1)

where the coordinates X_{\pm} are even and the coordinate Θ is odd. We call $\mathbb{O}(\mathrm{SP}_{h}^{2|1})$ the algebra of functions on the \mathbb{Z}_{2} -graded quantum space $\mathrm{SP}_{h}^{2|1}$.

h-deformed supersphere on the symplectic h-superspace is given by

$$r_h = X_- X_+ + \Theta^2 + h X_+^2 - X_+ X_- = h X_+^2 - \Theta^2.$$

It is easily seen that the quantum supersphere r_h belongs to the center of the superalgebra $\mathbb{O}(\mathrm{SP}_h^{2|1})$.

The definition of dual q-deformed symplectic superspace is given as follows [2].

Definition 4.2. Let $\mathbb{K}\{\varphi_+, z, \varphi_-\}$ be a free associative algebra generated by $z, \varphi_+, \varphi_$ and I_q be a two-sided ideal generated by $z\varphi_{\pm} - q^{\pm 1}\varphi_{\pm}z, \varphi_-\varphi_+ + q^{-2}\varphi_+\varphi_- + q^{-2}Qz^2$ and φ_{\pm}^2 . The quantum superspace $SP_q^{1|2}$ with the function algebra

$$\mathbb{O}(SP_q^{1|2}) = \mathbb{K}\{\varphi_+, z, \varphi_-\}/I_q$$

is called \mathbb{Z}_2 -graded quantum symplectic space (or quantum symplectic superspace) where $Q = q^{1/2} - q^{3/2}$ and $q \neq 0$.

In case of exterior h-superspace, we use the transformation

$$\hat{\mathbf{x}} = g\hat{\mathbf{X}}$$

with the components φ_+ , z and φ_- of $\hat{\mathbf{x}}$. The definition is given below.

Definition 4.3. Let $\Lambda(SP_h^{2|1})$ be the algebra with the generators Φ_{\pm} and Z satisfying the relations

$$\Phi_{+}Z = Z\Phi_{+}, \quad Z\Phi_{-} = \Phi_{-}Z - 2h\Phi_{+}Z, \quad \Phi_{-}\Phi_{+} = -\Phi_{+}\Phi_{-}$$

$$\Phi_{+}^{2} = 0, \quad \Phi_{-}^{2} = h(2\Phi_{-}\Phi_{+} - Z^{2})$$

where the coordinate Z is even and the coordinates Φ_{\pm} are odd. We call $\Lambda(\mathrm{SP}_{h}^{2|1})$ the quantum exterior algebra of the \mathbb{Z}_{2} -graded quantum space $\mathrm{SP}_{h}^{2|1}$.

5. A Lie superalgebra derived from $\mathbb{F}(\mathrm{SP}_q^{2|1})$

It is known that an element of a Lie group can be represented by exponential of an element of its Lie algebra. By virtue of this fact, one can define the generators of the algebra $\mathbb{F}(\mathrm{SP}_q^{2|1})$ as

$$x_{+} := e^{u}, \quad \theta := q^{-1/2}\xi, \quad x_{-} := e^{-u}v.$$
 (5.1)

Then, the following lemma can be proved by direct calculations using the relations

$$x_{\pm}^{k}\theta = q^{\pm k}\,\theta x_{\pm}^{k}, \quad [x_{\pm}^{k}, x_{-}] = q^{-1/2}\,\frac{q^{2k}-1}{q-1}\,\theta^{2}\,x_{\pm}^{k-1}, \quad \forall k \ge 1$$

whose the proof follows from induction on k.

Lemma 5.1. The generators u, ξ, v have the following commutation relations (Lie (anti-)brackets)

$$[u,\xi] = \hbar\,\xi, \quad [\xi,v] = 0, \quad [u,v] = \frac{2\hbar}{1 - e^{-\hbar}}\,\xi^2, \tag{5.2}$$

where $q = e^{\hbar}$ and $\hbar \in \mathbb{R}$.

We denote the algebra for which the generators obey the relations (5.2) by $\mathbb{L}_{\hbar} := \mathbb{L}(\mathrm{SP}_q^{2|1})$. The \mathbb{Z}_2 -graded Hopf algebra structure of \mathbb{L}_{\hbar} can be read off from Theorem 3.5:

Theorem 5.2. The algebra \mathbb{L}_{\hbar} is a \mathbb{Z}_2 -graded Hopf algebra. The definitions of a coproduct, a counit and a coinverse on the algebra \mathbb{L}_{\hbar} are as follows:

$$\Delta(u_i) = u_i \otimes \mathbf{1} + \mathbf{1} \otimes u_i, \quad \epsilon(u_i) = 0, \quad S(u_i) = -u_i$$

for $u_i \in \{u, \xi, v\}$.

The following proposition can be easily proved by using the Proposition 3.4 together with (5.1).

Proposition 5.3. The algebra \mathbb{L}_{\hbar} supplied with the \mathbb{Z}_2 -graded involution determined by

$$u^{\star} = \frac{1}{2}\hbar + \ln(e^{-u}v), \quad \xi^{\star} = \mathbf{i}\xi, \quad v^{\star} = v$$

becomes a super Lie *-algebra.

References

- A. Aghamohammadi, M. Khorrami, and A. Shariati, h-deformation as a contraction of q-deformation, J. Phys. A: Math. Gen. 28, L225-L231, 1995.
- [2] N. Aizawa and R. Chakrabarti, Quantum Spheres for $OSP_q(1|2)$, J. Math. Phys. 46, 103510:1-25, 2005.
- [3] S. Celik, Covariant differential calculi on quantum symplectic superspace $SP_q^{1|2}$, J. Math. Phys. **58**, 023508:1-15, 2017.
- [4] M. Chaichian and P.P. Kulish, Quantum group covariant systems, in From field theory to quantum groups. World Sci. Publ., River Edge, NJ, 99-111, 1996.
- [5] L.D. Faddeev, N.Yu. Reshetikhin, and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1, 193-225, 1990.
- [6] P.P. Kulish and N.Yu Reshetikhin, Universal R-matrix of the quantum superalgebra osp(2|1), Lett. Math. Phys. 18, 143-149, 1989.
- [7] Yu I. Manin, Multiparametric quantum deformation of the general linear supergroup, Commun. Math. Phys. 123, 163-175, 1989.