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1. Introduction
Given a C∞−submersion ψ from a (semi)-Riemannian manifold (N, gN ) onto a (semi)-

Riemannian manifold (B, gB), according to the circumstances on the map ψ : (N, gN ) →
(B, gB), we get the following: a (semi)-Riemannian submersion ([3, 8, 14, 20]), an almost
Hermitian submersion ([27]), a paracontact submersion ([9]), a paracontact paracom-
plex submersion ([10]), a (para) quaternionic submersion ([6, 17]), a slant submersion
([12, 19, 22, 23]), an anti-invariant submersion ([11, 24]), a conformal semi-slant submer-
sion ([1, 13]), a conformal anti-invariant submersion ([2]), a hemi-slant submersion ([25]),
etc. As we know, Riemannian submersions were severally introduced by B. O’Neill ([20])
and A. Gray ([14]) in 1960s. In particular, by using the concept of almost Hermitian
submersions, B. Watson ([27]) gave some differential geometric properties among fibers,
base manifolds, and total manifolds. After that, there are lots of results on this issue. It
is well-known that Riemannian submersions are associated with physics and have their
applications in the Yang-Mills theory ([5]), Kaluza-Klein theory ([4,15]), supergravity and
superstring theories ([16]), etc.

The paper is organized as follows. In Section 2, we remind some concepts, which are
needed in the following part. In Section 3, we study some geometric properties of three
types of proper slant submersions from an almost paracontact metric manifold onto a
semi-Riemannian manifold. We present examples, investigate the geometry of leaves of
distributions. We obtain a necessary and sufficient circumstance for such submersions to
be totally geodesic map, as well.
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2. Preliminaries
2.1. Semi-Riemannian submersions

A C∞− submersion ψ : N → B between two pseudo-Riemannian manifolds (N, gN )
and (B, gB) is called a semi-Riemannian submersion if it satisfies circumstances:
(i) the fibers ψ−1(b), b ∈ B, are r− dimensional pseudo-Riemannian submanifolds of N,
where r = dim(N) − dim(B).
(ii) ψ∗ preserves scalar products of vectors normal to fibres.
The tangent bundle TN of the total space N has an orthogonal decomposition

TN = kerψ∗ ⊕ (kerψ∗)⊥,

where kerψ∗ is the vertical distribution while (kerψ∗)⊥ designates the horizontal one.
In ([20]), O’Neill has defined two configuration tensors T and A, of the total space of a
semi-Riemannian submersion by setting

TX1X2 = h∇vX1vX2 + v∇vX1hX2 (2.1)
and

AX1X2 = v∇hX1hX2 + h∇hX1vX2 (2.2)
for any X1, X2 ∈ χ(N), here v and h are the vertical and horizontal projections respec-
tively.
Using (2.1) and (2.2), we get

∇X1X2 = TX1X2 + ∇̂X1X2; (2.3)

∇X1X3 = TX1X3 + h(∇X1X3); (2.4)
∇X3X1 = AX3X1 + v(∇X3X1), (2.5)
∇X3X4 = AX3X4 + h(∇X3X4), (2.6)

for any X3, X4 ∈ Γ((kerψ∗)⊥), X1, X2 ∈ Γ(kerψ∗). In addition, if X3 is basic then
h(∇X1X3) = h(∇X3X1) = AX3X1.

The fundamental tensor fields T,A satisfy:

TX1X2 = TX2X1, X1, X2 ∈ Γ(kerψ∗); (2.7)

AX3X4 = −AX4X3 = 1
2
v[X3, X4], X3, X4 ∈ Γ((kerψ∗)⊥). (2.8)

Lemma 2.1. If ψ : (N, gN ) → (B, gB) is a (semi-)Riemannian submersion and X3, X4
fundamental vector fields on N, ψ−related to X∗3 and X∗4 vector fields on base manifold
B, at that time we obtain the following features

(1) h[X3, X4] is a fundamental vector field and ψ∗h[X3, X4] = [X3∗, X∗4] ◦ ψ;
(2) h(∇X3X4) is a fundamental vector field ψ−related to (∇∗

X∗3
X∗4), here ∇ and ∇∗

are the Riemannian connection on N and B;
(3) [E,X1] ∈ Γ(kerψ∗), for any X1 ∈ Γ(kerψ∗) and for any fundamental vector field

E([8, 21]).

Let (N, gN ) and (B, gB) be (semi-)Riemannian manifolds and ψ : (N, gN ) → (B, gB) is
a differentiable map. At that time, the second fundamental form of ψ is given by

(∇ψ∗)(X1, X2) = ∇ψ
X1
ψ∗X2 − ψ∗(∇X1X2) (2.9)

for X1, X2 ∈ Γ(N), here we show conveniently by ∇ the Riemannian connections of the
metrics gN and gB. Recall that ψ is said to be harmonic if trace(∇ψ∗) = 0 and ψ is called
a totally geodesic map if (∇ψ∗)(X1, X2) = 0 for X1, X2 ∈ Γ(TN), [18].



824 Y. Gündüzalp

2.2. Almost paracontact metric manifolds
Let N be a differentiable manifold of dimensional (2n + 1). An almost paracontact

structure on N is a triple (φ, ξ, η), where:
(1) ξ is a Reeb vector field,
(2) η is a one-form such that η(ξ) = 1, and
(3) φ is a tensor field of type (1, 1) satisfying

φ2 = Id− η ⊗ ξ, η ◦ φ = 0, φ(ξ) = 0. (2.10)

If N is equipped with a pseudo-Riemannian metric gN such that

gN (φX1, φX2) = −gN (X1, X2) + η(X1)η(X2), X1, X2 ∈ χ(N), (2.11)

then (φ, ξ, η, gN ) is an almost paracontact metric structure. So, the quintuple
(N2n+1, φ, ξ, η, gN ) is an almost paracontact metric manifold ([26,28]).
Observe that, since (2.11) holds, any compatible with metric gN has got sign (n + 1, n)
and by (2.10) and (2.11) we have η(X1) = gN (ξ,X1). Furthermore, we can determine an
anti-symmetric two-form Φ by Φ(X1, X2) = gN (X1, φX2), which is called the fundamental
2-form corresponding to the structure.

An almost paracontact metric structure (φ, ξ, η, gN ) is said to be paracosymplectic, if
∇η = 0 and ∇Φ = 0 are closed ([7]), and the structure equation of a paracosymplectic
manifold is given by

(∇X1φ)X2 = 0, X1, X2 ∈ χ(N), (2.12)
where ∇ denotes the Riemannian connection of the metric gN on N . Moreover, for a
paracosymplectic manifold, we know that

∇X1ξ = 0. (2.13)

3. Proper slant submersions
Let ψ be a semi-Riemannian submersion from an almost paracontact metric manifold

N with the structure (φ, ξ, η, gN ) onto a semi-Riemannian manifold (B, gB). Then for
X1 ∈ Γ(kerψ∗), we write

φX1 = αX1 + βX1, (3.1)
where αX1 and βX1 are vertical and horizontal parts of φX1.

In addition to for X2 ∈ Γ((kerψ∗)⊥), we get

φX2 = tX2 + rX2, (3.2)

where tX2 and rX2 are vertical and horizontal components of φX2.

If for any spacelike or timelike vertical vector field X1 ∈ kerψ∗ − {ξ}, the quotient
gN (αX1,αX1)
gN (φX1,φX1) is constant, i.e. it is independent of the choice of the point p ∈ N and choice
of the spacelike or timelike vertical vector field X1 in kerψ∗ − {ξ}, at that time we call
that ψ is a slant submersion. In this case, the angle ω is called the slant angle of the slant
submersion.
We note that Reeb vector field ξ is a spacelike vertical vector field.

Let {E1, E2, ξ} be a local orthonormal frame of vertical vector fields with gN (E1, E1) =
1, i.e., such that E1 is spacelike (if both E1 and E2 are timelike, the situation would be
similar). From (2.11) and (3.1), we have

−1 = gN (φE1, φE1) = gN (αE1, αE1) + gN (βE1, βE1).
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On the other hand, αE1 = ρE2. Let us suppose ρ ̸= 0,±1; these conditions would cor-
respond to invariant ([9]) and anti-invariant submersions . Clearly, αE1 and E2 have the
same causal character. Depending on it and the value of ρ, we can separate the following
three conditions:
(1) If αE1 is a timelike and ∥ρ∥ > 1, at that time gN (βE1, βE1) = −1 + ρ2 and so βE1 is
spacelike.
(2) If αE1 is a timelike and ∥ρ∥ < 1, at that time gN (βE1, βE1) = −1 + ρ2 and so βE1 is
timelike.
(3) If αE1 is a spacelike, gN (βE1, βE1) = −1 − ρ2, and βE1 is a timelike vector field.

These three conditions will correspond to three different types of proper slant submer-
sions.

Definition 3.1. Let ψ be a proper slant submersion from an almost paracontact manifold
N with the structure (φ, ξ, η, gN ) onto a semi-Riemannian manifold (B, gB). We say that
it is of
type 1 if for any spacelike (timelike) vertical vector field X1 ∈ Γ(kerψ∗), αX1 is timelike
(spacelike), and ∥αX1∥

∥φX1∥ > 1,
type 2 if for any spacelike (timelike) vertical vector field X1 ∈ Γ(kerψ∗), αX1 is timelike
(spacelike), and ∥αX1∥

∥φX1∥ < 1,
type 3 if for any spacelike (timelike) vertical vector field X1 ∈ Γ(kerψ∗), αX1 is timelike
(spacelike).

It is known that the distribution (kerψ∗) is integrable for a semi-Riemannian submer-
sion between semi-Riemannian manifolds. In fact, its leaves are ψ−1(b), b ∈ B, i.e., fibres.
Thus it follows from above definition that the fibers of a slant submersion are slant sub-
manifolds of N .

Theorem 3.2. Let ψ be a proper slant submersion from an almost paracontact manifold
N with the structure (φ, ξ, η, gN ) onto a semi-Riemannian manifold (B, gB). Then,
(i) ψ is slant submersion of type 1 if and only if for any spacelike (timelike) vector field
X1 ∈ Γ(kerψ∗), αX1 is timelike (spacelike), and there exists a constant µ ∈ (1,∞) such
that

α2X1 = µ(X1 − η(X1)ξ). (3.3)
If ψ is a proper slant submersion of type 1, then µ = cosh2 ω, with ω > 0.
(ii) ψ is a proper slant submersion of type 2 if and only if for any spacelike (timelike) vector
field X1 ∈ Γ(kerψ∗), αX1 is timelike (spacelike), and there exists a constant µ ∈ (0, 1)
such that

α2X1 = µ(X1 − η(X1)ξ). (3.4)
If ψ is a proper slant submersion of type 2, then µ = cos2 ω, with 0 < ω < 2π.
(iii) ψ is slant submersion of type 3 if and only if for any spacelike (timelike) vector field
X1 ∈ Γ(kerψ∗), αX1 is timelike (spacelike), and there exists a constant µ ∈ (−∞, 0) such
that

α2X1 = µ(X1 − η(X1)ξ). (3.5)
If ψ is a proper slant submersion of type 3, then µ = − sinh2 ω, with ω > 0.
In every case, the angle ω is called the slant angle of the slant submersion.

Proof. (i) If ψ is slant submersion of type 1, for any spacelike vertical vector field X1 ∈
Γ(kerψ∗), αX1 is timelike, and, by virtue of (2.11), φX1 is timelike. Furthermore, they
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satisfy ∥αX1∥
∥φX1∥ > 1. So, there exists ω > 0 such that

coshω = ∥αX1∥
∥φX1∥

=
√

−gN (αX1, αX1)√
−gN (φX1, φX1)

. (3.6)

By using (2.10), (2.11, (3.1)) and (3.6) we obtain
gN (α2X1, X1) = −gN (αX1, αX1)

= − cosh2 ωgN (φX1, φX1)
= cosh2 ωgN (φ2X1, X1)
= cosh2 ωgN (X1 − η(X1)ξ,X1) (3.7)

for all X1 ∈ Γ(kerψ∗). Since gN is a semi-Riemannian metric, from (3.7) we get
α2X1 = cosh2 ω(X1 − η(X1)ξ), X1 ∈ Γ(kerψ∗). (3.8)

Let µ = cosh2 ω. Then it is obvious that µ ∈ (1,∞) and α2 = µ(I − η ⊗ ξ).
Everything works in a similar way for any timelike vector field X2 ∈ Γ(kerψ∗), but now,
αX2 and φX2 are spacelike and hence, instead of (3.6) we can write:

coshω = ∥αX2∥
∥φX2∥

=
√
gN (αX2, αX2)√
gN (φX1, φX1)

.

Since α2X1 = µ(X1 − η(X1)ξ), for any spacelike or timelike X1 we have that α2 =
µ(I − η ⊗ ξ). The converse is just a easy computation.
(ii) is obtained in a similar way.

(iii) If ψ is proper slant submersion of type 3, for any spacelike vector field X1 ∈
Γ(kerψ∗), αX1 is spacelike,as well and hence, there exists ω > 0 such that

sinhω = ∥αX1∥
∥φX1∥

=
√
gN (αX1, αX1)√

−gN (φX1, φX1)
.

Once more, we can demonstrate that gN (α2X1, X1) = − sinh2 ωgN (X1 − η(X1)ξ,X1). Let
µ = − sinh2 ω. At that time it is clear that µ ∈ (−∞, 0) and α2 = µ(I − η ⊗ ξ).
The converse is just a easy computation. �

For slant submersion of type 2, the slant angle coincides with the Wirtinger angle, i.e.,
the slant angle between φX1 and αX1.

Theorem 3.3. Let ψ be a proper slant submersion from an almost paracontact manifold
N with the structure (φ, ξ, η, gN ) onto a semi-Riemannian manifold (B, gB). Then,
(i) ψ is slant submersion of type 1 if and only if α2X1 = cosh2 ω(X1 − η(X1)ξ) for every
spacelike vector field X1 ∈ Γ(kerψ∗).
(ii) ψ is slant submersion of type 2 if and only if α2X1 = cos2 ω(X1 − η(X1)ξ) for every
spacelike vector field X1 ∈ Γ(kerψ∗).

Proof. (i) For every timelike vector field X2 ∈ Γ(kerψ∗), there exists a spacelike vector
field X1 ∈ Γ(kerψ∗) such as αX1 = X2. Then:

α2X2 = α2αX1 = αα2X1 = cosh2 ω(αX1 − η(αX1)ξ) = cosh2 ω(X2 − η(X2)ξ).
The same proof is valid for (ii), but α2X1 = cos2 ω(X1 − η(X1)ξ). �
Theorem 3.4. Let ψ be a proper slant submersion from an almost paracontact manifold
N with the structure (φ, ξ, η, gN ) onto a semi-Riemannian manifold (B, gB). Then ψ is
slant submersion of
type 1 if and only if tβX1 = − sinh2 ω(X1 − η(X1)ξ) for every spacelike (timelike) vertical
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vector field X1 ∈ Γ(kerψ∗).
type 2 if and only if tβX1 = sin2 ω(X1 − η(X1)ξ) for every spacelike (timelike) vertical
vector field X1 ∈ Γ(kerψ∗).
type 3 if and only if tβX1 = cosh2 ω(X1 − η(X1)ξ) for every spacelike (timelike) vertical
vector field X1 ∈ Γ(kerψ∗).
Proof. For any vertical vector field X1 ∈ Γ(kerψ∗), it holds

X1 − η(X1)ξ = φ2X1 = α2X1 + βαX1 + tβX1 + rβX1.

Equalizing the vertical and the horizontal parts of the above equation, we obtain:
α2X1 + tβX1 = X1 − η(X1)ξ, βαX1 + rβX1 = 0. (3.9)

Hence, for a slant submersion of type 1,
tβX1 = X1 − η(X1)ξ − α2X1 = (1 − cosh2 ω)(X1 − η(X1)ξ) = − sinh2 ω(X1 − η(X1)ξ),

while for a slant submersion of type 2,
tβX1 = X1 − η(X1)ξ − α2X1 = (1 − cos2 ω)(X1 − η(X1)ξ) = sin2 ω(X1 − η(X1)ξ),

and, for a slant submersion of type 3,
tβX1 = X1 − η(X1)ξ − α2X1 = (1 + sinh2 ω)(X1 − η(X1)ξ) = cosh2 ω(X1 − η(X1)ξ).

The converse results are deduced from the same equations. �
Theorem 3.5. Let ψ be a semi-Riemannian submersion from an almost paracontact met-
ric manifold (N4n+1

2n , φ, η, ξ, gN ) onto a semi-Riemannian manifold (B2n
n , gB). Then ψ is

a slant submersion of
type 1 if and only if r2X2 = cosh2 ωX2 for every spacelike (timelike) horizontal vector field
X2 ∈ Γ((kerψ∗)⊥).
type 2 if and only if r2X2 = cos2 ωX2 for every spacelike (timelike) horizontal vector field
X2 ∈ Γ((kerψ∗)⊥).
Proof. In the case of a slant submersion of
type 1, for every horizontal timelike (spacelike) vector field X2 ∈ Γ((kerψ∗)⊥), there exists
a spacelike (timelike) vertical vector field X1 ∈ Γ(kerψ∗) such as βX1 = X2. From (3.9),
we obtain

r2X2 = r2βX1 = −rβαX1 = βα2X1 = β(cosh2 ω(X1 − η(X1)ξ)). (3.10)
From (3.10), we get r2X2 = cosh2 ω(βX1 −η(βX1)ξ). Since βX1⊥ξ, we obtain η(βX1) = 0
and thus r2X2 == cosh2 ωX2.

In the case of a slant submersion of
type 2, in a similar way, we get

r2X2 = cos2 ωX2.

The converse results follow from the fact that t((kerψ∗)⊥) = (kerψ∗)⊕ < ξ > . �
Theorem 3.6. Let ψ be a semi-Riemannian submersion from an almost paracontact met-
ric manifold (N4n+1

2n , φ, η, ξ, gN ) onto a semi-Riemannian manifold (B2n
2j , gB)(0 < j < n).

At that time, ψ is a slant submersion of type 3 if and only if r2X2 = − sinh2 ωX2 for every
horizontal vector field X2 ∈ Γ((kerψ∗)⊥).
Proof. If X1 is a spacelike (timelike) vertical vector field, αX1 is also spacelike (timelike)
and βX1 is timelike (spacelike). Therefore, given that the dimension of B is half the
dimension of N, if X2 is a timelike (spacelike) horizontal vector field, then there exists
a vertical vector field X1 ∈ Γ(kerψ∗) such that βX1 = X2. Then, from (3.10) we have
r2X2 = β(− sinh2 ω(X1 − η(X1)ξ)) = − sinh2 ωX2. The converse results follow from the
fact that t((kerψ∗)⊥) = (kerψ∗)⊕ < ξ > . �
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From Theorem 3.2, (2.11) and (3.1) we obtain the following result.

Lemma 3.7. Let ψ be a semi-Riemannian submersion from an almost paracontact metric
manifold (N,φ, η, ξ, gN ) onto a semi-Riemannian manifold (B, gB).
If ψ is a proper slant submersion of type 1, then, for any spacelike (timelike) vector fields
X1, X2 ∈ Γ(kerψ∗), we have

gN (αX1, αX2) = cosh2 ω(−gN (X1, X2) + η(X1)η(X2)) (3.11)
gN (βX1, βX2) = − sinh2 ω(−gN (X1, X2) + η(X1)η(X2)) (3.12)

If ψ is a proper slant submersion of type 2, then, for any spacelike (timelike) vector fields
X1, X2 ∈ Γ(kerψ∗), we have

gN (αX1, αX2) = cos2 ω(−gN (X1, X2) + η(X1)η(X2)) (3.13)
gN (βX1, βX2) = sin2 ω(−gN (X1, X2) + η(X1)η(X2)). (3.14)

If ψ is a proper slant submersion of type 3, then, for any spacelike (timelike) vector fields
X1, X2 ∈ Γ(kerψ∗), we have

gN (αX1, αX2) = − sinh2 ω(−gN (X1, X2) + η(X1)η(X2)) (3.15)
gN (βX1, βX2) = cosh2 ω(−gN (X1, X2) + η(X1)η(X2)). (3.16)

Note that given a semi-Euclidean space R2n+1
n with coordinates (x1, ..., x2n, z) on R2n+1

n ,
we can naturally choose an almost paracontact structure (φ, ξ, η) on R2n+1

n as follows:

η = dz, ξ = ∂

∂z
, φ( ∂

∂x2i
) = ∂

∂x2i−1
, φ( ∂

∂x2i−1
) = ∂

∂x2i
, φ(ξ) = 0

where i = 1, ..., n. Let R2n+1
n be a semi-Euclidean space of signature (+,-,+,-,...,+) with

respect to the canonical basis ( ∂
∂x1

, ..., ∂
∂x2n

, ∂∂z ).
Now, we can present four examples of proper slant submersions.

Example 3.8. Determine a map ψ : R5
2 → R2

1 by

ψ(x1, x2, x3, x4, z) = (x1 − x3√
2

, x2).

At that time, by direct calculations we obtain

kerψ∗ = span{U1 = ∂

∂x1
+ ∂

∂x3
, U2 = ∂

∂x4
, U3 = ξ = ∂

∂z
}

and
(kerψ∗)⊥ = span{X1 = ∂

∂x1
− ∂

∂x3
, X2 = ∂

∂x2
}.

Thus, the map ψ is a slant submersion of type 2 with the slant angle ω with cos−1( 1√
2).

Example 3.9. Define a map ψ : R5
2 → R2

1 by

ψ(x1, x2, x3, x4, z) = (x2 sinh x+ x3 cosh x, x1 sinh y + x4 cosh y),

any for x, y ∈ R. Then, by direct calculations we get

kerψ∗ = span{U1 = cosh x ∂

∂x2
− sinh x ∂

∂x3
, U2 = cosh y ∂

∂x1
− sinh y ∂

∂x4
, U3 = ξ = ∂

∂z
}

and

(kerψ∗)⊥ = span{X1 = − sinh x ∂

∂x2
+ cosh x ∂

∂x3
, X2 = sinh y ∂

∂x1
− cosh y ∂

∂x4
}.

Thus,the map ψ is a slant submersion of type 1 with the slant angle coshω = cosh(x− y).
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Example 3.10. Define a map ψ : R5
2 → R2

1 by
ψ(x1, x2, x3, x4, z) = (x1 sin x+ x3 cosx, x2 sin y + x4 cos y),

for any x, y ∈ R. The map ψ is a slant submersion of type 2 with the slant angle cosω =
cos(x− y).

Example 3.11. Define a map ψ : R5
2 → R2

1 by
ψ(x1, x2, x3, x4, z) = (x2 cosh x+ x3 sinh x, x4),

for any x ∈ R+. The map ψ is a slant submersion of type 3 with the slant angle α2 =
− sinh2 x.

Let ψ be proper slant submersions of type 1,2 and 3 from a paracosymplectic manifold N
with the structure (gN , φ, η, ξ) onto a semi-Riemannian manifold (B, gB). From (2.11),(3.1)
and (3.2), one can simply see that

gN (X1, αX2) = −gN (αX1, X2) (3.17)
and

gN (βX1, X3) = −gN (X1, tX3), (3.18)
for spacelike (timelike) vector fields X1, X2 ∈ Γ(kerψ∗), X3 ∈ Γ((kerψ∗)⊥).

Using (2.3),(2.5) and (2.13) we have
TX1ξ = 0, AX3ξ = 0 (3.19)

for spacelike (timelike) vector fields X1 ∈ Γ(kerψ∗), X3 ∈ Γ(kerψ∗)⊥.

We determine the covariant derivatives of α and β as follows
(∇X1α)X2 = ∇̂X1αX2 − α∇̂X1X2 (3.20)

and
(∇X1β)Y = h∇X1βX2 − β∇̂X1X2 (3.21)

for spacelike (timelike) vector fields X1, X2 ∈ Γ(kerF∗), where ∇̂X1X2 = v∇X1X2. Then
we easily have

Lemma 3.12. Let (N, gN , φ, η, ξ) be a paracosymplectic manifold and (B, gB) a semi-
Riemannian manifold. Let ψ : N → B be proper slant submersions of type 1, 2 and 3.
Then, we have

∇̂X1αX2 + TX1βX2 = α∇̂X1X2 + tTX1X2

TX1αX2 + h∇X1βX2 = β∇̂X1X2 + rTX1X2

for any spacelike(timelike)vector fields X1, X2 ∈ Γ(kerψ∗).

We say that β is parallel with respect to the Riemannian connection ∇ on (kerψ∗) if
its covariant derivative with respect to ∇ vanishes, i.e., we get

(∇X1β)X2 = h∇X1βX2 − β∇̂X1X2 = 0 (3.22)
for any spacelike (timelike) vertical vector fields X1, X2 ∈ Γ(kerψ∗).

Theorem 3.13. Let ψ be a proper slant submersions of type 1, 2 and 3 from a paracosym-
plectic manifold (N, gN , φ, η, ξ) onto a semi-Riemannian manifold (B, gB). At that time,
the fibres are not proper totally umbilical.

Proof. See [19]. �
We now indicate the orthogonal complementary distribution to β(kerψ∗) in (kerψ∗)⊥

by τ. At that time, we obtain the following.
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Theorem 3.14. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersions of type
of 1, 2 and 3. If N is a paracosymplectic manifold, then τ is an invariant distribution of
(kerψ∗)⊥,with respect to φ.

Proof. For X2 ∈ Γ(τ), using (2.11) and (3.1), we get
gN (φX2, βX1) = −gN (X2, X1) − gN (φX2, αX1) + η(X1)η(X2)

= −gN (φX2, αX1)
= gN (X2, φαX1) = 0

for any spacelike (timelike) vector field X1 ∈ Γ(kerψ∗).
In a similar way, we have gN (φX2, X3) = −gN (X2, φX3) = 0 due to φX3 ∈ Γ((kerψ∗) ⊕
β(kerψ∗)) for any spacelike (timelike) vector field X2 ∈ Γ(τ) and X3 ∈ Γ(kerψ∗). Hence,
proof is complete. �
Corollary 3.15. Let ψ : (N4n+1

2n , gN , φ, η, ξ) → (B2n
2j , gB)(0 < j < n) be a proper slant

submersion of type 3. If N is a paracosymplectic manifold and {E1, ..., E2n, ξ}is a local or-
thonormal basis of (kerψ∗), at that time { 1

coshωβE1, ...,
1

coshωβE2n} is a local orthonormal
basis of β(kerψ∗).

Proof. It will be enough to demonstrate that gN ( 1
coshωβEi,

1
coshωβEj) = ϵiδij , for any

i, j ∈ {1, ..., n}, where ϵi = sgn(gN (E1, E1)) = ±1. By using (3.16), we get

gN ( 1
coshω

βEi,
1

coshω
βEj) = ( 1

coshω
)2 cosh2 ωgN (Ei, Ej) = ϵiδij ,

which proves the assertion. �
In a similar way, we get the following.

Lemma 3.16. Let ψ : (N4n+1
2n , gN , φ, η, ξ) → (B2n

2j , gB)(0 < j < n) be a proper slant
submersion of type 3. If N is a paracosymplectic manifold and E1, ..., En, ξ are orthogonal
unit vector fields in (kerψ∗), then

{E1,
1

sinhω
αE1, E2,

1
sinhω

αE2, ..., En,
1

sinhω
αEn, ξ}

is a local orthonormal basis of (kerψ∗).

Let ψ be a proper slant submersion of type 3 from a paracosymplectic manifold
(N4n+1, gN , φ, η, ξ) onto a semi-Riemannian manifold (B2n, gB). We call such an orthonor-
mal frame

{E1,
1

sinhω
αE1, E2,

1
sinhω

αE2, ..., E2n,
1

sinhω
αEn,

1
coshω

βE1, ...,
1

coshω
βE2n}

an adapted slant frame for proper slant submersion of type 3.

Proposition 3.17. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type
1. If N is a paracosymplectic manifold and β is parallel with respect to ∇ on (kerψ∗), then
we have

TαX1αX1 = cosh2 ωTX1X1 (3.23)
for any spacelike (timelike) vector field X1 ∈ Γ(kerψ∗).

Proof. If β is parallel, at that time from Lemma 3.12 we get rTX1X2 = TX1αX2 for any
spacelike (timelike) vector fields X1, X2 ∈ Γ(kerψ∗). Interchanging the role of X1 and X2,
we get rTX2X1 = TX2αX1. Thus we have

rTX1X2 − rTX2X1 = TX1αX2 − TX2αX1

Since T is symmetric, we derive TX1αX2 = TX2αX1. Then substituting X2 by αX1 we get
TX1α

2X1 = TαX1αX1. Using (3.3) and (3.19) we obtain (3.23). �
In a similar way, we obtain the following.
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Corollary 3.18. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type
2. If N is a paracosymplectic manifold and β is parallel with respect to ∇ on (kerψ∗), then
we have

TαX1αX1 = cos2 ωTX1X1 (3.24)
for any spacelike (timelike) vector field X1 ∈ Γ(kerψ∗).

Corollary 3.19. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type
3. If N is a paracosymplectic manifold and β is parallel with respect to ∇ on (kerψ∗), then
we have

TαX1αX1 = − sinh2 ωTX1X1 (3.25)
for any spacelike (timelike) vector field X1 ∈ Γ(kerψ∗).

Theorem 3.20. Let ψ : (N4n+1
2n , gN , φ, η, ξ) → (B2n

2j , gB)(0 < j < n) be a proper slant
submersion of type 3. If N is a paracosymplectic manifold and β is parallel with respect to
∇ on (kerψ∗), at that time ψ is a harmonic map.

Proof. Using (2.9), we obtain
(∇ψ∗)(X3, X4) = 0

for any spacelike (timelike) vector fields X3, X4 ∈ (kerψ∗)⊥. A proper slant submersion of
type 3 ψ is harmonic if and only if

∑2n
i=1(∇ψ∗)(E∗

i , E
∗
i ) =

∑2n
i=1(∇ψ∗)(TE∗

i
E∗
i ) = 0, here

{E∗
i }2n
i=1 is an orthonormal basis of (kerψ∗). Hence, using Lemma 3.16 we should write

κ = −
n∑
i=1

ψ∗(TEiEi + T 1
sinh ω

αEi

1
sinhω

αEi) − Tξξ.

From (3.19), we have

κ = −
n∑
i=1

ψ∗(TEiEi + 1
sinh2 φ

TαEiαEi).

Then using (3.25) we have

κ = −
n∑
i=1

ψ∗(TEiEi − TEiEi) = 0

which shows that ψ is harmonic. �
Putting θ = α2, we define ∇θ by

(∇X1θ)X2 = v∇X1θX2 − θ∇̂X1X2 (3.26)
for any spacelike(timelike) vector fields X1, X2 ∈ Γ(kerψ∗).

Theorem 3.21. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type 1.
If N is a paracosymplectic manifold, then ∇θ = 0.

Proof. Using (3.3),we have

θ∇̂X1X2 = cosh2 ω(∇̂X1X2 − η(∇̂X1X2)ξ) (3.27)
for all spacelike(timelike) vector fields X1, X2 ∈ Γ(kerψ∗). On the other hand, from (3.3)
and (2.13) we obtain

v(∇̂X1θX2) = cosh2 ω(∇̂X1X2 − (∇̂X1η(X2))ξ)
= cosh2 ω(∇̂X1X2 − η(∇̂X1X2) − gN (X2,∇X1ξ))
= cosh2 ω(∇̂X1X2 − η(∇̂X1X2). (3.28)

Using (3.27) and (3.28), we get (∇X1θ)X2 = 0. �
Now, we examine the geometry of the leaves of the distributions (kerψ∗) and (kerψ∗)⊥.
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Theorem 3.22. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type 1.
If N is a paracosymplectic manifold, then the distribution (kerψ∗) defines a totally geodesic
foliation on N if and only if

gN (h∇X1βαX2, X3) = gN (h∇X1βX2, rX3) + gN (TX1βX2, tX3) (3.29)
for spacelike (timelike) vector fields X1, X2 ∈ Γ(kerψ∗) and X3 ∈ Γ((kerψ∗)⊥).

Proof. For spacelike (timelike) vector fields X1, X2 ∈ Γ(kerψ∗) and X3 ∈ Γ((kerψ∗)⊥),
since (2.10) and (2.12) we obtain

gN (∇X1X2, X3) = gN (φ∇X1φX2, X3) + gN (∇X1X2, ξ)η(X3)
Using (3.1) and (3.2) we get

gN (∇X1X2, X3) = gN (∇X1α
2X2, X3) + gN (∇X1βαX2, X3)

− gN (∇X1βX2, tX3) − gN (∇X1βX2, rX3).
Then from (2.4),(2.13) and (3.3) we obtain

gN (∇X1X2, X3) = cosh2 ωgN (∇X1X2, X3) + gN (h∇X1βαX2, X3)
− gN (TX1βX2, tX3) − gN (h∇X1βX2, rX3).

Hence we have
− sinh2 ωgN (∇X1X2, X3) = gN (h∇X1βαX2, X3)

− gN (TX1βX2, tX3) − gN (h∇X1βX2, rX3)
which proves assertion. �
Theorem 3.23. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type
1. If N is a paracosymplectic manifold, then the distribution (kerψ∗)⊥ defines a totally
geodesic foliation on N if and only if

gN (h∇X1X2, βαX3) = gN (AX1tX2 + h∇X1rX2, βX3) (3.30)
for any spacelike (timelike)vector fields X3 ∈ Γ(kerψ∗) and X1, X2 ∈ Γ((kerψ∗)⊥).

Proof. For X3 ∈ Γ(kerψ∗) and X1, X2 ∈ Γ((kerψ∗)⊥), from (2.12) and (3.1) we obtain
gN (∇X1X2, X3) = −gN (∇X1φX2, φX3) + gN (∇X1X2, ξ)η(X3)

= −gN (φ∇X1X2, αX3) − gN (∇X1φX2, βX3)
+ gN (∇X1X2, ξ)η(X3). (3.31)

Using (3.1) in (3.31), we get
gN (∇X1X2, X3) = gN (∇X1X2, α

2X3) + gN (∇X1X2, βαX3)
− gN (∇X1φX2, βX3) + gN (∇X1X2, ξ)η(X3). (3.32)

Using (3.2) and (3.3) we get
gN (∇X1X2, X3) = cosh2 ωgN (∇X1X2, X3) − cosh2 ωη(∇X1X2)η(X3)

+ gN (∇X1X2, βαX3) − gN (∇X1tX2, βX3)
− gN (∇X1rX2, βX3) + gN (∇X1X2, ξ)η(X3). (3.33)

Using (2.5),(2.6) and (2.13) in (3.33), we get
− sinh2 ωgN (∇X1X2, X3) = gN (h∇X1X2, βαX3) − gN (AX1tX2 + h∇X1rX2, βX3).

Thus, we have (3.30). �
Now, we show necessary and sufficient conditions for a proper slant submersion of

type 1 to be totally geodesic. Recall that a smooth map ψ between (semi-) Riemannian
manifolds (N, gN ) and (B, gB) is called a totally geodesic map if (∇ψ∗)(X1, X2) = 0 for
all X1, X2 ∈ Γ(TN).
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Theorem 3.24. Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a proper slant submersion of type 1.
If N is a paracosymplectic manifold, at that time ψ is totally geodesic if and only if

gN (h∇X1βαX2, X3) = gN (h∇X1βX2, rX3) + gN (TX1βX2, tX3) (3.34)
and

gN (h∇X4βαX1, X5) = −gN (AX4tX5 + h∇X4rX5, βX1) (3.35)
for any spacelike (timelike) vector fields X3, X4, X5 ∈ Γ((kerψ∗)⊥) and X1, X2 ∈ Γ(kerψ∗).

Proof. First of all, since ψ is a semi-Riemannian submersion we get
(∇F∗)(X4, X5) = 0

for sapacelike (timelike) vector fields X4, X4 ∈ Γ((kerψ∗)⊥).
For sapacelike (timelike) vector fields X1, X2 ∈ Γ(kerψ∗) and X3, X4, X5 ∈ Γ((kerψ∗)⊥),
from (2.10) and (2.12) we have

∇X1X2 = φ∇X1φX2 + η(∇X1X2)ξ. (3.36)
Using (2.9),(3.1) and (3.36) we get

gB((∇ψ∗)(X1, X2), ψ∗X3) = −gN (∇X1φαX2, X3) + gN (∇X1βX2, φX3).
Using (3.1) and (3.2) we get

gB((∇ψ∗)(X1, X2), ψ∗X3) = −gN (∇X1α
2X2, X3) − gN (∇X1βαX2, X3)

+ gN (∇X1βX2, tX3) + gN (∇X1βX2, rX3).
Using (2.3), (2.4) and (3.3) we have

gB((∇ψ∗)(X1, X2), ψ∗X3) = − cosh2 ωgN (∇X1X2, X3) − gN (h∇X1βαX2, X3)
+ gN (TX1βX2, tX3) + gN (h∇X1βX2, rX3).

Hence we obtain
− sinh2 ωgB((∇ψ∗)(X1, X2), ψ∗X3) = −gN (h∇X1βαX2, X3) + gN (TX1

βX2, tX3)
+ gN (h∇X1βX2, rX3). (3.37)

Similarly, we get
− sinh2 ωgB((∇ψ∗)(X1, X4), ψ∗X5) = −gN (AX4tX5 + h∇X4rX5, βX1)

− gN (h∇X4βαX1, X5). (3.38)
Thus from (3.37) and (3.38), we get (3.34) and (3.35). �
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