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Abstract
A submodule N of a module M is called d-closed if M/N has a zero socle. D-closed
submodules are similar concept to s-closed submodules, which are defined through non-
singular modules by Goodearl. In this article we deal with modules with the property that
all d-closed submodules are direct summands (respectively, closed, pure). The structure of
a ring over which d-closed submodules of every module are direct summand (respectively,
closed, pure) is studied.
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1. Introduction
Throughout we shall assume that all rings are associative with identity and all modules

are unitary right modules. Let R be a ring and let M be an R-module. A (proper)
submodule N of M will be denoted by (N � M) N ≤ M . By E(M), Rad(M) and
Soc(M) we shall denote the injective hull, the Jacobson radical, and the socle of M as
usual. For undefined notions used in the text, we refer the reader to [2, 11].

A submodule N of a module M is essential (or large) in M , denoted N �M , if for every
0 ̸= K ≤ M , we have N ∩ K ̸= 0; and N is said to be closed in M if N has no proper
essential extension in M . We also say in this case that N is a closed submodule. Recall
that a module is said to be extending or CS or said to satisfy the C1 condition if every
submodule is essential in a direct summand. Equivalently, every closed (complement)
submodule is a direct summand (see, [6]). Extending modules and closed submodules
play an important role in rings and modules, and relative homological algebra. See, for
example, [6] for their properties. Several generalizations of extending notion and closed
submodules have been studied extensively by many authors (see, for example, [1,4,7–9,14]).

In [10], Goodearl, through Goldie’s torsion-free class, defined an s-closed submodule of
a module M is a submodule N for which M/N is nonsingular. As a proper generalization
of extending modules, Tercan introduced the concept of CLS-modules. Following [20], a
module M is called a CLS-module if every s-closed submodule of M is a direct summand
of M . CLS-modules are recently studied in [4, 14,21].

The purpose of the present paper is to introduce and study D-extending modules.
Inspired by [10], a submodule N of a module M is called d-closed submodule of M if
M/N is in Dickson’s torsion-free class i.e. Soc(M/N) = 0. We define a D-extending
module by the property that every d-closed submodule is a direct summand. We study
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these modules, generalizing several results both on CLS-modules and CS-modules. It is
shown that a ring R is a right C-ring if and only if every injective module is D-extending if
and only if every d-closed submodule (of any module) is closed submodule; an R-module M
is D-extending if and only if M is a C-module and there exists a submodule M ′ of M such
that M = τD(M) ⊕ M ′ and M ′ is a CS module, where τD(M) is the largest semiartinian
submodule of M . Moreover, we proved that every module M with Soc(M) = 0 is projective
if and only if every module is D-extending. We define, as a generalization of Σ-CS ring,
Σ-D-extending ring by the property that every module is D-extending. We show that a
commutative ring R is a Σ-D-extending ring if and only if R is a semiartinian ring. Finally,
we show that, over a commutative Noetherian ring R, every D-closed submodule is pure
if and only if R ∼= A × B, wherein A is artinian ring and B is hereditary.

2. Goldie’s and Dickson’s torsion theories
Dickson carried the notion of torsion in abelian groups to abelian categories, and he

defined in [5] a torsion theory τ on Mod-R to be a pair τ = (T,F) of classes of R-modules is
called torsion theory if the following three conditions hold:(1) Hom(T, F ) = 0 for any T ∈ T

and F ∈ F, (2) T = {M | Hom(M, F ) = 0 for any F ∈ F}, (3) F = {M | Hom(T, M) =
0 for any T ∈ T}. T and F called the classes of τ -torsion and τ -torsionfree R-modules
respectively. The class T is closed under quotient modules, direct sums and extensions,
the class F is closed under submodules, direct products and extensions. A torsion theory
τ is called the torsion theory generated (cogenerated, respectively) by the class of R-
modules M when an R-module F is τ -torsionfree (τ -torsion, respectively) module if and
only if Hom(M, F ) = 0 (Hom(F, M) = 0, respectively) for any M ∈ M. The torsion
theory is called hereditary if T is also closed under submodules. Since T is closed under
homomorphic images and direct sums, there exists a largest submodule τ(M) of a module
M that belongs to T , namely the sum of all submodules of M belonging to T. For each
module M , M/τ(M) is in F.

The singular submodule of a module M is Z(M) = {x ∈ M | xI =
0 for some essential right ideal I of R}; this takes the place of the torsion submodule in
general setting. The module M is called nonsingular if Z(M) = 0, and singular if
M = Z(M), while the right singular ideal of R is Zr(R) = Z(RR). The ring R is said to be
right nonsingular if it is nonsingular as a right R-module. The second singular (or Goldie
torsion) submodule Z2(M) of M is defined by the equality Z2(M)/Z(M) = Z(M/Z(M)).
A module M is called Goldie torsion if Z2(M) = M . Let τG be the torsion theory gen-
erated by the class of singular modules. Then τG is a hereditary torsion theory, called
the Goldie’s torsion theory. Its torsion and torsionfree classes are respectively the class of
Goldie torsion modules and the class of nonsingular modules.

A module A is called semiartinian if every non-zero homomorphic image of A contains
a simple submodule. Let τD be the torsion theory generated by the class of semisimple
(or even simple) modules. Then τD is a hereditary torsion theory, called the Dickson’s
torsion theory. Its torsion and torsionfree classes are respectively the class of semiartinian
modules and the class of modules which has zero socle. For further information about
torsion theories we refer the interested readers to [2, 11]

3. D-extending modules
We begin with the definitions of the main concepts of the paper.

Definition 3.1. A submodule N of a module M is called d-closed (in M) if Soc(M/N) =
0. A module M is called D-extending if every d-closed submodule of M is a direct sum-
mand.
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Remark 3.2. Let M be a module.
(1) Let τD(M) be a largest semiartinian submodule of M . Then, Soc(M/τD(M)) = 0,

and hence τD(M) is a d-closed submodule of M .
(2) Every semiartinian module M is a D-extending module. Let K be a d-closed

submodule of M . Then, Soc(M/K) = 0. But the class of semiartinian modules is
closed under homomorphic images, and hence M/K is semiartinian. Then M/K =
0, and this implies M is a D-extending module.

In general, closed submodules need not be d-closed. For example, 0 is a closed submod-
ule of any module M , but 0 is d-closed in M only if Soc(M) = 0. In contrast to s-closed
submodules, d-closed submodules are not closed. Furthermore, injective modules are not
D-extending while they are both CLS and extending.

Remark 3.3. Let M be an R-module. Then the socle series {Sα} of M is defined as:
S1 = Soc(M), Sα/Sα−1 = Soc(M/Sα−1), and for a limit ordinal α, Sα = ∪β<αSβ. Put
S = ∪{Sα}. Then, by construction M/S has zero socle. M is semiartinian if and only if
S = M (see, for example, [6]).

Example 3.4. We give an example for a CS-module that fails to be D-extending. Let R be
the ring of all linear transformations (written on the left) of an infinite dimensional vector
space over a division ring. Then R is prime, regular, right self-injective and Soc(RR) ̸= 0
by [12, Theorem 9.12]. As R is a prime ring, Soc(RR) is an essential ideal of RR. Let S
be as in Remark 3.3, for M = R. Then S ̸= R, by [3, Lemma 1(2)]. Since R/S has zero
socle, S is a d-closed submodule of RR. On the other hand, S is not a closed submodule
of R, otherwise S would be a direct summand of R because R is right self injective (i.e.
extending). Therefore R is not a D-extending. Also, as R is right self injective Rn is
injective, and so extending for every n ≥ 1.

A ring R is called a right C-ring if Soc(R/I) ̸= 0 for every proper essential right ideal
I of R. Equivalently, R is a right C-ring if every singular module is semiartinian. Left
perfect rings, right semiartinian rings, two-sided hereditary Noetherian rings are example
for right C-rings. (See [2, 10.10])

Theorem 3.5. Let R be a ring. The following are equivalent:
(1) R is a right C-ring.
(2) Every d-closed submodule (of any module) is s-closed.
(3) Every d-closed submodule (of any module) is closed.
(4) Every injective module is D-extending.
(5) For every non-injective module A, E(A)/A is semiartinian.

Proof. (1) ⇒ (2) It is enough to show that every module M with Soc(M) = 0 is non-
singular. Let M be a module with Soc(M) = 0. Assume that Z(M) ̸= 0. Then M has
a nonzero singular submodule and, by (1), M has a simple submodule. But this con-
tradict with Soc(M) = 0. Therefore, M is a nonsingular module. (2) ⇒ (3) It follows
by by [19, Lemma 2.3]. (3) ⇒ (4) follows by (3) and by fact that injective modules are
extending. (4) ⇒ (5) Let A be a non-injective module. Assume that E(A)/A is not
semiartinian. Then, by definition of semiartinian modules, there is a non-zero module X
with Soc(X) = 0 and a non-zero epimorphism f : E(A)/A → X. There is a submodule
U of E(A) such that A ≤ U and Ker(f) ∼= U/A. Note that, by essentiality of A in
E(A), U is essential in E(A). Since Soc(E(A)/U) ∼= Soc(X) = 0, by (4), U is a direct
summand of E(A), a contradiction. (5) ⇒ (1) Let A be a module and B a proper essential
submodule of A with Soc(A/B) = 0. By essentiality of B in A, E(A) = E(B). Since
A/B ≤ E(A)/B, by (5), A/B is semiartinian. Then Soc(A/B) ̸= 0. This implies that R
is a right C-ring. �
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Proposition 3.6. Let R be a ring. Every s-closed submodule (of any module) is d-closed
if and only if every simple module is singular.

Proof. (⇒) Obvious. (⇐) It is enough to show that every nonsingular module M has
zero socle. Let M be a nonsingular module with Soc(M) ̸= 0. Then M has a simple
submodule, say S. By nonsingularity of M , S is nonsingular (projective). This contradict
with our assumption, and so Soc(M) = 0. �

A module M is called weakly-flat if if the kernel of any epimorphism L → M is closed
in the module L. Equivalently, every short exact sequence ending with M is closed exact
sequence. Weakly-flat modules have been studied in [22]. Every nonsingular module is
weakly-flat, and the converse is true if R is a right nonsingular ring by [19, Lemma 2.3].
The following is immediate consequence of Theorem 3.5.

Corollary 3.7. A ring R is a right C-ring if and only if every module in the Dickson’s
torsionfree class is weakly-flat.

Proposition 3.8. Let A be a module with Soc(A) = 0. Then, every closed submodule of
A is d-closed.

Proof. Let B be a closed submodule of A. Assume that Soc(A/B) ̸= 0. Then there
is a submodule C of A such that B is a maximal submodule of C, i.e. C/B is simple
module. Since every maximal submodule is either a summand or an essential submodule
and B is closed submodule of A, C = B ⊕ B′, where B′ ∼= C/B. But Soc(A) = 0, and so
0 ̸= Soc(B) ⊕ Soc(B′) = Soc(B) ⊕ B′ = Soc(C) ⊂ Soc(A) = 0, a contradiction. �
Corollary 3.9. A D-extending module with zero socle is a CS.

Proposition 3.10. Any direct summand of a D-extending module is a D-extending mod-
ule.

Proof. Suppose M = K ⊕ K ′ for some submodules K and K ′ of M . Let L be a d-closed

submodule of K. Since M

L ⊕ K ′ = K ⊕ K ′

L ⊕ K ′
∼=

K

L
, then L ⊕ K ′ is d-closed submodule of

M . Then L ⊕ K ′ is a direct summand of M which implies that L is a direct summand of
K. It follows that K is a D-extending module. �

Inspired from Theorem 3.5, we will call a right module M is a C-module if every d-
closed submodule of M is closed. It is easy to see that every right module is a C-module
if and only if R is a right C-ring.

Proposition 3.11. C-modules are closed under quotients.

Proof. Let M be a C-module and N a submodule of M . We will show that M/N is a C-
module. Assume contrarily that there is a d-closed submodule K/N in M/N which is not
closed in M/N , where N ≤ K ≤ M . Then Soc((M/N)/(K/N)) ∼= Soc(M/K) = 0 and
there is a submodule L/N in M/N such that K/N is essential in L/N , where K ≤ L ≤ M .
Since M is a C-module and Soc(M/K) = 0, K is closed in M . But, by essentiality of
K/N in L/N , K is essential in L, a contradiction.

�
Theorem 3.12. A module M is D-extending if and only if M is a C-module and there
exists a submodule M ′ of M such that M = τD(M) ⊕ M ′ and M ′ is a CS module. In this
case M ′ is τD(M)-injective.

Proof. Assume that a module M is a D-extending. M is a C-module by the fact that every
direct summand is closed. By our assumption, τD(M) is a direct summand of M so that
M = τD(M) ⊕ M ′ for some submodule M ′ of M . Note that Soc(M ′) = 0. By Proposition
3.10, M ′ is a D-extending and hence a CS-module by Corollary 3.9. Conversely, suppose
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M = τD(M) ⊕ M ′ for some CS module M ′. Let K be a d-closed submodule of M . Then
τD(M) ≤ K and hence K = τD(M) ⊕ (K ∩ M ′). Now M/K ∼= M ′/(K ∩ M ′) so that
K ∩ M ′ is a d-closed submodule of M ′. By Proposition 3.11, M ′ is a C-module, and hence
M ′ = (K ∩ M ′) ⊕ K ′ for some submodule K ′ of M ′. It follows that M is a D-extending
module. The second part is obvious. �

Corollary 3.13. A ring R is right D-extending if and only if R is right C-ring and there
exists a direct summand J of R such that R = τD(R) ⊕ J where J is a CS module.

Corollary 3.14. Let M be a module with Soc(M) = 0. Then M is a D-extending if and
only if M is a CS module and a C-module.

Corollary 3.15. Let R be a ring with Soc(RR) = 0. Then R is a right D-extending if
and only if R is a right CS-ring and a right C-ring.

The following result can be easily proved by the following similar proof of [20, Theorem
9].

Theorem 3.16. Suppose that a right R-module M is a direct sum M1⊕M2 of D-extending
modules M1 and M2 such that M1 is M2-injective. Then M is a D-extending.

Let n be a positive integer and let M1, M2, M3, . . . , Mn be right R-modules. Then these
modules are called relatively injective if Mi is Mj injective for all 1 ≤ i ̸= j ≤ n, see [13].
We have the similar result of [13, Theorem 5] for the finite direct sums of D-extending
modules by Theorem 3.16 and Proposition 3.10.

Theorem 3.17. Let M be a module such that M = M1 ⊕ M2 ⊕ M3 ⊕ . . . ⊕ Mn is a finite
direct sum of relatively injective modules Mi, 1 ≤ i ≤ n. Then M is a D-extending module
if and only if Mi is a D-extending module for each 1 ≤ i ≤ n.

Theorem 3.18. The following are equivalent:
(1) Every projective module is D-extending.
(2) Every module M with soc(M) = 0 is projective.
(3) Every module is D-extending.

Proof. (1) ⇒ (2) Let M be a module with soc(M) = 0. Consider the short exact sequence
0 → K → F → M → 0 where F is a projective module. K is d-closed submodule of the
projective module F and hence, by (1), the sequence splits. Therefore, M is isomorphic
to a direct summand of F , and so it is a projective module. (2) ⇒ (3) Let M be a module
and N a d-closed submodule of M . Then N is a direct summand of M since M/N is a
projective module. (3) ⇒ (1) Obvious. �

Oshiro [16] called a ring R a right co-H ring (in honor of Harada) if every projective
module is extending. co-H rings are also called as Σ-CS rings (see [6]). A right Σ-CS ring
is a left artinian by [17, Proposition 3.2]. Motivated from Σ-CS ring, a ring R is called a
right Σ-D-extending if the one of the equivalent conditions of Theorem 3.18 are satisfied.

Theorem 3.19. Let R be a commutative ring. The following statements are equivalent:
(1) R is Σ-D-extending ring.
(2) R is semiartinian ring.

Proof. (1) ⇒ (2) By (1), τD(R) is direct summand of R, i.e. R ∼= A×B, where B = τD(R)
is semiartinian, and Soc(A) = 0 as Soc(R) ⊆ τD(R). Without of loss generality, we can
assume R is semiartinian or Soc(R) = 0. In the later case, R is a Σ-CS ring by Proposition
3.8 and Theorem 3.18. But Σ-CS ring is perfect ring, and so Soc(R) ̸=. So this case is not
possible. (2) ⇒ (1) This follows by the fact that every module over a semiartinian ring is
semiartinian. �
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Proposition 3.20. Let R be a ring. The following are equivalent:
(1) Every d-closed submodule is pure .
(2) Every module M with Soc(M) = 0 is flat.
(3) Every finitely generated module M with Soc(M) = 0 is flat.

Proof. (1) ⇒ (2) Let M be a module with Soc(M) = 0. Consider the short exact sequence
0 → K → F → M → 0 where F is a projective module. K is d-closed submodule of the
projective module F and hence, by our assumption, the sequence is pure exact. Then, M
is a flat module by [15, Corollary 4.86]. (2) ⇒ (3) Obvious. (3) ⇒ (1) Let M be a module
and N a d-closed submodule of M . Then Soc(M/N) = 0 and, by our assumption, every
finitely generated submodule of M/N is a flat module. By [18, Proposition 3.48], M/N is
a flat module, and hence N is a pure submodule of M by [15, Corollary 4.86]. �
Remark 3.21. Let R be a ring and e be a central idempotent in R. Then for a right
R-module M one has, M = Me ⊕ M(1 − e). It can be easily verified that, M is a flat
R-module if and only if Me is a flat eR-module and M(1 − e) is flat (1 − e)R-module.

Theorem 3.22. Let R be a commutative Noetherian ring. The following statements are
equivalent:

(1) Every d-closed submodule is pure.
(2) R ∼= A × B, wherein A is artinian ring and B is hereditary.

Proof. (1) ⇒ (2) Assume that every d-closed submodule is pure. Then R/τD(R) is a flat
module, and by Noethernity of R, it is a projective module. Therefore τD(R) is direct
summand of R, i.e. R ∼= A × B, where A = τD(R) is artinian, and Soc(B) = 0 as
Soc(R) ⊆ τD(R). Without of loss generality, we can assume R is artinian or Soc(R) = 0.
In the later case, let I be an ideal of R. Since Soc(R) = 0, we have Soc(I) = 0. Then, I
is flat by Proposition 3.20. But R is Noetherian, and so I is finitely generated. Therefore
I is projective, and so R is hereditary.

(2) ⇒ (1) Assume that R ∼= A × B, wherein A is artinian and B is hereditary. Let M
be a module with zero socle. It is enough to show that M is a flat module by Proposition
3.20. M = MA ⊕ MB, MA is an A-module and MB is a B-module. Since Soc(M) = 0,
Soc(MA) = 0 and Soc(MB) = 0. By Theorem 3.18, MA is a projective A-module. But
since A is artinian, Soc(MA) = 0 if and only if MA = 0. Now consider the short exact
sequence 0 → K → P → MB → 0, where P is a projective B-module. Since hereditary
noetherian rins are C-rings, K is a closed submodule of P by Theorem 3.5. Then MB
is nonsingular B-module by [19, Lemma 2.3]. By [10, Proposition 2.3], MB is a flat
B-module. Now, the claim follows by Proposition 3.20. �
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