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Abstract
It is important to classify covering subgroups of the fundamental group of a topological
space using their topological properties in the topologized fundamental group. In this
paper, we introduce and study some topologies on the fundamental group and use them
to classify coverings, semicoverings, and generalized coverings of a topological space. To do
this, we use the concept of subgroup topology on a group and discuss their properties. In
particular, we explore which of these topologies make the fundamental group a topological
group. Moreover, we provide some examples of topological spaces to compare topologies
of fundamental groups.
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1. Introduction and motivation
The concept of a natural topology for the fundamental group is introduced by Hurewicz

[18] in 1935. It received further attention in 1950 by Dugundji [14] and more recently
by Biss [3], Calcut and McCarthy [13], Brazas [6] and others. For instance, Calcut and
McCarthy proved the following theorem.

Theorem 1.1. [13] Let X be a locally path connected topological space. The topological
fundamental group πqtop

1 (X, x) is discrete if and only if X is semilocally simply connected.

It is known that out of the category of semilocally simply connected spaces, classification
of covering spaces is not accessible. Brazas [7] showed that for semicovering spaces by
some nice local properties, there is a classification based on the qtop-topology on the
fundamental group. The purpose of this paper is to introduce and study some other
topologies on the fundamental group to provide a classification of coverings, semicoverings
and generalized coverings of a topological space. In addition, similar to Theorem 1.1 it
is of interest to find out for which topological space, the relative topologized fundamental
group is discrete or trivial under new topologies which is illustrated in a diagram at the
end of the article.
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Recall that a continuous map p : X̃ → X is a covering map if every point of X has
an open neighbourhood which is evenly covered by p. Brazas [5] defined semicoverings by
removing the evenly covered property and keeping local homeomorphism with continuous
lifting of paths and homotopies. Based on some simplifications done in [7, 20], we use a
continuous surjective local homeomorphism with the unique path lifting property as the
standard definition of semicovering maps. For generalized coverings, the local homeomor-
phism is replaced with the unique lifting property (see [1]). In each case, the induced ho-
momorphism p∗ : π1(X̃, x̃) → π1(X, x) is a monomorphism and so π1(X̃, x̃) ∼= p∗π1(X̃, x̃)
is a subgroup of π1(X, x). A subgroup H of the fundamental group π1(X, x) is called cov-
ering, semicovering and generalized covering subgroup if there is a covering, semicovering
and generalized covering map p : (X̃, x̃) → (X, x) such that H = p∗π1(X̃, x̃), respectively.

In order to classify various types of covering subgroups in the fundamental group using
their topological properties on πqtop

1 (X, x), Brazas gathered some results in a diagram
[7, page 288]. More precisely, it was shown that for a connected locally path connected
space X, a subgroup H ≤ π1(X, x) is a semicovering subgroup if and only if H is open
in πqtop

1 (X, x). It seems interesting to express similar results for other types of coverings,
using another topologies on the fundamental group. The Spanier subgroup topology is
a suitable one to characterize covering subgroups and lead us to a class of topologies on
groups which is called subgroup topology.

In this class of topologies on a group, a collection of subgroups with the finite intersection
property, which is called the neighbourhood family, creates a local base for the trivial
element. This local base can be transferred to all elements of the group, since the left
translation maps are continuous. Therefore, the collection of all left cosets of subgroups
contained in the neighbourhood family forms the subgroup topology on the group. Bogley
et al. [4] introduced two types of the subgroup topologies on the fundamental groupoid
and studied the properties of the fibres from the endpoint projection map. In Section
2, we study some general properties of subgroup topologies and show that a group G
equipped with the subgroup topology is a topological group if and only if all its right
translation maps are continuous (Proposition 2.1). Then, by extending the concept of
coverable spaces, we introduce different classes of coverability for a variety of coverings
using the subgroup topologies on the fundamental groups.

In Section 3, some types of subgroup topologies on the fundamental group and its
properties are studied. As mentioned previously, the Spanier subgroup topology, which
determined by the collection of all Spanier subgroups as the neighbourhood family, char-
acterize a well-known classification of covering subgroups such as: A subgroup H of the
fundamental group is a covering subgroup if and only if H is an open subgroup of the
Spanier subgroup topology (Theorem 3.1). In order to study different topologies on the
fundamental group, we show in Proposition 3.5 that the lasso topology on the fundamental
group, which was introduced in [11], coincide with the Spanier subgroup topology. An-
other type of the subgroup topology on the fundamental group is the path Spanier topology
which its relative neighbourhood family contains all path Spanier subgroups of the funda-
mental group. In Proposition 3.9 it is shown that the discreteness of these two topologies
(Spanier and path Spanier subgroup topology) is equivalent to X be unbased semilocally
simply connected. On the other hand, Wilkins [28] showed that if all elements of the
neighbourhood family of a subgroup topology on a group G are normal subgroups, then G
is a topological group. Although, an arbitrary path Spanier subgroup of the fundamental
group does not necessary be normal, in general, we show that the path Spanier subgroup
topology always make the fundamental group a topological group (Proposition 3.13).

We also compare these topologies with the other known types of topologies on the
fundamental group such as the inherited topology from the compact-open topology, which
is called the qtop-topology, the τ - topology which was introduced in [6], the whisker topology
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and the gcov-topology (Definition 3.23). Recall from [1, Lemma 3.1] that the whisker
topology is another type of the subgroup topology on the fundamental group. Indeed,
the relationship between the mentioned topologies on the fundamental group of locally
path connected spaces is gathered in Chain (#) and is described after Lemma 3.21. Some
examples and counterexamples show that these topologies may be different, in general.
Moreover, the diagram shows the relationship of discreteness of the subgroup topologies
together.

Let H be a subgroup of π1(X, x0) and P (X, x0) be the path space on X beginning at
x0. Consider an equivalence relation ∼H on P (X, x0) as follows.

α1 ∼H α2 if and only if α1(1) = α2(1) and [α1 ∗ α2
−1] ∈ H. The equivalence class of

α is denoted by ⟨α⟩H . One can consider the quotient space X̃H = P (X, x0)/ ∼H and the
map pH : (X̃H , eH) → (X, x0) defined by ⟨α⟩H 7→ α(1), where eH is the class of constant
path at x0. In the case of trivial subgroup H = 1, X̃H is called the universal path space
and showed by X̃.

2. Subgroup topology
The subgroup topology on a group G specified by a family of subgroups of G was de-

fined in [4, section 2.5] and considered by some recent researchers such as [9, 28]. The
collection Σ of subgroups of G is called a neighbourhood family if for any H, K ∈ Σ, there
is a subgroup S ∈ Σ such that S ⊆ H ∩ K. As a result of this property, the collection
of all left cosets of elements of Σ forms a basis for a topology on G, which is called the
subgroup topology determined by Σ. Bogley et al. [4] focused on some general properties
of subgroup topologies and showed that they are homogeneous spaces, since left trans-
lation by elements of G determine self-homemorphisms of G. Also, they introduced the
intersection SΣ = ∩{H | H ∈ Σ}, called infinitesimal subgroup for the neighbourhood
family Σ and showed that the closure of the element g ∈ G is the coset gSΣ. Although it
is pointed out in [4] that the group G equipped with a subgroup topology in general may
not necessarily a topological group (it may not even a quasitopological group), because
right translation maps by a fixed element of G need not be continuous, but it has some
of properties of topological groups (for more details see Theorem 2.9 from [4]). Moreover,
if H is a subgroup of G, and K is a subgroup of H which is open in G topologized with
a subgroup topology, then H is also open in G since H decomposes as a union of open
cosets of K.

On the other hand, Wilkins [28, Lemma 5.4] showed that a group G with the subgroup
topology determined by a neighbourhood family Σ is a topological group when all sub-
groups in Σ are normal. Since all left translation maps by elements of a group G equipped
with a subgroup topology are continuous, then the group G is a left topological group by
the sense of Arhangeliskii’s topological groups [2, page 12]. In the following proposition
we show that if right translation maps by elements of G are also continuous, then G will
be a topological group.
Note that a right translation map rt : G → G by the element t ∈ G, is rt(g) = gt ∀g ∈ G.

Proposition 2.1. Let G be a group equipped with the subgroup topology determined by
the neighbourhood family Σ. If all right translation maps are continuous, then G is a
topological group.

Proof. It is enough to show continuity of operations taking inverse and multiplication.
Let f : G → G defined by g 7→ g−1 be the inverse operation and fix g ∈ G. Clearly, for
every H ∈ Σ, g−1H is a basis open neighbourhood of the subgroup topology containing
g−1 ( Note that for any sH containing g−1 we have sH = g−1H). By hypothesis, the right
translation map rg−1 : G → G with rg−1(s) = sg−1 is continuous. Then, for any s ∈ G
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and for every H ∈ Σ there is a K ∈ Σ such that
sKg−1 = rg−1(sK) ⊆ sg−1H

and so Kg−1 ⊆ g−1H. Now for such K,
f(gK) = Kg−1 ⊆ g−1H

which shows that f is continuous. For continuity of the multiplication map m : G×G → G
defined by m : (g1, g2) 7→ g1g2, let g1g2H be a basis open neighbourhood of G containing
g1g2 for H ∈ Σ. Applying the continuity of taking inverse for the element g−1

2 ∈ G, implies
that for every H ∈ Σ there exists a subgroup K ∈ Σ such that Kg2 = f(g−1

2 K) ⊆ g2H.
Therefore,

m(g1K, g2H) = g1Kg2H ⊆ g1g2H,

which shows that the multiplication map is continuous under product topology. �
Clearly, every topological group is also a left and right topological group. The following

corollary is the immediate consequence of this fact and the above proposition.

Corollary 2.2. A group equipped with a subgroup topology is a topological group if and
only if all right translation maps are continuous.

Pakdaman et al. [22, Definition 2.4] introduced the notion of coverable spaces in such a
way that a pointed topological space (X, x0) is called coverable if it has the categorical uni-
versal covering space or equivalently the Spanier group, πsp

1 (X, x0), is a covering subgroup.
Recall that πsp

1 (X, x0) is the intersection of all of the Spanier subgroups π(U, x0), where
U is an open cover of X i.e. πsp

1 (X, x0) is the infinitesimal subgroup of Spanier subgroup
topology on the fundamental group (for more details see the next section). Therefore, a
topological space X is coverable if and only if the infinitesimal subgroup of the Spanier
subgroup topology is open. Note that the infinitesimal subgroup SΣ of G need not be an
open subgroup, in general. However, some nice properties may occur when SΣ is open. In
the case of fundamental groups one can guess the following notion (see [22]).

Definition 2.3. Let (X, x0) be a pointed topological space and π1(X, x0) be the funda-
mental group equipped with the subgroup topology which determined by the neighbour-
hood family Σ. Then X is called Σ-coverable if the infinitesimal subgroup SΣ is open in
πΣ

1 (X, x0).

Clearly, the infinitesimal subgroup SΣ is open in G if and only if SΣ ∈ Σ. Moreover, if
SΣ ∈ Σ, then any intersection of open subgroups of G are open. Moreover, it can be seen
that in every left (right) topological groups, any open subgroup is closed but the converse
does not hold, in general. The following proposition shows that the converse is true when
the infinitesimal subgroup is an open subgroup.

Proposition 2.4. Let πΣ
1 (X, x0) be the fundamental group of (X, x0) equipped with a

subgroup topology determined by Σ. Then the following statements are equivalent.
(1) X is Σ-coverable.
(2) Every closed subgroup of πΣ

1 (X, x0) is an open subgroup.
(3) A subgroup H of πΣ

1 (X, x0) is open if and only if it is closed.
(4) A subgroup H of πΣ

1 (X, x0) is open if and only if SΣ ≤ H.

Proof. (1) ↔ (2) Let K be a closed subgroup of πΣ
1 (X, x0) and put g ∈ K. Since gSΣ is

the closure of g, then gSΣ ⊆ K and hence SΣ ⊆ K. It shows that K is open. The converse
is trivial since SΣ is a closed subgroup of G.

(2) ↔ (3) This is an immediate of the fact that πΣ
1 (X, x0) is a left topological group.

(1) ↔ (4) By definition if X is Σ-coverable, then SΣ is open and thus so is any
subgroup H containing SΣ. The converse follows directly from the definition. �
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Remark 2.5. Note that G equipped with the subgroup topology determined by the
neighbourhood family Σ is discrete if and only if the trivial subgroup belongs to Σ and so
SΣ = 1.

It is well-known that the canonical group homomorphism φ : π1(X, x0) × π1(Y, y0) →
π1(X × Y, (x0, y0)) is an isomorphism. The question now is if the fundamental groups
equipped with a topology, does φ become homeomorphism? Clearly, it is done when the
fundamental groups are topological groups with the topology they are equipped with.
Brazas and Fabel [10, Lemma 41] showed that it does not hold for the induced topology
from the compact-open topology where πqtop

1 (X × Y, (x0, y0)) is not a topological group.
In the following we show that it is true for the fundamental groups equipped with a
subgroup topology. In detail, if π1(X, x0) and π1(Y, y0) are equipped with the subgroup
topologies inherited from neighbourhood families ΣX and ΣY , respectively and X ×Y and
π1(X, x0)×π1(Y, y0) have the product topologies, then one can induce a natural subgroup
topology on π1(X × Y, (x0, y0)) using φ by the collection of subgroups

ΣX×Y = {H ≤ π1(X × Y, (x0, y0)) | H = HX × HY , HX ∈ ΣX , HY ∈ ΣY }

as a neighbourhood family. Note that for every pair H, K ∈ ΣX×Y , we have H ∩ K =
HX × HY ∩ KX × KY = (HX ∩ KX) × (HY ∩ KY ). By definition there are SX ∈ ΣX and
SY ∈ ΣY such that SX ⊆ HX ∩ KX and SY ⊆ HY ∩ KY . Let S = SX × SY . Clearly,
S ∈ ΣX×Y and S ⊆ H ∩ K. We call this topology on π1(X × Y, (x0, y0)) the product
subgroup topology.

Proposition 2.6. If the fundamental groups of pointed topological spaces (X, x0) and
(Y, y0) equipped with subgroup topologies, then the canonical isomorphism φ : π1(X, x0) ×
π1(Y, y0) → π1(X × Y, (x0, y0)) is a homeomorphism, where π1(X × Y, (x0, y0)) equipped
with the product subgroup topology.

Proof. Let ΣX and ΣY be neighbourhood families of π1(X, x0) and π1(Y, y0), respectively.
As mentioned above ΣX×Y forms a neighbourhood family on π1(X × Y, (x0, y0)), hence it
is enough to show that φ : πΣX

1 (X, x0) × πΣY
1 (Y, y0) → π

ΣX×Y

1 (X × Y, (x0, y0)) and φ−1

are continuous. For every [α] ∈ π
ΣX×Y

1 (X × Y, (x0, y0)) and H ∈ ΣX×Y by the definition
we have φ([αX ]HX , [αY ]HY ) = [α]H, where αX and αY are projections of α in X and Y ,
respectively. Thus φ is continuous. Moreover, since for HX ∈ ΣX and HY ∈ ΣY with
HX × HY = H, φ−1(H) = (HX , HY ), then φ−1 also is continuous. �

3. Some subgroup topologies on the fundamental group
For a topological space X, the fundamental group π1(X, x0) admits a variety of distinct

natural subgroup topologies [4, 28], which some of them have been studied to find some
properties of π1(X, x0). As an example, Spanier subgroup topology [28, page 12] was
introduced using the collection of all Spanier subgroups π(U, x0) of the fundamental group
π1(X, x0) as the neighbourhood family ΣS . Recall that [24, Page 81], the Spanier subgroup
determined by an open covering U of X is the normal subgroup π(U, x0) of π1(X, x0)
generated by the homotopy class of lollipops α ∗ β ∗ α−1, where β is a loop lying in an
element of U ∈ U at α(1), and α is any path originated at x0. The fundamental group
equipped with the Spanier subgroup topology is denoted by πSpan

1 (X, x0). From Lemma
5.4 of [28], it is clear that πSpan

1 (X, x0) is a topological group since every π(U, x0) is a
normal subgroup.

The following interesting classical result of Spanier [24, Section 2.5 Theorems 12,13]
realized the relationship between classical covering space theory and the Spanier subgroups
of the fundamental group.
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Theorem 3.1. Let X be a connected locally path connected space and H ≤ π1(X, x0).
Then there exists a covering projection p : X̃ → X with p∗(π1(X̃, x̃)) = H (or equivalently,
H is a covering subgroup of π1(X, x0)) if and only if there exists an open cover U of X

for which π(U, x0) ≤ H, or equivalently, H is an open subgroup of πSpan
1 (X, x0).

Remark 3.2. Fischer et al. [15] distinguished the notions based and unbased semilocally
simply connectedness. In detail, they called a topological space X (based) semilocally
simply connected if for every point x ∈ X there exists a neighbourhood U of x such
that the inclusion-induced homomorphism π1(U, x) → π1(X, x) is trivial ([15, Definition
2.1]) and unbased semilocally simply connected if for every point x ∈ X there exists a
neighbourhood U of x such that every loop in U is null-homotopic in X ([15, Definition
2.2]). They showed that pointed topological space (X, x0) is unbased semilocally simply
connected if and only if there exists an open covering U of X such that π(U, x0) is trivial
([15, Theorem 2.8]). This statement can be recreated as follows.
Proposition 3.3. A pointed topological space (X, x0) is unbased semilocally simply con-
nected if and only if πSpan

1 (X, x0) is discrete.

Proof. If πSpan
1 (X, x0) is discrete, then the trivial subgroup is open in πSpan

1 (X, x0) and
so there is an open cover U of X such that π(U, x0) = 1, i.e, X is unbased semilocally
simply connected. Conversely, if X has an open cover U with π(U, x0) = 1, then {1} is
open. Since πSpan

1 (X, x0) is a topological group, then by using of translation maps, every
[α] ∈ πSpan

1 (X, x0) is open in πSpan
1 (X, x0). Therefore, πSpan

1 (X, x0) is discrete. �
Recall from [21] that a non-simply connected space X is called Spanier space if π1(X, x) =

πsp
1 (X, x), for an arbitrary point x ∈ X and semilocally Spanier space if for each x ∈ X,

there exists an open neighborhood U of x such that i∗π1(U, x) = πsp
1 (X, x). Pakdaman

et al. [22] introduced the concepts of coverable spaces and showed that the notions of
coverable and semilocally Spanier are equivalent in the case of connected locally path
connected spaces [22, Theorem 2.8]. Note that the infinitesimal subgroup of πSpan

1 (X, x0)
named the Spanier group and denoted by πsp

1 (X, x0) [15]. The following proposition adds
another equivalent to them.
Proposition 3.4. For a connected and locally path connected space X, the following state-
ments are equivalent.

(1) X is a ΣS-coverable space (or coverable in the sense of [22]).
(2) X is a semilocally Spanier space.
(3) πsp

1 (X, x0) is an open subgroup of πSpan
1 (X, x0).

On the other hand, Brodskiy et al. [11, Section 3] introduced another topology on the
universal path space X̃ using open coverings of X, which makes the fundamental group a
topological group [11, Proposition 5.17] and named it lasso topology.

Recall from [12, definition 4.11] that for any topological space X, the lasso topology
on the set X̃ is defined by the basis N(⟨α⟩,U, W ), where α is a path originated at x0, W

is a neighbourhood of the endpoint α(1) and U is an open cover of X. A class ⟨γ⟩ ∈ X̃
belongs to N(⟨α⟩,U, W ) if and only if it has a representation of the form α ∗ L ∗ β where
[L] belongs to π

(
U, α(1)

)
and β is a based loop in W at α(1).

There is a bijection between the fundamental group π1(X, x0) and the fibre of the
base point p−1(x0), where p : X̃ → X is the endpoint projection map. Therefore, the
fundamental group π1(X, x0) as a subspace of the universal path space X̃ inherits any
topology from X̃. Thus, the collection of sets with the form N(⟨α⟩,U, W ) ∩ p−1(x0) is a
basis for the lasso topology on π1(X, x0), which we denote it by πlasso

1 (X, x0).
Brodskiy et al. [11, Section 3] stated some properties of πlasso

1 (X, x0) and relationships
between covering subgroups and the lasso topology on the fundamental group. In the
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following we show that the lasso topology on the fundamental group and the Spanier
subgroup topology coincide, in general.

Proposition 3.5. Let X be a topological space. The lasso topology on the fundamental
group π1(X, x0) coincides with the Spanier subgroup topology.

Proof. Let β1 be the basis of lasso topology on the fundamental group consists of the sets
of the form N(⟨α⟩,U, W ) ∩ p−1(x0). Since for every [α] ∈ π1(X, x0) and any open cover U

of X, the set [α]π(U, x0) belongs to β1, then the lasso topology on the fundamental group
is finer than the Spanier subgroup topology.
Conversely, let S be an open subset of πlasso

1 (X, x0) and [α] ∈ S ⊆ π1(X, x0). Then there
exists an open basis neighbourhood N(⟨µ⟩,U, W ) ∩ p−1(x0) of [α] which contained in S.
We show that [α]π(U, x0) ⊆ S. Since [α] ∈ N(⟨µ⟩,U, W ) ∩ p−1(x0), then there exists
[η] ∈ π

(
U, µ(1)

)
and λ : I → W with λ(0) = µ(1) and λ(1) = x0, such that α ≃ µ ∗ η ∗ λ.

Now for any [ξ] ∈ π(U, x0) with ξ ≃
∏n

i=1 δi ∗ γi ∗ δ−1
i we have:

α ∗ ξ ≃ µ ∗ η ∗ λ ∗ δ1 ∗ γ1 ∗ δ−1
1 ∗ δ2 ∗ γ2 ∗ δ−1

2 ∗ · · · ∗ δn ∗ γn ∗ δ−1
n

≃ µ ∗ η ∗ λ ∗ δ1 ∗ γ1 ∗ δ−1
1 ∗ λ−1 ∗ λ ∗ δ2 ∗ γ2 ∗ δ−1

2 ∗ λ−1

∗ · · · ∗ λ ∗ δn ∗ γn ∗ δ−1
n ∗ λ−1 ∗ λ.

Put ϱ ≃
∏n

i=1 λ ∗ δi ∗ γi ∗ δ−1
i ∗ λ−1 ∈ π

(
U, µ(1)

)
, then

α ∗ ξ ≃ µ ∗ η ∗ ϱ ∗ λ ∈ N(⟨µ⟩,U, W ) ∩ p−1(x0) ⊆ S.

Therefore [α]π(U, x0) ⊆ N(⟨µ⟩,U, W ) ∩ p−1(x0) ⊆ S. �
Torabi et al. [26, Section 3] replaced open covers with path open covers of the space

X in the definition of Spanier subgroups and introduced path Spanier subgroups by the
same way. Recall that a path open cover V of a path connected space X with the base
point x0 is a collection of open subsets {Vα | α ∈ P (X, x0)} such that α(1) ∈ Vα, for every
α ∈ P (X, x0) and X =

∪
α∈P (X,x0) Vα. The path Spanier subgroup π̃(V, x0) with respect

to the path open cover V is the subgroup of π1(X, x0) consists of all homotopy classes
having representatives of the following type:

n∏
j=1

αjβjα−1
j ,

where αj ’s are arbitrary path starting at x0 and each βj is a loop inside of the open set Vαj

for all j ∈ {1, 2, ..., n}. The following proposition states the relationship between Spanier
groups and path Spanier groups.

Proposition 3.6. Let (X, x0) be a connected and locally path connected pointed space
and {Vα | α ∈ P (X, x0)} be a path open cover of (X, x0). Then π̃(V, x0) is a Spanier
group π(U, x0) for some open cover U of X if and only if π̃(V, x0) is a normal subgroup of
π1(X, x0).

Proof. Since a Spanier group is normal in the fundamental group, it suffices to show that
if π̃(V, x0) is a normal subgroup of π1(X, x0), then there is an open cover U of X such that
π̃(V, x0) = π(U, x0). For every α ∈ P (X, x0) let Uα be the path component of Vα involve
α(1). Since X is connected and locally path connected, U = {Uα | α ∈ P (X, x0)} is an
open cover of X. Let [α ∗ β ∗ α−1] be a generator of π̃(V, x0) where β is a loop in Vα. By
the definition of Uα, Im(β) ⊆ Uα. Therefore [α ∗ β ∗ α−1] ∈ π(U, x0). Let [α ∗ β ∗ α−1] be
a generator of π(U, x0) where β is a loop in Uλ for some λ ∈ P (X, x0). Since Uλ is path
connected, there is a path γ in Uλ from λ(1) to α(1). Therefore γ ∗ β ∗ γ−1 is a loop in Uλ

which implies that
[λ ∗ γ ∗ α−1 ∗ α ∗ β ∗ α−1 ∗ α ∗ γ−1 ∗ λ−1] = [λ ∗ (γ ∗ β ∗ γ−1) ∗ λ−1] ∈ π̃(V, x0)
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Since π̃(V, x0) is a normal subgroup of π1(X, x0), we have
[α ∗ β ∗ α−1] ∈ [λ ∗ γ ∗ α−1]−1π̃(V, x0)[λ ∗ γ ∗ α−1] = π̃(V, x0)

Therefore π̃(V, x0) = π(U, x0). �
On the other hand, any path Spanier group may not be normal despite the similarity

to Spanier groups.

Example 3.7. One can conclude from [26, Theorem 4.1] that there is a path Spanier
group which is not a normal subgroup. By [26, Example 4.2] or [17, Remark 3.4] the
fundamental group of Hawaiian earring (to abbreviate HE) has a semicovering subgroup
H ≤ π1(HE, 0) which is not a covering subgroup. Since H is semicovering subgroup by
[26, Theorem 4.1] there is a path open cover V of HE such that π̃(V, 0) ≤ H. We claim
that π̃(V, 0) is not normal. If it is a normal subgroup of π1(HE, 0), then by Proposition
3.6 there is an open cover U of HE such that π̃(V, 0) = π(U, 0), which implies by Theorem
3.1 that H is a covering subgroup. That is a contradiction. Therefore, there is a path
Spanier subgroup π̃(V, 0) ≤ π1(HE, 0) which is not normal.

If U and V are two path open covers of a space X, the collection W = {Uα ∩ Vα | ∀α ∈
P (X, x0), Uα ∈ U and Vα ∈ V} is a refinement of both U and V. Thus, π̃(W, x0) ≤ π̃(U, x0)∩
π̃(V, x0), which shows that the collection of all path Spanier subgroups of the fundamental
group forms a neighbourhood family.

Definition 3.8. For a pointed space (X, x0), let ΣP be the collection of all path Spanier
subgroups of π1(X, x0). We call the subgroup topology determined by ΣP the path Spanier
topology and denote it by πpSpan

1 (X, x0).

We have the following proposition as a result of Proposition 3.6.

Proposition 3.9. For a locally path connected space X, πpSpan
1 (X, x0) is discrete if and

only if πSpan
1 (X, x0) is discrete.

Proof. By definition every open cover is also a path open cover, hence πpSpan
1 (X, x0)

is finer than πSpan
1 (X, x0) for any space X. Therefore, πpSpan

1 (X, x0) is discrete when
πSpan

1 (X, x0) is discrete. Conversely, if πpSpan
1 (X, x0) is discrete, then there is a trivial

path Spanier subgroup, i.e, π̃(V, x0) = 1 and so π̃(V, x0) is a normal subgroup. Now by
Proposition 3.6 there exists an open cover U of X such that π(U, x0) = π̃(V, x0) = 1.
Therefore, πSpan

1 (X, x0) is also discrete. �
The following corollary is obtained from the combination of the above proposition and

Proposition 3.3.

Corollary 3.10. For a locally path connected space X, the following statements are equiv-
alent.

(1) X is unbased semilocally simply connected space.
(2) πSpan

1 (X, x0) is discrete.
(3) πpSpan

1 (X, x0) is discrete.
Moreover, each of the above statements implies that

piSpan
1 (X, x0) = πpSpan

1 (X, x0)
and

π̃sp
1 (X, x0) = πsp

1 (X, x0).

Brazas [5, Theorem 5.5] showed that for a locally path connected space X, the map
p : X → Y is a semicovering map if and only if the image of the relative induced homomor-
phism p∗ : π1(X̃, x̃0) → π1(X, x0) is an open subgroup of πqtop

1 (X, x0), where πqtop
1 (X, x0)
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is the fundamental group equipped with the compact-open topology inherited from the
loop space by quotient map. On the other hand, Torabi et al. [26, Theorem 3.3] stated
that for a locally path connected space X every path Spanier subgroups are open in
πqtop

1 (X, x0). Moreover, they showed that [26, Corollary 3.4] a subgroup H of πqtop
1 (X, x0)

is open if and only if there exists a path open cover V of X such that π̃(V, x0) ≤ H. Fi-
nally, they concluded the relationship between semicovering subgroups and path Spanier
subgroups in the fundamental group as follows.

Lemma 3.11. [26, Theorem 4.1] Let X be a connected locally path connected space. A
subgroup H of π1(X, x0) is a semicovering subgroup if and only if there is a path open
cover V of X such that π̃(V, x0) ≤ H.

The following proposition is the immediate consequence of Definition 3.8 and the above
lemma.

Proposition 3.12. For a locally path connected space X a subgroup H of the fundamental
group π1(X, x0) is a semicovering subgroup if and only if H is open in πpSpan

1 (X, x0).

Wilkins [28, Lemma 5.4] showed that a group G with the subgroup topology determined
by a neighbourhood family Σ is a topological group when all subgroups in Σ are normal.
Although for an arbitrary path open cover V of X, the path Spanier subgroup π̃(V, x0) may
not be a normal subgroup, in general, the following proposition shows that πpSpan

1 (X, x0)
is a topological group.

Proposition 3.13. For any space X, the fundamental group πpSpan
1 (X, x0) equipped with

the path Spanier topology is a topological group.

Proof. Since πpSpan
1 (X, x0) is a subgroup topology, by Proposition 2.1 it is enough to show

that right translation maps are continuous. Let [α] ∈ π1(X, x0) and rα : πpSpan
1 (X, x0) →

πpSpan
1 (X, x0) with rα([β]) = [β ∗ α] for any [β] ∈ π1(X, x0) be the right translation

map with respect to [α]. If V is an arbitrary path open cover of X, then [β ∗ α]π̃(V, x0)
is a basis open neighbourhood of πpSpan

1 (X, x0) at [β ∗ α]. By definition, for any path
γ ∈ P (X, x0) there is a Vγ ∈ V with γ(1) ∈ Vγ . Put Wγ = Vγ ∩ Vα−1∗γ , then the collection
W = {Wγ | γ ∈ P (X, x0)} is also a path open cover of X, which is a refinement of V.
Thus, as an immediate consequence of the definition of path Spanier subgroups, we have:

π̃(W, x0) ⊆ π̃(V, x0). (⋆)
Let [

∏n
j=1 γj ∗ δj ∗ γ−1

j ] ∈ π̃(W, x0) be an arbitrary homotopy class of a product of
lollipops in π̃(W, x0). For the map rα we have:

rα([β ∗
n∏

j=1
γj ∗ δj ∗ γ−1

j ])

= rα([β ∗ α ∗
n∏

j=1
(α−1 ∗ γj ∗ δj ∗ γ−1

j ∗ α) ∗ α−1])

= [β ∗ α ∗
n∏

j=1
(α−1 ∗ γj ∗ δj ∗ γ−1

j ∗ α) ∗ α−1 ∗ α]

= [β ∗ α ∗
n∏

j=1
(α−1 ∗ γj ∗ δj ∗ γ−1

j ∗ α)] ∈ [β ∗ α]π̃(W, x0).

Therefore, from (⋆) we have
rα([β]π̃(W, x0)) ⊆ [β ∗ α]π̃(V, x0),

which shows that rα is a continuous map. �
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Note that, for a locally path connected space X, open subgroups of πpSpan
1 (X, x0) and

πqtop
1 (X, x0) coincide, but it may not hold, in general. As an example, consider Fig-

ure 1 of [27] for which πqtop
1 (X, x0) is not discrete and so the trivial subgroup is not

open in πqtop
1 (X, x0). On the other hand, since the space is semilocally simply con-

nected, πpSpan
1 (X, x0) is discrete by Proposition 3.9. Then the trivial subgroup is open in

πpSpan
1 (X, x0).
For a locally path connected space X, let B be an open subset of πpSpan

1 (X, x0) and
[β] ∈ B. From the definition, there exists a path open cover V of X such that [β]π̃(V, x0) ⊆
B. Recall from [26, Theorem 3.3] that π̃(V, x0) and then [β]π̃(V, x0) are open subsets of
πqtop

1 (X, x0). Hence B is an open subset of πqtop
1 (X, x0). Therefore, πqtop

1 (X, x0) is finer
than πpSpan

1 (X, x0). Clearly, this result holds for any topology on the fundamental group
which makes it a left topological group and its open subgroups are coincide with open
subgroups of πqtop

1 (X, x0).

Proposition 3.14. Let (X, x0) be a locally path connected space. If π∗
1(X, x0) is a left

topological group on the fundamental group in which its open subgroups are coincide with
open subgroups of πqtop

1 (X, x0), then π∗
1(X, x0) is finer than πpSpan

1 (X, x0).

Recall that Brazas introduced in [6] the finest topology on π1(X, x0) such that π :
Ω(X, x0) → π1(X, x0) is continuous and π1(X, x0) is a topological group. The fundamental
group with this topology is denoted by πτ

1 (X, x0). Also he showed [6, Proposition 3.16]
that for any space X, πτ

1 (X, x0) and πqtop
1 (X, x0) have the same open subgroups. The

following corollary is an immediate consequence of the above proposition and Proposition
3.16 from [6].

Corollary 3.15. If X is a locally path connected space, then πpSpan
1 (X, x0) is coarser than

πτ
1 (X, x0).

It seems interesting to find the spaces in which qtop-topology and path Spanier topology
coincide on the fundamental group. In such spaces, the qtop-topology can be interpreted
as a subgroup topology. The following Theorem introduce a class of this spaces.

Theorem 3.16. Let X be a locally path connected and semilocally small generated space,
then πqtop

1 (X, x0) = πpSpan
1 (X, x0).

Proof. Let U be an arbitrary open subset of πqtop
1 (X, x0) and take [g] ∈ U . Clearly,

the trivial element of π1(X, x0), [cx0 ], belongs to the coset [g−1]U . Since πqtop
1 (X, x0) is

a quasitopological group, [g−1]U is an open subset of πqtop
1 (X, x0). It implies from [25,

Theorem 2.2] that πsg
1 (X, x0) ⊆ [g−1]U . On the other hand, since X is a semilocally small

generated space, then Theorem 3.8 from [25] states that πsg
1 (X, x0) is an open subgroup

of πqtop
1 (X, x0) and hence it is open in πpSpan

1 (X, x0). Now [g]πsg
1 (X, x0) ⊆ U shows that

U is an open subset of πpSpan
1 (X, x0) and so πpSpan

1 (X, x0) is finer than πqtop
1 (X, x0). The

converse statement is easily concluded from Proposition 3.14. �
The infinitesimal subgroup of the path Spanier subgroup topology is denoted by π̃sp

1 (X, x0).
It implies from Proposition 3.6 that if π̃sp

1 (X, x0) is normal, then π̃sp
1 (X, x0) = πsp

1 (X, x0).
Recall from [1, Definition 4.1] that a space X is called semilocally path H-connected for a

subgroup H ≤ π1(X, x0) if for every path α beginning at x0 there exists an open neighbour-
hood Uα of α(1) with i∗π1(Uα, α(1)) ≤ [α−1Hα], where [α−1Hα] = {[α−1γα] | [γ] ∈ H}.
The following proposition proposes the same result as Proposition 3.4 for the path Spanier
topology.
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Proposition 3.17. For a connected and locally path connected space X, the following
statements are equivalent.

(1) X is a ΣP -coverable space.
(2) X is a semilocally path π̃sp

1 (X, x0)-connected space.
(3) π̃sp

1 (X, x0) is an open subgroup of πpSpan
1 (X, x0).

Since every Spanier subgroup of the fundamental group π1(X, x0) is also a path Spanier
subgroup, then for any pointed space (X, x0) the path Spanier topology on the fundamental
group, πpSpan

1 (X, x0), is finer than the Spanier topology, πSpan
1 (X, x0). The following

example shows that the converse does not hold, in general.

Example 3.18. Recall from Example 3.7 that The Hawaiian earring, HE, has a semi-
covering space which is not a covering space. Therefore, there is a path Spanier subgroup
of π1(X, x0) which is not a Spanier subgroup. This fact implies that πSpan

1 (HE, 0) is not
equal to πpSpan

1 (HE, 0) and hence πSpan
1 (HE, 0) is strictly coarser than πpSpan

1 (HE, 0). On
the other hand, since πqtop

1 (HE, 0) is not a topological group, then Proposition 3.13 shows
that πpSpan

1 (HE, 0) is strictly coarser than πqtop
1 (HE, 0).

Spanier [24, page 82] introduced another topology on the universal path space X̃ which
has been called the whisker topology by Brodskiy et al. [12] and denoted by X̃wh. Note
that the fundamental group π1(X, x0) as a subspace of X̃wh inherits the whisker topology
which is denoted by πwh

1 (X, x0). Similar to the proof of Proposition 3.5, it is shown in
[1, Lemma 3.1] that the collection of the following subsets form a basis for the whisker
topology on the fundamental group

{[α]i∗π1(U, x0) | [α] ∈ π1(X, x0) & U is an open neighborhood of X at x0}.

It implies that the whisker topology is another type of subgroup topology on the funda-
mental group determined by the following neighbourhood family of subgroups

Σwh = {i∗π1(U, x0) | U is an open neighborhood of X at x0}.

Remark 3.19. Remember that πwh
1 (HE, 0) is not a topological group because its right

translation maps are not continuous. There is an equivalent condition on a pointed topo-
logical space (X, x0) which guarantees πwh

1 (X, x0) to be a topological group. Indeed, Ja-
mali et al. [19, Proposition 2.6] proved that πwh

1 (X, x0) is a topological group if and only
if X is SLTL at x0. The space (X, x0) is called SLTL at x0 if for every loop α ∈ Ω(X, x0)
and every open neighbourhood U from X at x0, there exists an open neighbourhood V
from X at x0 such that for any loop γ : (I, İ) → (V, x0), there is a loop λ : (I, İ) → (U, x0)
such that [λ] = [α ∗ γ ∗ α−1]. Moreover, Brodskiy et al. [12, Proposition 4.21] showed that
πwh

1 (X, x0) is discrete if and only if X is semilocally simply connected at x0.

Fischer and Zastrow [16, Lemma 2.1] showed that the whisker topology is finer than
the qtop-topology on the universal path space X̃ for any space X. Clearly, the result will
hold for the fundamental group π1(X, x0) as a subspace of X̃.

It implies from [1, Proposition 3.8] that the infinitesimal subgroup of πwh
1 (X, x0) is

πs
1(X, x0), the collection of all small loops at x0. Recall from [1, Definition 4.1] that a

topological space X is called semilocally H-connected at x0 if there is an open neighbour-
hood U in X at x0 such that i∗π1(U, x0) ≤ H, for a subgroup H of the fundamental group.
Note that a topological space X is called semilocally simply connected at x0 if there is an
open neighbourhood U in X at x0 such that i∗π1(U, x0) = 1. The following proposition
expresses the relationship between these concepts.
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Proposition 3.20. For any space X, the following statements are equivalent.
(1) X is Σwh-coverable space.
(2) X is semilocally πs

1(X, x0)-connected at x0.
(3) πs

1(X, x0) is an open subgroup of πwh
1 (X, x0).

The following proposition is already expressed and proven by Brodesky et al..
Lemma 3.21. [12, proposition 4.21] A pointed topological space (X, x0) is semilocally
simply connected at x0 if and only if πwh

1 (X, x0) is discrete.
By the above statements, one can summarize the relationship between the mentioned

topologies on the fundamental group of locally path connected space X as the following
Chain of topologies. (Note that we use the symbol 4 to show the finer topology on a
group. For example, Gτ1 4 Gτ2 means that τ2 is finer than τ1 and Gτ1 ≺ Gτ2 means that
τ2 is strictly finer than τ1).

πSpan
1 (X, x0) 4 πpSpan

1 (X, x0) 4 πτ
1 (X, x0) 4 πqtop

1 (X, x0) 4 πwh
1 (X, x0). (#)

Using Corollary 3.3 of [23] one can introduce the equivalent condition to coincide these
topologies on the fundamental group. Recall from [23, definition 1.3] that a pointed
topological space (X, x0) is called strong small loop transfer (strong SLT for short) space
at x0 if for every x ∈ X and for every open neighbourhood U of X containing x0 there is
an open neighbourhood V containing x such that for every loop β : (I, İ) → (V, x) and
for every path α : I → X from x0 to x there is a loop λ : (I, İ) → (U, x0) such that
[α ∗ β ∗ α−1] = [λ].

Proposition 3.22. If X is a path connected space, then πSpan
1 (X, x0) = πwh

1 (X, x0) if and
only if X is strong SLT at x0 space.
Proof. The result comes from the combination of Corollary 3.3 from [23] and Proposition
3.5. �

Brazas in [8] introduced generalized covering spaces inspired by the initial approach
of Fischer and Zastrow in [16]. He also introduced generalized covering subgroups of
the fundamental group π1(X, x0) and showed that the intersection of any collection of
generalized covering subgroups is also a generalized covering subgroup [8, Theorem 2.36].
He [8, Lemma 5.7] also showed that a subgroup H of the fundamental group π1(X, x0) is a
generalized covering subgroup if and only if (pH)∗π1(X̃, x̃0) = H. We intend to introduce
another subgroup topology on the fundamental group based on its generalized covering
subgroups.
Definition 3.23. For a pointed space (X, x0), let Σg be the collection of all subgroups
H of π1(X, x0) with the property (pH)∗π1(X̃, x̃0) = H. We call the subgroup topology
determined by Σg the generalized covering topology and denote it by πgcov

1 (X, x0).
Abdullahi et al. [1, Definition 2.3] considered the infinitesimal subgroup of the general-

ized covering topology and denoted it by πgc
1 (X, x0). Also, it was remarked that πgc

1 (X, x0)
is always a generalized covering subgroup and so it is an open subgroup of πgcov

1 (X, x0).
This result implies that any space X is a Σg-coverable space.

As mentioned in the above, for a locally path connected space X, every path Spanier
group π̃(V, x0) is an open subgroup of πqtop

1 (X, x0). It is also a closed subgroup since
πqtop

1 (X, x0) is a quasitopological group. Recall from [8, Theorem 2.36] that every closed
subgroup of πqtop

1 (X, x0) is a generalized covering subgroup. Then, π̃(V, x0) ∈ Σg. There-
fore, π̃(V, x0) is an open subgroup of πgcov

1 (X, x0). It implies that πgcov
1 (X, x0) is finer

than πpSpan
1 (X, x0) in the case of locally path connected spaces. A similar result holds for

qtop-topology in the following theorem.
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Proposition 3.24. For a connected, locally path connected space (X, x0), the generalized
covering topology on the fundamental group, πgcov

1 (X, x0), is finer than πqtop
1 (X, x0).

Proof. Let U be an arbitrary open subset of πqtop
1 (X, x0) and take [g] ∈ U . We show that

[g]πgc
1 (X, x0) ⊆ U which implies that U is an open subset of πgcov

1 (X, x0).
Clearly, the trivial element of π1(X, x0), [cx0 ], belongs to the coset [g−1]U and [g−1]U is

an open subset of πqtop
1 (X, x0) since it is a quasitopological group. Then by [25, Corollary

2.4], [cx0 ] ⊆ [g−1]U , where [cx0 ] = πsg
1 (X, x0) is the closure of the trivial element in

πqtop
1 (X, x0). Using the chain of subgroups of the fundamental group which was introduced

in [1, Theorem 2.6], we have πgc
1 (X, x0) ≤ πsg

1 (X, x0) ⊆ [g−1]U . Therefore, [g]πgc
1 (X, x0) ⊆

U . �

Example 3.25. Fischer et al. [16] showed that the universal path space of Hawaiian
earring, HE, is a generalized covering space. It implies that the trivial subgroup of
π1(HE, 0) is a generalized covering subgroup, i.e. πgcov

1 (HE, 0) is discrete, where we know
that πqtop

1 (HE, 0) is not discrete. Moreover, we can easily conclude from Remark 3.19
that πwh

1 (HE, 0) also is not discrete. Then,

πqtop
1 (HE, 0) ≺ πwh

1 (HE, 0) ≺ πgcov
1 (HE, 0).

Example 3.26. It was shown in [1, Example 3.11] that the Harmonic Archipelago,
HA, does not admit any generalized covering space except the trivial covering. Thus
πgcov

1 (HA, b) is trivial, but πwh
1 (HA, b) is discrete where b ∈ HA is a non canonical based

point. Therefore, the whisker topology and the generalized covering topology may not
compare, in general. Moreover, πSpan

1 (HA, b) and πpSpan
1 (HA, b) both are trivial since

they, unlike the whisker topology, is independent of the choice of the base point.

Recall from [19] that since HE is not a SLT at 0 space, then πqtop
1 (HE, 0) and

πwh
1 (HE, 0) are not equal. This fact together with Examples 3.18 and 3.25 implies that

all mentioned topologies on the fundamental group of HE are not equal. Therefore, each
of the following topologies are strictly finer than the previous one.

πSpan
1 (HE, 0) ≺ πpSpan

1 (HE, 0) ≺ πqtop
1 (HE, 0) ≺ πwh

1 (HE, 0) ≺ πgcov
1 (HE, 0).

Moreover, since πqtop
1 (HE, 0) is not a topological group, then by [10, Lemma 41] the

canonical isomorphism φ : πqtop
1 (HE, 0) × πqtop

1 (HE, 0) → πqtop
1 (HE × HE, (0, 0)) is not

continuous, while by Proposition 2.6 it is a homeomorphism for any of the other topologies
mentioned above.
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πsp
1 (X, x0) = 1

X is unbased semilocally simply connected

πSpan
1 (X, x0) is discrete

πwh
1 (X, x0) is discreteπpSpan

1 (X, x0) is discrete

X is semilocally simply connected at x0π̃sp
1 (X, x0) = 1

πs
1(X, x0) = 1

3.21

3.3

3.10

3.26

Chain #

3.26
Chain #

Diagram : Discreteness of some subgroup topologies on the fundamental group

(X is locally path connected)
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