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Abstract

In this paper, dual-complex Jacobsthal quaternions are defined. Also, some algebraic properties of dual-
complex Jacobsthal quaternions which are connected with dual-complex numbers and Lucas numbers
are investigated. Furthermore, the Honsberger identity, the d’Ocagne’s identity, Binet’s formula, Cassini’s
identity, Catalan’s identity for these quaternions and their real representations are given.
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1. Introduction

The real quaternions were first described by Irish mathematician William Rowan Hamilton in 1843. Hamilton
[1] introduced a set of real quaternions which can be represented as

H={¢=qw+iqg+je+ke| 9, a, e, g cR} (1.1)

where
P==k=-1,ij=—ji=k, jk=—-kj=i, ki=—ik=j.

The real quaternions constitute an extension of complex numbers into a four-dimensional space and can be
considered as four-dimensional vectors, in the same way that complex numbers are considered as two-dimensional
vectors.

In 1973, the first use of this numbers appears "A Handbook of Integer Sequences" in a paper by Sloane by
the title "applications of Jacobsthal sequences to curves" [2]. In 1996, Horadam [3] introduced Jacobsthal and
Jacobsthal-Lucas representation numbers. In 1997, Horadam [4], defined Jacobsthal representation polynomials.
Several authors worked on Jacobsthal numbers by using Binet formulae or matrix method [12, 13, 16-19]. In 2016,
Szynal-Liana and Wloch [20] defined Jacobsthal and Jacobsthal-Lucas quaternions respectively as follows

JQn =Jn +1dpy1 +JInro +kJngs

and
JLQn = Jn + ijnJrl +jjn+2 + kjn+3

where J,, and j, denote the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Also, the imaginary
quaternion units 4, j, k have the following rules

P==k=-1,ij=—ji=k, jk=-kj=i, ki=—ik=j
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In 2017, Torunbalc1 Aydin and Yiice [21] given a new approach to Jacobsthal quaternions.

In 2017, Tas¢1 [22] defined k-Jacobsthal and Jacobsthal-Lucas quaternions as follows
QJk,n = Jk,n +1 Jk,nJrl + j Jk,n+2 +k Jk,nJrS

i2:j2:k2:_1

In 2020, Torunbalc1 Aydin [23] defined dual Jacobsthal quaternions as follows
Jp = {D,{ =Jp+ i1+ JInse + k Jurs| Jo n— th Jacobsthal number},

where
P=2=k’=ijk=0, ij=—ji=jk=—kj=ki=—ik=0.

Also, the dual Jacobsthal-Lucas quaternion can be defined as follows:
ip ={DJ = jn +ijnt1 + Jn+2 + K jnts | jn n — th Jacobsthal-Lucas number},
P=2=k’=ijk=0,ij=—ji=jk=—kj=ki=—ik=0.
All the studies on Jacobsthal quaternions are summarized in Table 1.

Table 1. Types of Jacobsthal quaternions [20-23].

Definition Multiplication Rules
Jacobsthal quaternions JQpn = (Jn, Ip41> Int2 Jnts) (1,i,5, k), i2 =352 =k2=—1
Jn =Jp_1+2Jdy_9, Jp =Jg =1 ij=—ji=k, jk=—kj=4i, ki=—ik=3j
k-Jacobsthal quaternions QJg.n = (Jk,n= Je,n+1: Tk, nt2, Jk,n+3) (1,41,19,13), 7% = 1% = 7% =ijigig = —1

Qg my2 =kQJg ny1 +2QJk p

Dual Jacobsthal quaternions DY = (In, Iy Ini2s Inis) (1,4, 5,k) i2 =2 =k2=ijk=0
Jn=Jny 420y 9, J] = J2 =1 ij=—ji=jk=—kj=ki=—ik=0
Dual-complex Jacobsthal quaternions Qin =Un,JIng1Int2: Inys) (1,i,e,i¢€), i2=-1,e2=0,¢ #0
Jn =Jpn_1+2Jdp_9, J1 =Jg =1 (ie)2 =0

In the 19 th century Clifford invented a new number system by using the notation (¢)? = 0, ¢ # 0. This number
system was called dual number system and the dual numbers were represented in the form A = a + € a* with
a, a* € R [5]. Afterwards, Kotelnikov (1895) and Study (1903) generalized first applications of dual numbers to
mechanics [7], [8]. Besides mechanics, this concept has lots of applications in different areas such as algebraic
geometry, kinematics, quaternionic formulation of motion in the theory of relativity. Majernik has introduced the
multicomponent number system [9]. There are three types of the four-component number systems which have been
constructed by joining the complex, binary and dual two-component numbers. Later, Farid Messelmi has defined
the algebraic properties of the dual-complex numbers in the light of this study [10]. There are many applications for

the theory of dual-complex numbers. In 2017, [11] has defined the dual-complex Fibonacci numbers.
Dual-complex numbers [10] w can be expressed in the form as

DC = {w = 2 + 22| 21,22 € C where ¢ = 0,¢ # 0}.
Here if z; = 1 + 922 and 23 = y1 + 9 y2, then any dual-complex number can be written
wW=x1+1x2+cy; +1€Y2

i?=—-1,e#0,e2=0, (ie)*=0.

Addition, substraction and multiplication of any two dual-complex numbers w; and w; are defined by

wy +we =(21 +€22) £ (23 +€24) = (21 £ 23) + e(22 £ 24),

w1 X we =(21 +€22) X (23 +€24) = 2123 + € (22 24 + 22 23).

(1.2)

(1.3)

(1.4)
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On the other hand, the division of two dual-complex numbers are given by
wy _ Z1 + €29
wo n 23+ €24 (15)

(21 +€29)(23 — €24) _a be 2923 — 2124
(23 +€24)(23 —€24) 23 22

If Re(wz) # 0,then the division {* is possible. The dual-complex numbers are defined by the basis {1,4,¢,i¢}.
Therefore, dual-complex numbers, just like quaternions, are a generalization of complex numbers by means of
entities specified by four-component numbers. But real and dual quaternions are non commutative, whereas,
dual-complex numbers are commutative. The real and dual quaternions form a division algebra, but dual-complex
numbers form a commutative ring with characteristics 0. Moreover, the multiplication of these numbers gives the
dual-complex numbers the structure of 2-dimensional complex Clifford Algebra and 4-dimensional real Clifford
Algebra. The base elements of the dual-complex numbers satisfy the following commutative multiplication scheme

[10] (Table 2).

Table 2. Multiplication scheme of dual-complex numbers

X 1 ) e 1€
1 1 7 e i€
) 7 -1 ie —¢
€ € 1€ 0 0
e 1e —e 0 0

Five different conjugations can operate on dual-complex numbers [10] as follows:

W =T +1T2+cy; +1icy2

(1 —ix2) +e(yr —iy2) = (21)" +e(22)7,
(x1+ix2) —e(y1 +iy2) =21 — € 29,

(1 —ixg) —e(y1 —iye) = 21 — €23,
(
(

w*
w*
w*

= iza)(1—e L2y oy - 22,

I +Z.’E2 z1

y1 +iy2) —e(xy —ixg) = 29 —e21.

Therefore, the norm of the dual-complex numbers is defined as

Nit =l x| =yl + 22 Rez ),

Ny =llw x w|| =4/21,

Nyt =l x wl =/l - 2ictm(e ),

Nat = [lw x wt|| =y/|z|%,

N5 = lw x w | =y/21 22 + (23 — 22).

(1.6)

(1.7)

In 2017, the dual-complex Fibonacci and Lucas numbers defined by Giingor and Azak [11] with the basis

{1, 4, ¢, ic}, wherei, ¢ and ic satisfy the conditions
i?=—-1,e#0,e2=0, (ie)*=0.

as follows
DCEF, *( +2Fn+l)+5(Fn+2+iFn+3)

(1.8)
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and
]D)(CLn :(LnJrZ Ln+1) + e (Ln+2 —+ 7 Ln+3) (19)

In this paper, the dual-complex Jacobsthal numbers and quaternions will be defined. The aim of this work is
to present in a unified manner a variety of algebraic properties of the dual-complex Jacobsthal quaternions as
well as both the dual-complex numbers and dual-complex Jacobsthal numbers. In particular, using five types of
conjugations, all the properties established for dual-complex numbers and dual-complex Jacobsthal numbers are
also given for the dual-complex Jacobsthal quaternions. In addition, Binet’s Formula, the Honsberger identity, the
d’Ocagne’s identity, Cassini’s identity and Catalan’s identity for these quaternions are given.

2. The dual-complex Jacobsthal numbers

In this paper, the dual-complex Jacobsthal and Jacobsthal-Lucas numbers defined by the basis {1, i, €, i¢ },
where i, ¢ and i¢ satisfy the conditions

i?=-1,e#0,e2=0, (ie)* =0.

as follows
DCJ, =Jp+iJps1 +ednio+ticInis (2.1)

and
D(Cjn = ]n + Z'jn-‘,-l + Ejn+2 +1 Ejn+3 (22)
With the addition and multiplication by real scalars of two dual-complex Jacobsthal numbers, the dual-complex

Jacobsthal number can be obtained again. Then, the addition and subtraction of the dual-complex Jacobsthal
numbers are defined by

DCJ,, = DCJ,, = (Jn + Jm) +1 (Jn+1 + Jm+1) +e€ (Jn+2 + Jm+2)

+ie (Jnys & Jmis) (2.3)

The multiplication of a dual-complex Jacobsthal number by the real scalar X is defined as
ADCJ, = AJy +idJngpr +eXTpgo +ie X Juys. (2.4)
The multiplication of two dual-complex Jacobsthal numbers is defined by

]D)(CJn X ]D)(CJm = (Jn Jm — Jn+1 Jm+1) +1 (Jn+1 Jm + Jn Jm+1)
+e (Jn Jm+2 - JnJrl Jm+3 + Jn+2 Jm — Jn+43 Jm+1) (2 5)
+i€(Jn+1 Jm+2 + Jn Jm+3 +Jn+3 Im +Jn+2 Jm+1) .
— DCJ,, x DCJ,.

Also,the dual-complex Jacobsthal numbers provide the properties of Eq.(1.6)-(1.7) [10].
Five different conjugations can operate on dual-complex Jacobsthal numbers as follows:

DCJ,™
DCJ,**
DCJ,*?

E( n+2 — 1 Jn+3)
5( n+2 + 1 Jn+3)
S

(Jn —1 Jn+1) +
(Jn +7/Jn+1)
(Jn —’LJn+1)
( )
=(J

(Jng2 — i Jnta), (2.6)
Jn+2 + { Jn+3
In F i Jnt1
2 +iJngs) —e(Jn + i Jng1).

DCJ, "

Jn —idps1) (1 —

DCJ,*
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Therefore, the norm of the dual-complex Jacobsthal numbers is defined as

IDC % DCL || =/ 100 + Jni1?) + 26 (Jn sz + Jus1 Juts)|

o1 = J2) + 26 BT T + Jonia +272,)],

* 2 2 .
||ID)(CJn X D(CJn 2” :\/l(Jn — Jn+1 ) +2iJ, Jn+1|7 (27)

IDCT, x DCI | 5/172 + 241 = 2i€ (Jusa Tntz = Jn Juis)]
:\/|J2n+1 —Jp+2ie(=1)" 27|,

|IDCJ,, x DCI,** || =/ |Jn? 4 Jns1?| =V Jong1 — J2].

3. The dual-complex Jacobsthal quaternions

In this section, firstly the dual-complex Jacobsthal quaternions will be defined. Later on, the definitions of the
conjugations and norms of any dual-complex Jacobsthal number will be given.
The dual-complex Jacobsthal quaternions are defined by using the dual-complex numbers as follows

DC/» = {Qs, =Jn +iJnt1 +eJnio+ieJnis|Jn, nthJacobsthal number} (3.1)

i?=-1,6#0, =0, (ie)>=0.
Let Qs,, and Q ;,,, be two dual-complex Jacobsthal quaternions such that

Qup=Jdn+idnt1+edniot+icdnis (3.2)

and
Qjm =Jn+idmt1 +e€Imia +1€ Imts. (3.3)

Then, the addition and subtraction of two dual-complex Jacobsthal quaternions are defined in the obvious way,

QJn + QJm = (Jn +1 Jn+1 +e Jn+2 + iaJn+3)
:|:(Jm +iJm+1 +€Jm+2 +i5J7n+3) (3 4)
= (Jn + Jm) +1 (Jn+1 + Jm+1) +€ (Jn+2 + Jm+2) ’
Vi (Joss £ Jpuss).

Multiplication of two dual-complex Jacobsthal quaternions is defined by

Qin X Qi = (Jn+idpt1+ednio+icdnis)
(Jm 4+ i Jms1 + € Imyo +ie Jmis)
- (JnJm_Jn+1Jm+1>+i(Jn+1Jm+JnJm+1)
+e (JnJm+2 - Jn+1Jm+3 + Jn+2Jm - n+3Jm+1)
+ie (Jn+1<]m+2 + JnJm—&-S + J7L+3Jm + Jn+2<]m+1)
= Qum X Quy-

The scaler and the dual-complex vector parts of the dual-complex Jacobsthal quaternion (@ ;,,) are denoted by

(3.5)

SqQ,, =Jnand Vo, =iJni1+edny2 +icdngs. (3.6)

Thus, the dual-complex Jacobsthal quaternion @, is given by Q;,, = Sq,, + Vq,,- Then, relation (3.5) is
defined by
Qin X Qim = SQJ,L SQJ"L + SQJn VQs,, + SQJm Vo, +Va,, X Va,,, (3.7)
= Qim X Qun-
The five kinds of conjugation given for the dual-complex Jacobsthal numbers are the same within the dual-
complex Jacobsthal quaternions. Furthermore, the conjugation properties for these quaternions are given by the
relations in Eq.(2.6) as follows

(Qin)" =Jn —idpy1 +ednya —ieJnts, complex — conjugation (3.8)
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(Qir)? =dn+idpy1 —ednya —ieJpts, dual — conjugation
(Qr,)"? =Jn —iJny1 —€Jdnya +ieJpys, coupled — conjugation

Jnao + i Jnis

=y —idpt1). (1= -
(@) = =i Jyr). (1 - e 2L Lo

), dual — complex — conjugation

(Qr,)" =Jnyo+ i Jnis —edy —ieJpi1, anti — dual — conjugation
Therefore, the norm of the dual-complex Jacobsthal quaternion @ ;,, is defined as follows
NQi)" = [1Qun x (Qr,)* I
= |(J2 + Jg-&-l) + 2 6( Jn Jn+2 + Jn+1 J7L+3) |
= |(J2n+1 — J5)+2€(3 Jn Jn+1 +J2n+1 +2J£+1)|,
NQi)"™ = [Qrn x (Qun)*21* = [(Jn = Ji1) + 20 Jn Jngr |,

NQin)* = Q. x (Qr,)*?
= |(J2+T20) —2ie(Jngr Jnvo — Jn Jngs) |
= |J2n+1—J721+27;€(—1)n2n‘.

NQup)™ = Qun x (Qun) I =3+ T3 1 | = [Jansr = 3.

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

In the following theorem, some properties related to the conjugations of the dual-complex Jacobsthal quaternions

are given.

Theorem 3.1. Let (Qj,,)*, (Qu,)*2, (Qu,)*3, (Qu,)*™ and (Q,,)*®, be five kinds of conjugation of the dual-complex

Jacobsthal quaternion. In this case, we can give the following relations:
QJn (QJn)*l = (J2n+1 - Jr2z) +2¢ (3 In Jn+1 + J2n+1 +2 J2+1)7

Qurn Q)™ = (Ji = Ji41) = 20 Jp Jnga,
Qi Q)™ = (Jopy1 — J2) — 2ie(=1)" 12",
Qun (Qup)™ = Jony1 — J7,
Qun+ (Qun)™ =2(Jn +eJnt2),
Qun+ (Qun)™? =2(Jn +1iJny1),
Qun+ (Qun)™ =2(Jn +icnys),
(Jn + i Jng1) (Qup)* = (Jons1 — J3) + (B Jn Jns1 + Jony1 +2J2,1)
+ie(—1)"2n1
= (Jn = idnt1) (Qrn)"™2,
€Qun+ (Qrn)™ = Jnsz +iJnqs,
Qun —€(Qun)™ = Jn+idns.
Proof. (3.17): By the Eq.(3.1) and (3.8) we get,
Qin (Qr)* = (Jang1 — J2) +2e(3Jp Jns1 + Jont1 +2 J721+1),
(3.18): By the Eq.(3.1) and (3.9) we get,
Qun(Qrn)2 = (J2—J21)+2iJn Juia.

(3.19): By the Eq.(3.1) and (3.10) we get,

Qin (Qry)*

(‘]721 + J’I’2L+1) - 2i5(Jn+l Jn+2 —Jn Jn+3)
(J2n+1 — J,QL) —2i¢e (_1)n+1 2",

(3.17)

(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
(3.23)

(3.24)

(3.25)
(3.26)
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(3.20): By the Eq.(3.1) and (3.11) we get,
QJn (QJ’I’L)*4 = (JrzL + J7%+1) = J2n+1 - J?%
(3.21): By the Eq.(3.1) and (3.8) we get,
QJn + (QJn)*l = 2 Jn + 25Jn+2 =2 (Jn + €Jn+2)~
(3.22): By the Eq.(2.1) and (??) we get,
QJn + (an)*z = 2Jp+2iJpy1 =2 (Jn +iJn+1)'
(3.23): By the Eq.(3.1) and (3.10) we get,
Qin+ Q)= 2Jp+2ictnis =2(Jn +ictnys).
(3.24): By the Eq.(3.1), (3.9) and (3.11) we get,
(Jn +1 Jn+1) (QJn)*4 = Jg + J72L+1 - E(Jn —1 Jn+1) (Jn+2 +1 Jn+3)
= Jopt1 — Jﬁ —¢€ [3 In Int+1 + Jong1 + 2 J,%Jrl]
Fie(—1)m2n!
= (Jn =i Jn+1) (Qun)™.
(3.25): By the Eq.(3.1) and (3.12) we get,
EQJn + (Q-]n)*5 = Jn+2 +iJn+3'
(3.26): By the Eq.(3.1) and (3.12) we get,
QJ7L_€(QJn)*5 - Jn+ZJn+1
O
In the following theorem, some properties related to the dual-complex Jacobsthal quaternions are given.
Theorem 3.2. Let Q ;,, be the dual-complex Jacobsthal quaternion. In this case, we can give the following relations:
QJTL+1 + 2QJn = QJTL+27 (327)
2Quns1 — Qun = Qj,; (3.28)
Qint1+2Qin1 = Qj, (3.29)
QJTL+1 + QQ«]’I’L = QJn+27 (330)
3 (QJn+2 —Qup_2) = an+2 - an,y (3.31)
(Quns1)? —4(Qun 1)’ = Quap — Jony2 +iJons1 + € (Jonta — 2 Jong2)
_ (3.32)
+3ie Jonta,
(Quni1)® +2(Qun)* = Quanis — J2nis +iJontz + & (Jonss + 2 Janis)
. (3.33)
+3ie Jonta,
Qup —1(Qrn1)™ —€Qupio —1€Qryiz = Jn — Jng2 + 26 Jnya. (3.34)

Proof. It can be proved easily (3.27-3.31) by using (3.1).
(3.32):By the Eq.(3.1) we get,

(Qrni1)? —4(Qin1)? = (Jon — Jong2) + 20 Jongr
+2¢e (Jang2 — Jonta) + 21 (2 Jon3)
= Jop +iJong1 +€Jonpe +icJongs
—Jonio +1Joni1 + € Jopia +3i€ Jonys
= Quop — Jony2 +iJoni1 + € (Jong2 — 2 Jon1a)
i (3 Janis).
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(3.33): By the Eq.(3.1) we get,

(Qrni1)* +2(Qu,)* = (Jant1 — Janys) + 20 Jonto
+2¢e (Jany3 — Janys) +2ie (2 Jonta)
= Joni1 tidonso +eJoniz +ieJontia — Jonas
+i Jonyo + € (Jonts + 2 Jonys) + 316 Jonya
= Qrony1 — Jont3 +iJonge + € (Jongs +2 Jongs)
+Z 3 (3 J2n+4)~

(3.34): By the Eq.(3.10) we get,

Qrpn—1Qu 1 —€Qupio—1€Quuz = (Jn— Jny2) +2eJnqa.

O

Theorem 3.3 (Honsberger identity). For n,m > 0 the Honsberger identity for the dual-complex Jacobsthal quaternions
Q1 and Q 5, is given by

2Q7n Qim +Qiny1Qimi1 = Qunymir — Indmes +1i J”+m_+2 (3.35)
+e (Jn+m+3 -2 Jn+m+5) +3ie Jn+7n,+4~

Proof. (3.35): By the Eq.(3.1) we get,

2Q7,Qim +Qini1Qimir = [2Indm + Jng1dmi1) — 2 Jns1dmi1 + Jng2dmy2)]

+1 [(2 JnJm+1 + Jn+1Jm+2) + (2 Jn+1=]m + Jn+2Jm+1)]
+e [(2 JnJm+2 + Jn+1<]m+3) - (2 Jn+1<]m+3 + Jn+2<]m+4)
+(2 Jn+2Jm + Jn+3Jm+1) - (2 Jn+3Jm+1 + Jn+4Jm+2)]
+ie [(2 JnJm+3 + Jn+1Jm+4) + (2 Jn+1Jm+2 + Jn+2Jm+3)
+(2 Jn+2 Jm + Jn+3 Jm-‘rl) + (2 Jn+3 Jm+1 + Jn+4 Jm+2)]

= (Jn+m+1 - Jn+m+3) +21 Jn+m+2
+2¢ (Jn+m+3 - JTL+WL+5) +4ie (Jn+m+4)

= (JnerJrl + ’L.Jn+m+2 + € Jn+m+3 + i€ Jn+m+4)
—Jn+m+3 +1 Jn+m+2 +e (Jn+m+3 -2 Jn+m+5)
+3i¢ Jn+m+4

= QJ7L+m+1 - ']7L+7n+3 +1 Jn—i—m—i—2 +e (Jn-‘rm-‘r3 -2 Jn+77z+5)
+3ie J71,+m+4 .

where the identity J,, Ji41 + 2 Jp—1 Jo = Jntm was used [19]. (Table 3) O

Table 3. Types of Jacobsthal quaternions

Honsberger identity (1985)

Jacobsthal Number IJn+1 Im+1 +2InIm = JInymt1
Jacobsthal Quaternions JRn JQm42JQn—-1Qm—-1=2/Qntm+1 — Jntm—-1 — Intm+1 — Jntm+3 — Jntm+s
k-Jacobsthal Quaternions
Dual Jacobsthal Quaternions D,,Jl D;iL + 2 D;{_l D;‘;_l =2 Dr{-%—'m,—l — Jn+'m—1
Dual-complex Jacobsthal Qint1Rim+1 T2QinQum = Quntm+1 — Indm43 +iIngtmi2 +¢ (Jnt+m+3 — 2Intm+5)

Quaternions
+3ieJptmta

Theorem 3.4 (D’ocagne’s identity). For n,m > 0 the D’ocagne’s identity for the dual-complex Jacobsthal quaternions
Qy,, and Q 5,, is given by

QJmQJn+1—QJm+1QJn: (—1)"2"Jm_n(3+2+15€ +5Z€) (336)
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Proof. (3.36): By the Eq.(3.1) we get,
QJm QJn+l - QJm-H QJn = [(JmJn+1 - JerIJn) - (Jm+1Jn+2 - Jm+2Jn+1)]
+i[(Jmdntz — Im+1In+1) + (Tmt+1Jn+1 — Tma2Jn)]
£ [(JmJn+3 - Jm+1Jn+2) ( m+2=]n+1 Jm+3jn)
*(Jm+1<]n+4 - Jm+2<]n+3) ( m+3Jn+2 - Jm+4<]n+1)]
+1ie [(JmJn+4 - Jm+1Jn+3) + (Jm+1<]n+3 - Jm+2<]n+2)
+(Jm+2Jn+2 - Jm+3Jn+1) + (Jm+3Jn+1 - Jm+4Jn)]
= (—1)"2" Jm—n (3+ 1+ 15¢ —|—5i€).
where the identity J,,, J,,—1 — Jim—1 Jy = (=1)" 2771 J,,,_,, was used [19].

Theorem 3.5. Let Q) ;,, be the dual-complex Jacobsthal quaternion.Then, we have the following identities

ZQJS— Qg2 — Q2

Z QJn+s = QJn+p+2 QJn-i—l]’

Z Qurzs—1 = ;th - é [n(2Qus — Qu3) —2Quo],
s=1

ZQst* Quant1 — 1[”(QQJQ*QJ?,)+2QJ1]-

Proof. (3.37) Since > Js = Jyi2 — Jay1 [3], we get

n n n n n
D Que= Ji+iY Jat+e Y Joatic Yy Jus
s=1 s=1 s=1 s=1 s=1

[(Jnt2 — J2) + i (Jnis — J3) + € (Jnga — Ja) +ie (Jnys — J5)]

DN =N =N =

[(Jn_:,_g +iJpys +eppatic Jn+5) - (JQ +iJst+eds+ie J5)]
5 Qunge — Qual-

(3.38): Hence, we can write

p
Zo Qints = 3 [(Jnsptz = Jng1) + i (Jngprs — Jnt2)
s=

+e (Jn+p+4 - Jn+3) +ie (Jn+p+5 - Jn+4)]

3 [(Tntpt2 + 1 Jnipis + € Tntpra + 1€ Jnypis)
(Jn+1 +idpqo +edpqs +ic Jn+4)]
[QJn+p+2 - QJn—i—l] .

2
1
2

n—1 n
(3.39): Using Y Jais1 = 5 (2Jon + 1) and Y Jo; = 5 (2Jong1 —n —2) [21,22], we get
i=0 i=0

> Quas 1= 32T +n)+i(2J2n41 —n—2)
s=1

+€(2J2n+2+n—2)+’L'€(2J2n+3—n—6)]
= [Jzn +iJopt1 + € Jonyo +ie Jonas)
[ (1—z+€—ze)—2(z+5+315)]
= 3QJ2n [ (QQJz QJ3)_2QJ0]~

+

(3.37)

(3.38)

(3.39)

(3.40)
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(3.40): Using > Jo; = 1 (Jon41 —n —2) [21,22], we obtain
i=0

[(2J2n+1—n—2)+i(2J2n+2+n—2)

€(2J2n+3 —ﬂ—6)+i6(2J2n+4+n— ].0)]
[Jont1 + @ Jonto + € Jonys +1 + € Jopial

n
Z QJQS =
s=1

t[-n(l—i4+e—ie)—2(1+i+3ec+5ic)]
Qioni1 —3[n(2Qus—Qr3) +2Qu ]

1
3
+
2
3
+
2
3
O

Theorem 3.6 (Binet’s Formula). Let Q) z,, be the dual-complex Jacobsthal quaternion. For n > 1, Binet’s formula for these
quaternions is as follows:

Qi = (a a" — ﬁ") (3.41)

where
G=1+ia+ea?+ica®, a=2
and
B=1+if+eB2+ieB, B=-1.
Proof. (3.41): By the Binet’s formula of Jacobsthal sequence [3] we get,
Qntl_gntt Qnt2_gnt? . qnt3_gnts

Qin= 35 +i 3 +e 5 +ie 5
a™ (1+iatea’+ieca®)—B" (14i f+e 2 +ie g°)

_ Laam—ppm).

Binet’s formula of the dual-complex Jacobsthal quaternion is the same as Binet’s formula of the Jacobsthal quaternion
[3]. a

Theorem 3.7 (Cassini’s Identity). Let Q s, be the dual-complex Jacobsthal quaternion. For n > 1, Cassini’s identity for
Q 1, 1s as follows:
Qin1Qinir —Qur=(-1)"2""13+i +15e+5i¢). (3.42)

Proof. (3.42): By using (3.1) we get

QJ7L+1 QJn—l - (Qv]’n)2 = [(Jn+1Jn—1 - J721) - (Jn+2‘]’ﬂ - J721+1)]

+i [(Jn—i-l']n - Jan+1) + (J7L+2Jn—1 - Jn—&—lt]n)}

+e [(Jn+1<]n+1 - Jan+2) + (Jn+3<]n—1 - Jn+2<]n)
_(Jn+2Jn+2 - Jn+1Jn+3)
_(Jn+4Jn - Jn+3Jn+1)]

+ie [(Jn+1Jn+2 - Jan+3)
_(Jn+3<]n - Jn+2Jn+1)
+(Jn+3<]n - Jn+2<]n+1)
+(Jn+4<]n71 - Jn+3Jn)}

= (=D"2""'(3+i+15e+5ie).

where the identities of the Jacobsthal numbers J,, J,11 — Jmi1Jn = (=1)" 2" 1y and Jpp1 1 — Jp2 =
(—1)" 27! are used [3] (Table 4). O

Theorem 3.8 (Catalan’s Identity). Let Q) s,, be the dual-complex Jacobsthal quaternion. For n > 1, Catalan’s identity for

Q 1, is as follows:
Qinir Qin_y — (Qrp)? = (=1)""H12"77 J2 (3 44 + 15 +5ie). (3.43)
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Table 4. Types of Jacobsthal quaternions

Cassini’s identity

Jacobsthal number Ing1In—1 — ‘]721 = (—nn2n—1 g
Jacobsthal quaternions JQp—1JQp41 — JQ?l = (—1)"2n—1 (7T+5i+75+5k)
N {OnS 2 — -1
k-Jacobsthal quaternions QJk,nfl QJk,7L+1 - QJk,n = (aB)(=2)"
Dual Jacobsthal quaternions D;{_l Di-}—l - (D,'JL)2 = (—1)"2" 11 +i+5;5+7k)
Dual-complex Jacobsthal QIn-1QJtnt1 — Q2 =(-D"@B+i+15c+5ie)

quaternions

Proof. (3.43): By using (3.1) we get,

Qingr Qupn_y — (QJn)2 = [(Jntr Jn—r — JTZL) = (Jngrs1 Jn—rg1 — JEL—&-l)]

+1 [ (Jn+r JnfrJrl - Jn Jn+1)
+(Jn+r+1 Jnfr - Jn+1 Jn)]

+e [ (Jn+r Jn7r+2 - Jn Jn+2)
+(Jn+7'+2 Jn—'r' - Jn+2 Jn)
*(Jn—i-r-&-l Jn—r+3 - Jn+1 Jn+3)
*(Jn+r+3 Jn7r+1 - Jn+3 Jn+l)}

+ie [ (Jn+r Jnfr+3 - Jn Jn+3)
+(Jn+r+3 Jnfr — Jn+43 Jn)
+(Jn+r+1 Jn—r+2 - Jn—i—l Jn+2)
+(Jn+r+2 J7z,—r+1 - J7L+2 Jn—&-l)]

= —(=2)" "J23+i+15e +5ie).

where the identities of the Jacobsthal numbers J,,J,, 1 — Jy—1J, = (=1)" 2771 J,,,,, [19]1and J,, 1 Jpy — J2 =
—(=2)""" J? are used. 0

Table 5. Types of Jacobsthal quaternions

Catalan’s identity

Jacobsthal number Jngr In—pr — .]% = —(=2)"" " J%
Jacobsthal quaternions JQn—r JQutr —JQ2 = —(=2)" T 2 (T+5i+7j+5k)
k-Jacobsthal quaternions Qik,n—r QJk,n+1- — QJ%.n = (71)"’77‘+1 (72)77’71 Jl%,r'
Dual Jacobsthal quaternions Dy{iT D;{+T - (D;{)2 = —(=2)"—" Jg (14+i+55+7k)
Dual-complex Jacobsthal QJ”+7. Qmp—y — QJ%L = —(=2)""" JE (3+4 +15e+5ie)

quaternions

4. Conclusions

In this study, a number of new results on dual-complex Jacobsthal quaternions were derived. Quaternions have
great importance as they are used in quantum physics, applied mathematics, quantum mechanics, Lie groups,
kinematics and differential equations.

This studly fills the gap in the literature by providing the dual-complex Jacobsthal quaternion using definitions
of the dual-complex number [10], dual-complex Fibonacci number [11] and Jacobsthal quaternions [20] and [21].
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