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Abstract
We derive total mean curvature integration formulas of a three co-dimensional foliation
Fn on a screen integrable half-lightlike submanifold, Mn+1 in a semi-Riemannian manifold
M

n+3. We give generalized differential equations relating to mean curvatures of a totally
umbilical half-lightlike submanifold admitting a totally umbilical screen distribution, and
show that they are generalizations of those given by [K. L. Duggal and B. Sahin, Differential
geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhäuser Verlag, Basel,
2010].
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1. Introduction
The rapidly growing importance of lightlike submanifolds in semi-Riemannian geome-

try, particularly Lorentzian geometry, and their applications to mathematical physics–like
in general relativity and electromagnetism motivated the study of lightlike geometry in
semi-Riemannian manifolds. More precisely, lightlike submanifolds have been shown to
represent different black hole horizons (see [4] and [6] for details). Among other motiva-
tions for investing in lightlike geometry by many physicists is the idea that the universe
we are living in can be viewed as a 4-dimensional hypersurface embedded in (4 + m)-
dimensional spacetime manifold, where m is any arbitrary integer. There are significant
differences between lightlike geometry and Riemannian geometry as shown in [4] and [6],
and many more references therein. Some of the pioneering work on this topic is due to
Duggal-Bejancu [4], Duggal-Sahin [6] and Kupeli [7]. It is upon those books that many
other researchers, including but not limited to [3, 5, 8–11], have extended their theories.

Lightlike geometry rests on a number of operators, like shape and algebraic invariants
derived from them, such as trace, determinants, and in general the r-th mean curvature
Sr. There is a great deal of work so far on the case r = 1 (see some in [4, 6] and many
more) and as far as we know, very little has been done for the case r > 1. This is partly
due to the non-linearity of Sr for r > 1, and hence very complicated to study. A great
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deal of research on higher order mean curvatures Sr in Riemannian geometry has been
done with numerous applications, for instance see [2] and [1]. This gap has motivated our
introduction of lightlike geometry of Sr for r > 1. In this paper we have considered a half-
lightlike submanifold admitting an integrable screen distribution, of a semi-Riemannian
manifold. On it we have focused on a codimension 3 foliation of its screen distribution
and thus derived integral formulas of its total mean curvatures (see Theorems 4.9 and
4.10). Furthermore, we have considered totally umbilical half-lightlike submanifolds, with
a totally umbilical screen distribution and generalized Theorem 4.3.7 of [6] (see Theorem
5.2 and its Corollaries). The paper is organized as follows; In Section 2 we summarize the
basic notions on lightlike geometry necessary for other sections. In Section 3 we give some
basic information on Newton transformations of a foliation F of the screen distribution.
Section 4 focuses on integration formulae of F and their consequences. In Section 5 we
discus screen umbilical half-lightlike submanifolds and generalizations of some well-known
results of [6].

2. Preliminaries
Let (Mn+1, g) be a two-co-dimensional submanifold of a semi-Riemannian manifold

(Mn+3
, g), where g = g|T M . The submanifold (Mn+1, g) is called a half-lightlike if the

radical distribution Rad TM = TM ∩ TM⊥ is a vector subbundle of the tangent bundle
TM and the normal bundle TM⊥ of M , with rank one. Let S(TM) be a screen distri-
bution which is a semi-Riemannian complementary distribution of Rad TM in TM , and
also choose a screen transversal bundle S(TM⊥), which is semi-Riemannian and comple-
mentary to Rad TM in TM⊥. Then,

TM = Rad TM ⊥ S(TM), TM⊥ = Rad TM ⊥ S(TM⊥). (2.1)
We will denote by Γ(Ξ) the set of smooth sections of the vector bundle Ξ. It is well-known
from [4] and [6] that for any null section E of Rad TM , there exists a unique null section
N of the orthogonal complement of S(TM⊥) in S(TM)⊥ such that g(E, N) = 1, it follows
that there exists a lightlike transversal vector bundle ltr(TM) locally spanned by N . Let
W ∈ Γ(S(TM⊥)) be a unit vector field, then g(N, N) = g(N, Z) = g(N, W ) = 0, for any
Z ∈ Γ(S(TM)).

Let tr(TM) be complementary (but not orthogonal) vector bundle to TM in TM . Then
we have the following decompositions of tr(TM) and TM

tr(TM) = ltr(TM) ⊥ S(TM⊥), (2.2)

TM = S(TM) ⊥ S(TM⊥) ⊥ {Rad TM ⊕ ltr(TM)}. (2.3)
It is important to note that the distribution S(TM) is not unique, and is canonically
isomorphic to the factor vector bundle TM/Rad TM [4]. Let P be the projection of TM
on to S(TM). Then the local Gauss-Weingarten equations of M are the following;

∇XY = ∇XY + B(X, Y )N + D(X, Y )W, (2.4)
∇XN = −AN X + τ(X)N + ρ(X)W, (2.5)
∇XW = −AW X + ϕ(X)N, (2.6)
∇XPY = ∇∗

XPY + C(X, PY )E, (2.7)
∇XE = −A∗

EX − τ(X)E, (2.8)

for all E ∈ Γ(Rad TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)), where ∇ and ∇∗ are
induced linear connections on TM and S(TM), respectively, B and D are called the
local second fundamental forms of M , C is the local second fundamental form on S(TM).
Furthermore, {AN , AW } and A∗

E are the shape operators on TM and S(TM) respectively,
and τ , ρ, ϕ and δ are differential 1-forms on TM . Notice that ∇∗ is a metric connection
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on S(TM) while ∇ is generally not a metric connection. In fact, ∇ satisfies the following
relation

(∇Xg)(Y, Z) = B(X, Y )λ(Z) + B(X, Z)λ(Y ), (2.9)

for all X, Y, Z ∈ Γ(TM), where λ is a 1-form on TM given λ(·) = g(·, N). It is well-known
from [4] and [6] that B and D are independent of the choice of S(TM) and they satisfy

B(X, E) = 0, D(X, E) = −ϕ(X), ∀ X ∈ Γ(TM). (2.10)

The local second fundamental forms B, D and C are related to their shape operators by
the following equations

g(A∗
EX, Y ) = B(X, Y ), g(A∗

EX, N) = 0, (2.11)
g(AW X, Y ) = εD(X, Y ) + ϕ(X)λ(Y ), (2.12)
g(AN X, PY ) = C(X, PY ), g(AN X, N) = 0, (2.13)
g(AW X, N) = ερ(X), where ε = g(W, W ), (2.14)

for all X, Y ∈ Γ(TM). From equations (2.11) we deduce that A∗
E is S(TM)-valued,

self-adjoint and satisfies A∗
EE = 0. Let R denote the curvature tensor of M , then

g(R(X, Y )PZ, N) = g((∇XAN )Y, PZ) − g((∇Y AN )X, PZ)
+ τ(Y )C(X, PZ) − ετ(X)C(Y, PZ){ρ(Y )D(X, PZ)
− ρ(X)D(Y, PZ)}, ∀ X, Y, Z ∈ Γ(TM). (2.15)

A half-lightlike submanifold (M, g) of a semi-Riemannian manifold M is said to be totally
umbilical [6] if on each coordinate neighborhood U there exist smooth functions H1 and
H2 on ltr(TM) and S(TM⊥) respect such that

B(X, Y ) = H1g(X, Y ), D(X, Y ) = H2g(X, Y ), ∀ X, Y ∈ Γ(TM). (2.16)

Furthermore, when M is totally umbilical then the following relations follows by straight-
forward calculations

A∗
EX = H1PX, P (AW X) = εH2PX, D(X, E) = 0, ρ(E) = 0, (2.17)

for all X, Y ∈ Γ(TM).
Next, we suppose that M is a half-lightlike submanifold of M , with an integrable screen

distribution S(TM). Let M ′ be a leaf of S(TM). Notice that for any screen integrable
half-lightlike M , the leaf M ′ of S(TM) is a co-dimension 3 submanifold of M whose normal
bundle is {Rad TM ⊕ ltr(TM)} ⊥ S(TM⊥). Now, using (2.4) and (2.7) we have

∇XY = ∇∗
XY + C(X, PY )E + B(X, Y )N + D(X, Y )W, (2.18)

for all X, Y ∈ Γ(TM ′). Since S(TM) is integrable, then its leave is semi-Riemannian and
hence we have

∇XY = ∇∗′
XY + h′(X, Y ), ∀ X, Y ∈ Γ(TM ′), (2.19)

where h′ and ∇∗′ are second fundamental form and the Levi-Civita connection of M ′ in
M . From (2.18) and (2.19) we can see that

h′(X, Y ) = C(X, PY )E + B(X, Y )N + D(X, Y )W, (2.20)

for all X, Y ∈ Γ(TM ′). Since S(TM) is integrable, then it is well-known from [6] that
C is symmetric on S(TM) and also AN is self-adjoint on S(TM) (see Theorem 4.1.2 for
details). Thus, h′ given by (2.20) is symmetric on TM ′.

Let L ∈ Γ({Rad TM ⊕ ltr(TM)} ⊥ S(TM⊥)), then we can decompose L as

L = aE + bN + cW, (2.21)
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for non-vanishing smooth functions on M given by a = g(L, N), b = g(L, E) and c =
εg(L, W ). Suppose that g(L, L) > 0, then using (2.21) we obtain a unit normal vector Ŵ
to M ′ given by

Ŵ = 1
g(L, L)

(aE + bN + cW ) = 1
g(L, L)

L. (2.22)

Next we define a (1,1) tensor A
Ŵ

in terms of the operators A∗
E , AN and AW by

A
Ŵ

X = 1
g(L, L)

(aA∗
EX + bAN X + cAW X), (2.23)

for all X ∈ Γ(TM). Notice that A
Ŵ

is self-adjoint on S(TM). Applying ∇X to Ŵ and
using equations (2.23) (2.4) and (2.11)-(2.13), we have

g(A
Ŵ

X, PY ) = −g(∇XŴ , PY ), ∀ X, Y ∈ Γ(TM). (2.24)

Let ∇∗⊥ be the connection on the normal bundle {Rad TM ⊕ ltr(TM)} ⊥ S(TM⊥). Then
from (2.24) we have

∇XŴ = −A
Ŵ

X + ∇∗⊥
X Ŵ , ∀ X ∈ Γ(TM), (2.25)

where

∇∗⊥
X Ŵ = − 1

g(L, L)
X(g(L, L))Ŵ + 1

g(L, L)
[{X(a) − aτ(X)}E

+{X(b) + bτ(X) + cϕ(X)}N + {X(c) + aD(X, E) + bρ(X)}W ] .

Example 2.1. Let M = (R5
1, g) be a semi-Riemannian manifold, where g is of sig-

nature (−, +, +, +, +) with respect to canonical basis (∂x1, ∂x2, ∂x3, ∂x4, ∂x5), where
(x1, · · · , x5) are the usual coordinates on M . Let M be a submanifold of M and given
parametrically by the following equations

x1 =φ1, x2 = sin φ2 sin φ3, x3 = φ1, x4 = cos φ2 sin φ3,

x5 = cos φ3, where φ2 ∈ [0, 2π] and φ3 ∈ (0, π/2).

Then we have TM = span{E, Z1, Z2} and ltr(TM) = span{N}, where

E = ∂x1 + ∂x3, Z1 = cos φ3∂x2 − sin φ2 sin φ3∂x5,

Z2 = cos φ3∂x4 − cos φ2 sin φ3∂x5 and N = 1
2

(−∂x1 + ∂x3).

Also, by straightforward calculations, we have

W = sin φ2 sin φ3∂x2 + cos φ2 sin φ3∂x4 + cos φ3∂x5.

Thus, S(TM⊥) = span{W} and hence M is a half-lightlike submanifold of M . Fur-
thermore we have [Z1, Z2] = cos φ2 sin φ3∂x2 − sin φ2 sin φ3∂x4, which leads to [Z1, Z2] =
cos φ2 tan φ3Z1−sin φ2 tan φ3Z2 ∈ Γ(S(TM)). Thus, M is a screen integrable half-lightlike
submanifold of M . Finally, it is easy to see that AN is self-adjoint operator on S(TM).

In the next sections we shall consider screen integrable half-lightlike submanifolds of
semi-Riemannian manifold M and derive special integral formulas for a foliation of S(TM),
whose normal vector is Ŵ and with shape operator A

Ŵ
.
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3. Newton transformations of A
Ŵ

Let (Mm+3
, g) be a semi-Riemannian manifold and let (Mn+1, g) be a screen integrable

half-lightlike submanifold of M . Then S(TM) admits a foliation and let F be a such
foliation. Then, the leaves of F are co-dimension three submanifolds of M , whose normal
bundle is S(TM)⊥. Let Ŵ be unit normal vector to F such that the orientation of M

coincides with that given by F and Ŵ . The Levi-Civita connection ∇ on the tangent
bundle of M induces a metric connection ∇′ on F. Furthermore, h′ and A

Ŵ
are the

second fundamental form and shape operator of F. Notice that A
Ŵ

is self-adjoint on TF

and at each point p ∈ F has n real eigenvalues (or principal curvatures) κ1(p), · · · , κn(p).
Attached to the shape operator A

Ŵ
are n algebraic invariants

Sr = σr(κ1, · · · , κn), 1 ≤ r ≤ n,

where σr : M
′n → R are symmetric functions given by

σr(κ1, · · · , κn) =
∑

1≤i1<···<ir≤n

κi1 · · · κir . (3.1)

Then, the characteristic polynomial of A
Ŵ

is given by

det(A
Ŵ

− tI) =
n∑

α=0
(−1)αSrtn−α,

where I is the identity in Γ(TF). The normalized r-th mean curvature Hr of M ′ is defined
by

Hr =
(

n

r

)−1

Sr and H0 = 1. (a constant function 1).

In particular, when r = 1 then H1 = 1
ntr(A

Ŵ
) which is the mean curvature of a F. On

the other hand, H2 relates directly with the (intrinsic) scalar curvature of F. Moreover,
the functions Sr (Hr respectively) are smooth on the whole M and, for any point p ∈ F,
Sr coincides with the r-th mean curvature at p. In this paper, we shall use Sr instead of
Hr.

Next, we introduce the Newton transformations with respect to the operator A
Ŵ

. The
Newton transformations Tr : Γ(TF) → Γ(TF) of a foliation F of a screen integrable half-
lightlike submanifold M of an (n + 3)-dimensional semi-Riemannian manifold M with
respect to A

Ŵ
are given by by the inductive formula

T0 = I, Tr = (−1)rSrI + A
Ŵ

◦ Tr−1, 1 ≤ r ≤ n. (3.2)

By Cayley-Hamiliton theorem, we have Tn = 0. Moreover, Tr are also self-adjoint and
commutes with A

Ŵ
. Furthermore, the following algebraic properties of Tr are well-known

(see [2], [1] and references therein for details).
tr(Tr) = (−1)r(n − r)Sr, (3.3)

tr(A
Ŵ

◦ Tr) = (−1)r(r + 1)Sr+1, (3.4)
tr(A2

Ŵ
◦ Tr) = (−1)r+1(−S1Sr+1 + (r + 2)Sr+2), (3.5)

tr(Tr ◦ ∇′
XA

Ŵ
) = (−1)rX(Sr+1) = (−1)rg(∇′Sr+1, X), (3.6)

for all X ∈ Γ(TM). We will also need the following divergence formula for the operators
Tr

div∇′(Tr) = tr(∇′Tr) =
n∑

β=1
(∇′

Zβ
Tr)Zβ, (3.7)

where {Z1, · · · , Zn} is a local orthonormal frame field of TF.
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4. Integration formulas for F

This section is devoted to derivation of integral formulas of foliation F of S(TM) with
a unit normal vector Ŵ given by (2.22). By the fact that ∇ is a metric connection
then g(∇

Ŵ
Ŵ , Ŵ ) = 0. This implies that the vector field ∇

Ŵ
Ŵ is always tangent to F.

Our main goal will be to compute the divergence of the vectors Tr∇
Ŵ

Ŵ and Tr∇
Ŵ

Ŵ +
(−1)rSr+1Ŵ . The following technical lemmas are fundamentally important to this paper.
Let {E, Zi, N, W}, for i = 1, · · · , n be a quasi-orthonormal field of frame of TM , such
that S(TM) = span{Zi} and ϵi = g(Zi, Zi).

Lemma 4.1. Let M be a screen integrable half-lightlike submanifold of M
n+3 and let M ′

be a foliation of S(TM). Let A
Ŵ

be its shape operator, where Ŵ is a unit normal vector
to F. Then

g((∇′
XA

Ŵ
)Y, Z) = g(Y, (∇′

XA
Ŵ

)Z),
g((∇′

XTr)Y, Z) = g(Y, (∇′
XTr)Z),

for all X, Y, Z ∈ Γ(TF).
Proof. By simple calculations we have

g((∇′
XA

Ŵ
)Y, Z) = g(∇′

X(A
Ŵ

Y ), Z) − g(∇′
XY,A

Ŵ
Z). (4.1)

Using the fact that ∇′ is a metric connection and the symmetry of A
Ŵ

, (4.1) gives

g((∇′
XA

Ŵ
)Y, Z) = g(Y, ∇′

X(A
Ŵ

Z)) − g(Y,A
Ŵ

(∇′
XZ)). (4.2)

Then, from (4.2) we deduce the first relation of the lemma. A proof of the second relation
follows in the same way, which completes the proof. �
Lemma 4.2. Let M be a screen integrable half-lightlike submanifold of M and let F be a
co-dimension three foliation of S(TM). Let A

Ŵ
be its shape operator, where Ŵ is a unit

normal vector to F. Denote by R the curvature tensor of M . Then
div∇′(T0) = 0,

div∇′(Tr) = A
Ŵ

div∇′(Tr−1) +
n∑

i=1
ϵi(R(Ŵ , Tr−1Zi)Zi)′,

where (R(Ŵ , X)Z)′ denotes the tangential component of R(Ŵ , X)Z for X, Z ∈ Γ(TF).
Equivalently, for any Y ∈ Γ(TF) then

g(div∇′(Tr), Y ) =
r∑

j=1

n∑
i=1

ϵig(R(Tr−1Zi, Ŵ )(−A
Ŵ

)j−1Y, Zi). (4.3)

Proof. The first equation of the lemma is obvious since T0 = I. We turn to the second
relation. By direct calculations using the recurrence relation (3.2) we derive

div∇′(Tr) = (−1)rdiv∇′(SrI) + div∇′(A
Ŵ

◦ Tr−1)

= (−1)r∇′Sr + A
Ŵ

div∇′(Tr−1) +
n∑

i=1
ϵi(∇′

Zi
A

Ŵ
)Tr−1Zi. (4.4)

Using Codazzi equation
g(R(X, Y )Z, Ŵ ) = g((∇′

Y AŴ
)X, Z) − g((∇′

XA
Ŵ

)Y, Z),
for any X, Y, Z ∈ Γ(TF) and Lemma 4.1, we have

g((∇′
Zi
A

Ŵ
)Y,Tr−1Zi) = g((∇′

Y AŴ
)Zi, Tr−1Zi) + g(R(Y, Zi)Tr−1Zi, Ŵ )

= g(Tr−1(∇′
Y AŴ

)Zi, Zi) + g(R(Ŵ , Tr−1Zi)Zi, Y ), (4.5)
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for any Y ∈ Γ(TF). Then applying (4.4) and (4.5) we get

g(div∇′(Tr), Y ) = (−1)rg(∇′Sr, Y ) + tr(Tr−1(∇′
Y AŴ

))

+ g(div∇′(Tr−1), Y ) + g(Y,
n∑

i=1
ϵiR(Ŵ , Tr−1Zi)Zi). (4.6)

Then, applying (4.6) and (3.6) we get the second equation of the lemma. Finally, (4.3)
follows immediately by an induction argument. �

Notice that when the ambient manifold is a space form of constant sectional curvature,
then (R(Ŵ , X)Y )′ = 0, for each X, Y ∈ Γ(TF). Hence, from Lemma (4.2) we have
div∇′(Tr) = 0.

Lemma 4.3. Let M be a screen integrable half-lightlike submanifold of M and let F be a
co-dimension three foliation of S(TM). Let A

Ŵ
be its shape operator, where Ŵ is a unit

normal vector to F. Let {Zi} be a local field such (∇′
XZi)p = 0, for i = 1, · · · , n and any

vector field X ∈ Γ(TM). Then at p ∈ F we have

g(∇′
Zi

∇
Ŵ

Ŵ , Zj) = g(A2
Ŵ

Zi, Zj) − g(R(Zi, Ŵ )Zj , Ŵ )

− g((∇′
Ŵ
A

Ŵ
)Zi, Zj) + g(∇

Ŵ
Ŵ , Zi)g(Zj , ∇

Ŵ
Ŵ ).

Proof. Applying ∇Zi to g(∇
Ŵ

Ŵ , Zj) and g(Ŵ , ∇
Ŵ

Zj) in turn and then using the two
resulting equations, we have

−g(∇
Ŵ

Ŵ , ∇ZiZj) = g(∇Zi∇Ŵ
Ŵ , Zj) + g(∇ZiŴ , ∇

Ŵ
Zj)

+ g(Ŵ , ∇Zi∇Ŵ
Zj). (4.7)

Furthermore, by direct calculations using (∇′
XZi)p = 0 we have

g((∇′
Ŵ
A

Ŵ
)Zi, Zj) = g(∇

Ŵ
Ŵ , ZiZj) + g(Ŵ , ∇

Ŵ
ZiZj),

and hence

g(A2
Ŵ

Zi, Zj) − g(R(Zi, Ŵ )Zj , Ŵ ) − g((∇′
Ŵ
A

Ŵ
)Zi, Zj)

= g(A2
Ŵ

Zi, Zj) − g(R(Zi, Ŵ )Zj , Ŵ )

− g(∇
Ŵ

Ŵ , ZiZj) − g(Ŵ , ∇
Ŵ

ZiZj)

= g(A2
Ŵ

Zi, Zj) − g(∇ZiZj , ∇
Ŵ

Ŵ )

− g(∇Zi∇Ŵ
Zj , Ŵ ) + g(∇[Zi,Ŵ ]Zj , Ŵ ). (4.8)

Now, applying (4.7), the condition at p and the following relations

∇ZiŴ =
n∑

k=1
ϵkg(∇ZiŴ , Zk)Zk, ∇

Ŵ
Zj = g(∇

Ŵ
Zj , Ŵ )Ŵ ,

and g(A2
Ŵ

Zi, Zj) = −
∑n

k=1 ϵkg(∇ZiŴ , Zk)g(∇Zk
Zj , Ŵ ) to the last line of (4.8) and the

fact that S(TM) is integrable we get

g(A2
Ŵ

Zi, Zj) − g(R(Zi, Ŵ )Zj , Ŵ ) − g((∇′
Ŵ
A

Ŵ
)Zi, Zj)

= g(∇′
Zi

∇
Ŵ

Ŵ , Zj) − g(∇
Ŵ

Ŵ , Zi)g(Zj , ∇
Ŵ

Ŵ ),

from which the lemma follows by rearrangement. �

Notice that, using parallel transport, we can always construct a frame field from the
above lemma.
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Proposition 4.4. Let M be a screen integrable half-lightlike submanifold of an indefinite
almost contact manifold M and let F be a foliation of S(TM). Then

div∇′(Tr∇
Ŵ

Ŵ ) = g(div∇′(Tr), ∇
Ŵ

Ŵ ) + (−1)r+1Ŵ (Sr+1)

+ (−1)r+1(−S1Sr+1 + (r + 2)Sr+2) −
n∑

i=1
ϵig(R(Zi, Ŵ )TrZi, Ŵ )

+ g(∇
Ŵ

Ŵ , Tr∇
Ŵ

Ŵ ),
where {Zi} is a field of frame tangent to the leaves of F.

Proof. From (3.7),we deduce that

div∇′(TrZ) = g(div∇′(Tr), Z) +
n∑

i=1
ϵig(∇′

Zi
Z, TrZi), (4.9)

for all Z ∈ Γ(TF). Then using (4.9), Lemmas 4.2 and 4.3, we obtain the desired result.
Hence the proof. �

From Proposition 4.4 we have

Theorem 4.5. Let M be a screen integrable half-lightlike submanifold of an indefinite
almost contact manifold M and let F be a co-dimension three foliation of S(TM). Then

div∇(Tr∇
Ŵ

Ŵ ) = g(div∇′(Tr), ∇
Ŵ

Ŵ ) + (−1)r+1Ŵ (Sr+1)
+ (−1)r+1(−S1Sr+1 + (r + 2)Sr+2)

−
n∑

i=1
ϵig(R(Zi, Ŵ )TrZi, Ŵ ).

Proof. A proof follows easily from Proposition 4.4 by recognizing the fact that

div∇(Tr∇
Ŵ

Ŵ ) = div∇′(Tr∇
Ŵ

Ŵ )

− g(∇
Ŵ

Ŵ , Tr∇
Ŵ

Ŵ ),
which completes the proof. �
Theorem 4.6. Let M be a screen integrable half-lightlike submanifold of M and let F be
a co-dimension three foliation of S(TM). Then,

div∇(Tr∇
Ŵ

Ŵ + (−1)rSr+1Ŵ ) = g(div∇′(Tr), ∇
Ŵ

Ŵ )

+ (−1)r+1(r + 2)Sr+2 −
n∑

i=1
ϵig(R(Zi, Ŵ )TrZi, Ŵ ).

Proof. By straightforward calculations we have
S1 = tr(A

Ŵ
)

= −
n∑

i=1
ϵig(∇ZiŴ , Zi)

= −
n+1∑
i=1

ϵig(∇ZiŴ , Zi)

= −div∇(Ŵ ),

where Zn+1 = Ŵ . From this equation we deduce

div∇(Sr+1Ŵ ) = −S1Sr+1 + Ŵ (Sr+1). (4.10)
Then from (4.10) and Theorem 4.5 we get our assertion, hence the proof. �
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Next, we let dV denote the volume form M . Then from Theorem 4.6 we have the
following

Corollary 4.7. Let M be a screen integrable half-lightlike submanifold of a compact semi-
Riemannian manifold M and let F be a co-dimension three foliation of S(TM). Then∫

M
g(div∇′(Tr), ∇

Ŵ
Ŵ )dV =

∫
M

((−1)r(r + 2)Sr+2

+
n∑

i=1
ϵig(R(Zi, Ŵ )TrZi, Ŵ )dV.

Setting r = 0 in the above corollary we get

Corollary 4.8. Let M be a screen integrable half-lightlike submanifold of a compact semi-
Riemannian manifold M and let F be a co-dimension three foliation of S(TM) with mean
curvatures Sr. Then for r = 0 we have∫

M
2S2dV =

∫
M

Ric(Ŵ , Ŵ )dV,

where Ric(Ŵ , Ŵ ) =
n∑

i=1
ϵig(R(Zi, Ŵ )Ŵ , Zi).

Notice that the equation in Corollary 4.8 is the lightlike analogue of (3.5) in [2] for
co-dimension one foliations on Riemannian manifolds.

Next, we will discuss some consequences of the integral formulas developed so far.
A semi-Riemannian manifold M of constant sectional curvature c is called a semi-

Riemannian space form [4, 6] and is denoted by M(c). Then, the curvature tensor R of
M(c) is given by

R(X, Y )Z = c{g(Y , Z)X − g(X, Z)Y }, ∀ X, Y , Z ∈ Γ(TM). (4.11)

Theorem 4.9. Let M be a screen integrable half-lightlike submanifold of a compact semi-
Riemannian space form M(c) of constant sectional curvature c. Let F be a co-dimension
three foliation of its screen distribution S(TM). If V is the total volume of M , then

∫
M

SrdV =


0, r = 2k + 1,

c
r
2

(
n
2
r
2

)
V, r = 2k,

(4.12)

for positive integers k.

Proof. By setting X = Zi, Y = Ŵ and Z = TrZi in (4.11) we deduce that

R(Zi, Ŵ )TrZi = −cg(Zi, TrZi)Ŵ .

Then substituting this equation in Corollary 4.7 we obtain∫
M

g(div∇′(Tr), ∇
Ŵ

Ŵ )dV =
∫

M
((−1)r(r + 2)Sr+2 − ctr(Tr))dV.

Since M is of constant sectional curvature c, then Lemma 4.2 implies that Tr = 0 for any
r and hence the above equation simplifies to

(r + 2)
∫

M
Sr+2dV = c(n − r)

∫
M

SrdV. (4.13)

Since S1 = −div∇(Ŵ ) and that M is compact, then
∫

M S1dV = 0. Using this fact together
with (4.13), mathematical induction gives

∫
M SrdV = 0 for all r = 2k + 1 (i.e., r odd).
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For r even we will consider r = 2m and n = 2l (i.e., both M and M are odd dimensional).
With these conditions, (4.13) reduces to∫

M
S2m+2dV = c

l − m

1 + m

∫
M

S2mdV. (4.14)

Now setting m = 0, 1, · · · and S0 = 1 in (4.14) we obtain∫
M

S2dV = clV,

∫
M

S4dV = c2 (l − 1)l
2

V,

and more generally∫
M

S2kdV = ck (l − k + 1)(l − k + 2)(l − k + 3) · · · l

k!
V. (4.15)

Hence, our assertion follows from 4.15, which completes the proof. �

Next, when M is Einstein i.e., Ric = µg we have the following.

Theorem 4.10. Let M be a screen integrable half-lightlike submanifold of an Einstein
compact semi-Riemannian manifold M . Let F be a co-dimension three foliation of its
screen distribution S(TM) with totally umbilical leaves. If V is the total volume of M ,
then

∫
M

SrdV =


0, r = 2k + 1,

(µ
n

)n
2

(
n
2
r
2

)
V, r = 2k,

(4.16)

for positive integers k.

Proof. Suppose that A
Ŵ

= 1
nSrI. Then by direct calculations using the formula for Tr

we derive Tr = (−1)r+1 (n−r)
n SrI. Then, under the assumptions of the theorem we obtain

Ric(Ŵ , ∇
Ŵ

Ŵ ) = 0 and Ric(Ŵ , Ŵ ) = µ and hence, Corollary 4.7 reduces to

n(r + 2)
∫

M
Sr+2dV = λ(n − r)

∫
M

SrdV. (4.17)

Notice that (4.17) is similar to (4.13) and hence following similar steps as in the previous
theorem we get

∫
M SrdV = 0 for r odd and for r even we get∫
M

S2kdV =
(

µ

n

)k (l − k + 1)(l − k + 2)(l − k + 3) · · · l

k!
V,

which complete the proof. �

5. Screen umbilical half-lightlike submanifolds
In this section we consider totally umbilical half-lightlike submanifolds of semi-Riemannian

manifold, with a totally umbilical screen distribution and thus, give a generalized version
of Theorem 4.3.7 of [6] and its Corollaries, via Newton transformations of the operator
AN .

A screen distribution S(TM) of a half-lightlike submanifold M of a semi-Riemannian
manifold M is said to be totally umbilical [6] if on any coordinate neighborhood U there
exist a function K such that

C(X, PY ) = Kg(X, PY ), ∀ X, Y ∈ Γ(TM). (5.1)

In case K = 0, we say that S(TM) is totally geodesic. Furthermore, if S(TM) is totally
umbilical then by straightforward calculations we have

AN X = PX, C(E, PX) = 0, ∀ X ∈ Γ(TM). (5.2)
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Let {E, Zi}, for i = 1, · · · , n, be a quasi-orthonormal frame field of TM which diagonalizes
AN . Let l0, l1, · · · , ln be the respective eigenvalues (or principal curvatures). Then as
before, the r-th mean curvature Sr is given by

Sr = σr(l0, · · · , ln) and S0 = 1.

The characteristic polynomial of AN is given by

det(AN − tI) =
n∑

α=0
(−1)αSrtn−α,

where I is the identity in Γ(TM). The normalized r-th mean curvature Hr of M is defined

by
(

n

r

)
Hr = Sr and H0 = 1. The Newton transformations Tr : Γ(TM) → Γ(TM) of

AN are given by the inductive formula

T0 = I, Tr = (−1)rSrI + AN ◦ Tr−1, 1 ≤ r ≤ n. (5.3)

By Cayley-Hamiliton theorem, we have Tn+1 = 0. Also, Tr satisfies the following proper-
ties.

tr(Tr) = (−1)r(n + 1 − r)Sr, (5.4)
tr(AN ◦ Tr) = (−1)r(r + 1)Sr+1, (5.5)
tr(A2

N ◦ Tr) = (−1)r+1(−S1Sr+1 + (r + 2)Sr+2), (5.6)
tr(Tr ◦ ∇XAN ) = (−1)rX(Sr+1), (5.7)

for all X ∈ Γ(TM).

Proposition 5.1. Let (M, g) be a totally umbilical half-lightlike submanifold of a semi-
Riemannian manifold M of constant sectional curvature c. Then

g(div∇(Tr), X) = (−1)r−1λ(X)E(Sr) − τ(X)tr(AN ◦ Tr−1)
− cλ(X)tr(Tr−1) + g(div∇(Tr−1), AN X) + g((∇EAN )Tr−1E, X)

+
n∑

i=1
ϵi{−λ(X)B(Zi, AN (Tr−1Zi))

+ ετ(Zi)C(X, Tr−1Zi){ρ(X)D(Zi, Tr−1Zi) − ρ(Zi)D(X, Tr−1Zi)}},

for any X ∈ Γ(TM).

Proof. From the recurrence relation (5.3), we derive

g(div∇(Tr), X) = (−1)rPX(Sr) + g((∇EAN )Tr−1E, X)

+ g(div∇(Tr−1), AN X) +
n∑

i=1
ϵig((∇ZiAN )Tr−1Zi, X), (5.8)

for any X ∈ Γ(TM). But

g((∇ZiAN )Tr−1Zi, X) = g(Tr−1Zi, (∇ZiAN )X) + g(∇ZiAN (Tr−1Zi), X)
− g(∇Zi(AN X), Tr−1Zi) + g(AN (∇ZiX), Tr−1Zi)
− g(AN (∇ZiTr−1Zi), X), (5.9)

for all X ∈ Γ(TM). �

Then applying (2.9) to (5.9) while considering the fact that AN is screen-valued, we get

g((∇ZiAN )Tr−1Zi, X) = g(Tr−1Zi, (∇ZiAN )X) − λ(X)B(Zi, AN (Tr−1Zi)). (5.10)
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Furthermore, using (2.15) and (4.11), the first term on the right hand side of (5.10) reduces
to

g(Tr−1Zi,(∇ZiAN )X) = −cλ(X)g(Zi, Tr−1Zi) + g((∇XAN )Zi, Tr−1Zi)
− τ(X)C(Zi, Tr−1Zi) + ετ(Zi)C(X, Tr−1Zi){ρ(X)D(Zi, Tr−1Zi)
− ρ(X)D(X, Tr−1Zi)}, (5.11)

for any X ∈ Γ(TM). Finally, replacing (5.11) in (5.10) and then put the resulting equation
in (5.8) we get the desired result.

Next, from Proposition 5.1 we have the following.

Theorem 5.2. Let (M, g) be a half-lightlike submanifold of a semi-Riemannian manifold
M(c) of constant curvature c, with a proper totally umbilical screen distribution S(TM).
If M is also totally umbilical, then the r-th mean curvature Sr, for r = 0, 1, · · · , n, with
respect to AN are solution of the following differential equation

E(Sr+1) − τ(E)(r + 1)Sr+1 − c(−1)r(n + 1 − r)Sr = H1(r + 1)Sr+1.

Proof. Replacing X with E in the Proposition 5.1 and then using (2.16) and (5.2) we
obtain, for all r = 0, 1, · · · , n,

E(Sr+1) − (−1)rτ(E)tr(AN ◦ Tr) − c(−1)rtr(Tr) = (−1)rH1tr(AN ◦ Tr),
from which the result follows by applying (5.4) and (5.5). �
Corollary 5.3. Under the hypothesis of Theorem 5.2, the induced connection ∇ on M
is a metric connection, if and only if, the r-th mean curvature Sr with respect to AN are
solution of the following equation

E(Sr+1) − τ(E)(r + 1)Sr+1 − c(−1)r(n + 1 − r)Sr = 0.

Also the following holds.

Corollary 5.4. Under the hypothesis of Theorem 5.2, M(c) is a semi-Euclidean space, if
and only if, the r-th mean curvature Sr with respect to AN are solution of the following
equation

E(Sr+1) − τ(E)(r + 1)Sr+1 = H1(r + 1)Sr+1.

Notice that Theorem 5.2 and Corollary 5.3 are generalizations of Theorem 4.3.7 and
Corollary 4.3.8, respectively, given in [6].
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