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Abstract

We prove the Lipschitz dependence on the initial data of the solution set of a Cauchy problem associated
to a second-order integro-differential inclusion by using the contraction principle in the space of selections
of the multifunction instead of the space of solutions. A Filippov type existence theorem for this problem is
also provided.
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1. Introduction

This paper is concerned with the problem of Lipschitz dependence on the initial data of the solution set
for the following second order integro-differential inclusion

x′′(t) ∈ A(t)x(t) +

∫ t

0
K(t, s)F (s, x(s))ds, x(0) = x0, x

′(0) = y0, (1.1)

where F : [0, T ]×X → P(X) is a Lipschitz-continuous set-valued map with respect to the second variable, X
is a separable Banach space, {A(t)}t≥0 is a family of linear closed operators from X into X that genearates
an evolution system of operators {G(t, s)}t,s∈[0,T ], ∆ = {(t, s) ∈ [0, T ] × [0, T ]; t ≥ s}, K(., .) : ∆ → R is
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continuous and x0, y0 ∈ X. The general framework of evolution operators {A(t)}t≥0 that define problem
(1.1) has been developed by Kozak ([14]) and improved by Henriquez ([11]).

We study the properties of the map that associates to given initial conditions the set of mild solutions of
problem (1.1) and the main purpose is to prove that this solution map depends Lipschitz-continuously on the
initial conditions. Our approach is based on an idea of Tallos ([13,16]) applying the set-valued contraction
principle in the space of selections of the multifunction instead of the space of solutions as usual. This
approach allows us to obtain also a Filippov type existence result for mild solutions of problem (1.1). Recall
that for a differential inclusion defined by a Lipschitz-continuous set-valued map with nonconvex values,
Filippov’s theorem consists in proving the existence of a solution starting from a given "quasi" solution.
Moreover, the result provides an estimate between the "quasi" solution and the solution obtained.

In several recent papers ([1-3], [7], [11-12]) existence results and qualitative properties of mild solutions
have been obtained for the following problem

x′′(t) ∈ A(t)x(t) + F (t, x(t)), x(0) = x0, x
′(0) = y0, (1.2)

with A(.) and F (., .) as above. All the results quoted above are proved by using fixed point techniques.
On one hand, the result in the present paper extends to the integro-differential framework (1.1) the results

in [7] obtained for problem (1.2) and, on the other hand, this paper extends to second-order integro-differential
inclusions similar results in [5] and [6] obtained for a class of first-order integro-differential inclusions.

The paper is organized as follows: in Section 2 we recall some preliminary results that we use in the
sequel and in Section 3 we prove our main results.

2. Preliminaries

Let denote by I the interval [0, T ], T > 0 and let X be a real separable Banach space with the norm |.|
and with the corresponding metric d(., .). As usual, we denote by C(I,X) the Banach space of all continuous
functions x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,X) the Banach space of
all (Bochner) integrable functions x(.) : I → X endowed with the norm |x(.)|1 =

∫ T
0 |x(t)|dt. With B(X) we

denote the Banach space of linear bounded operators on X and with B we denote the closed unit ball in X.
In what follows {A(t)}t≥0 is a family of linear closed operators from X into X that genearates an

evolution system of operators {G(t, s)}t,s∈I . By hypothesis the domain of A(t), D(A(t)) is dense in X and
is independent of t.

Definition 2.1. ([11,14]) A family of bounded linear operators G(t, s) : X → X, (t, s) ∈ ∆ := {(t, s) ∈
I × I; s ≤ t} is called an evolution operator of the equation

x′′(t) = A(t)x(t) (2.1)

if
i) For any x ∈ X, the map (t, s)→ G(t, s)x is continuously differentiable and

a) G(t, t) = 0, t ∈ I.
b) If t ∈ I, x ∈ X then ∂

∂tG(t, s)x|t=s = x and ∂
∂sG(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sG(t, s)x ∈ D(A(t)), the map (t, s)→ G(t, s)x is of class C2 and

a) ∂2

∂t2
G(t, s)x ≡ A(t)G(t, s)x.

b) ∂2

∂s2
G(t, s)x ≡ G(t, s)A(t)x.

c) ∂2

∂s∂tG(t, s)x|t=s = 0.
iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂s
G(t, s)x, ∂3

∂s2∂t
G(t, s)x and

a) ∂3

∂t2∂s
G(t, s)x ≡ A(t) ∂∂sG(t, s)x and the map (t, s)→ A(t) ∂∂sG(t, s)x is continuous.

b) ∂3

∂s2∂t
G(t, s)x ≡ ∂

∂tG(t, s)A(s)x.
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As an example for equation (2.1) one may consider the problem (e.g., [11])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in the space X = L2(R,C) of
2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)

dτ2
with domain H2(R,C) the Sobolev space of

2π-periodic functions whose derivatives belong to L2(R,C). It is well known thatA1 is the infinitesimal
generator of strongly continuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely
the spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors zn(τ) = 1√

2π
einτ , n ∈ N.

The set zn, n ∈ N is an orthonormal basis of X. In particular, A1z =
∑

n∈Z−n2 < z, zn > zn, z ∈ D(A1).
The cosine function is given by C(t)z =

∑
n∈Z cos(nt) < z, zn > zn with the associated sine function

S(t)z = t < z, z0 > z0 +
∑

n∈Z∗
sin(nt)
n < z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)
dτ with domain D(A2(t)) = H1(R,C). Set A(t) =

A1 +A2(t). It has been proved in [11] that this family generates an evolution operator as in Definition 2.1.

Definition 2.2. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of problem (1.1) if there
exists a (Bochner) integrable function f(.) ∈ L1(I,X) such that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
G(t, s)

∫ s

0
K(s, τ)f(τ)dτ, t ∈ I. (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2) and x(.) is defined by (2.3).
We shall use the following notations for the solution sets of (1.1).

S(x0, y0) = {(x(.), f(.)); (x(.), f(.)) is a trajectory-selection pair of (1.1)}, (2.4)

S1(x0, y0) = {x(.); x(.) is a mild solution of (1.1)}. (2.5)

In what follows we assume the following hypothesis.

Hypothesis. i) There exists an evolution operator {G(t, s)}t,s∈I associated to the family {A(t)}t≥0.
ii) There exist M,M0 ≥ 0 such that |G(t, s)|B(X) ≤M , | ∂∂sG(t, s)| ≤M0, for all (t, s) ∈ ∆.
iii) F (., .) : I ×X → P(X) has nonempty closed values and for every x ∈ X, F (., x) is measurable.
iv) There exists L(.) ∈ L1(I,R+) such that for almost all t ∈ I, F (t, .) is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ X,

here dH(A,B) is the Hausdorff distance between A,B ⊂ X

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

d(a,B) = inf{d(a, b); b ∈ B}.
v) d(0, F (t, 0)) ≤ L(t) a.e. (I)

Let m(t) =
∫ t

0 L(u)du and for given α ∈ R we consider on L1(I,X) the following norm

|f |1 =

∫ T

0
e−αm(t)|f(t)|dt, f ∈ L1(I,X),

which is equivalent with the usual norm on L1(I,X).
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Consider the following norm on C(I,X)× L1(I,X)

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,X)× L1(I,X).

Finally we recall some basic results concerning set valued contractions that we shall use in the sequel.
Let (Z, d) be a metric space and consider a set valued map N on Z with nonempty closed values in Z.

N is said to be a γ-contraction if there exists 0 < γ < 1 such that:

dH(N(x), N(y)) ≤ γd(x, y) ∀x, y ∈ Z

If Z is complete, then every set valued contraction has a fixed point, i.e. a point z ∈ Z such that z ∈ N(z)
([8]).

We denote by Fix(N) the set of all fixed point of the multifunction N . Obviously, Fix(N) is closed.

Proposition 2.3. ([15]) Let Z be a complete metric space and suppose that N1, N2 are λ-contractions with
closed values in Z. Then

dH(Fix(N1), F ix(N2)) ≤ 1

1− γ
sup
z∈Z

dH(N1(z), N2(z)).

Finally, we note that condition (2.3) can be rewritten as

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds ∀t ∈ I, (2.6)

where U(t, s) =
∫ t
s G(t, τ)K(τ, s)dτ .

Denote K0 := sup(t,s)∈∆ |K(t, s)| and remark that |U(t, s)| ≤MK0(t− s) ≤MK0T .

3. The main results

We show first that the set of all trajectory-selection pairs of (1.1) depends Lipschitz-continuously on the
initial condition.

Theorem 3.1. Let Hypothesis be satisfied and let α > MK0T .
Then the map (x0, y0) → S(x0, y0) is Lipschitz-continuous on X × X with nonempty closed values in

C(I,X)× L1(I,X).

Proof. Let us consider x0, y0 ∈ X, f(.) ∈ L1(I,X) and define the following set valued maps

Bx0,y0,f (t) = F (t,− ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds), t ∈ I, (3.1)

Nx0,y0(f) = {φ(.) ∈ L1(I,X); φ(t) ∈ Bx0,y0,f (t) a.e. (I)}. (3.2)

At the begining we prove that Nx0,y0(f) is nonempty and closed for every f ∈ L1(I,X). The fact that
that the set valued map Bx0,y0,f (.) is measurable is well known. For example, the map t→ − ∂

∂sG(t, 0)x0 +

G(t, 0)y0 +
∫ t

0 U(t, s)f(s)ds can be approximated by step functions and we can apply Theorem III. 40 in [4].
Since the values of F are closed and X is separable with the measurable selection theorem (Theorem III.6
in [4]) we infer that Bx0,y0,f (.) admits a measurable selection φ. According to Hypothesis one has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t, x(t))) ≤ L(t)(1 + |x(t)|)

≤ L(t)(1 +M0|x0|+M |y0|+
∫ t

0
MK0T |f(s)|ds).
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Thus integrating by parts we obtain∫ T

0
e−αm(t)|φ(t)|dt ≤

∫ T

0
e−αm(t)L(t)(1 +M0|x0|+M |y0|+

∫ t

0
MK0T |f(s)|ds)dt ≤ 1 +M0|x0|

α
+
M |y0|
α

+
MK0T |f |1

α
.

Hence, if φ(.) is a measurable selection of Bx0,y0,f (.), then φ(.) ∈ L1(I,X) and thus Nx0,y0(f) 6= ∅.
The set Nx0,y0(f) is closed. Indeed, if φn ∈ Nx0,y0(f) and |φn−φ|1 → 0 then we can pass to a subsequence

φnk such that φnk(t)→ φ(t) for a.e. t ∈ I, and we find that φ ∈ Nx0,y0(f).
We prove now that Nx0,y0(.) is a contraction on L1(I,X).
Let f, g ∈ L1(I,X) be given, φ ∈ Nx0,y0(f) and let ε > 0. Consider the following set valued map

G(t) = Bx0,y0,g(t) ∩ {x ∈ X; |φ(t)− x| ≤ L(t)|
∫ t

0
U(t, s)(f(s)− g(s))ds|+ ε}.

Since
d(φ(t), Bx0,y0,g(t)) ≤ d(F (t,− ∂

∂sG(t, 0)x0 +G(t, 0)y0 +
∫ t

0 U(t, s)f(s)ds),

F (t,− ∂
∂sG(t, 0)x0 +G(t, 0)y0 +

∫ t
0 U(t, s)g(s)ds)) ≤ L(t)|

∫ t
0 U(t, s)(f(s)−

g(s))ds|

we find that G(.) has nonempty closed values. Moreover, according to Proposition III.4 in [4], G(.) is
measurable. Let ψ(.) be a measurable selection of G(.). It follows that ψ ∈ Nx0,y0(g) and

|φ− ψ|1 =

∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0
e−αm(t)L(t)(

∫ t

0
MK0T |f(s)−

g(s)|ds)dt+

∫ T

0
εe−αm(t)dt ≤ MK0T

α
|f − g|1 + ε

∫ T

0
e−αm(t)dt.

ε is arbitrary, hence

d(φ,Nx0,y0(g)) ≤ MK0T

α
|f − g|1.

If we replace f by g we obtain

d(Nx0,y0(f), Nx0,y0(g)) ≤ MK0T

α
|f − g|1,

thus Nx0,y0(.) is a contraction on L1(I,X).
Therefore, Nx0,y0(.) admits a fixed point f(.) ∈ L1(I,X). We define x(t) = − ∂

∂sG(t, 0)x0 + G(t, 0)y0 +∫ t
0 U(t, s)f(s)ds.

We show that S(x0, y0) ⊂ C(I,X) × L1(I,X) is a closed subset. Let (xn, fn) ∈ S(x0, y0), |(xn, fn) −
(x, f)|C×L → 0. In particular,
fn ∈ Fix(Nx0,y0), which is a closed set, and thus f(.) ∈ Fix(Nx0,y0). We put y(t) = − ∂

∂sG(t, 0)x0 +

G(t, 0)y0 +
∫ t

0 U(t, s)f(s)ds and we prove that y(.) = x(.). One may write

|y − xn|C = supt∈I |y(t)− xn(t)| ≤ supt∈IMK0T
∫ t

0 |fn(u)− f(u)|du ≤
MK0Te

αm(T )|fn − f |1

and finally we get that y(.) = x(.).
At the next step of the proof we obtain the following inequality

dH(Nx1,y1(f), Nx2,y2(f)) ≤ 1

α
(M0|x1 − x2|+M |y1 − y2|) (3.3)
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∀f ∈ L1(I,X), x1, x2, y1, y2 ∈ X. Define

G1(t) = Bx1,x2,f (t) ∩ {z ∈ X; |φ(t)− z| ≤
L(t)(| ∂∂sG(t, 0)||x1 − x2|+ |G(t, 0)||y1 − y2|+ ε},

t ∈ I, where φ(.) is a measurable selection of Bx1,y1,f (.) and ε > 0.
Repeating the arguments used for the set valued map G(.), we obtain that G1(.) is measurable with

nonempty closed values. Let ψ(.) be a measurable selection of G1(.). It follows that ψ(.) ∈ Nx2,y2(f) and

|φ− ψ|1 =

∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0
e−αm(t)L(t)(| ∂

∂s
G(t, 0)||x1 − x2|+ |G(t, 0)||y1 − y2|)dt+

ε

∫ T

0
e−αm(t)dt ≤ M0

α
|x1 − x2|+

M

α
|y1 − y2|+ ε

∫ T

0
e−αm(t)dt.

Since ε was arbitrary, we deduce that

d(φ,Nx2,y2(f)) ≤ 1

α
(M0|x1 − x2|+M |y1 − y2|).

If we replace (x1, y1) by (x2, y2) we obtain (3.3).
From (3.3) and Proposition 2.3 we obtain

dH(Fix(Nx1,y1), F ix(Nx2,y2)) ≤ 1

α−MK0T
(M0|x1 − x2|+M |y1 − y2|).

Let x1, x2, y1, y2 ∈ X and (x(.), f(.)) ∈ S(x1, y1). In particular, f(.) ∈ Fix(Nx1,y1) and thus, for every
ε > 0 there exists g(.) ∈ Fix(Nx2,y2) such that

|f − g|1 ≤
1

α−MK0T
(M0|x1 − x2|+M |y1 − y2|) + ε. (3.4)

Put z(t) = − ∂
∂sG(t, 0)x0 +G(t, 0)y0 +

∫ t
0 U(t, s)g(s)ds. One has

|x− z|C = sup
t∈I
|x(t)− z(t)| ≤M0|x1 − x2|+M |y1 − y2|+

sup
t∈I

∫ t

0
MK0T |f(s)− g(s)|ds ≤M0|x1 − x2|+M |y1 − y2|+MK0Te

αm(t)|f − g|1

≤ (1 +
MK0Te

αm(t)

α−MK0T
)(M0|x1 − x2|+M |y1 − y2|) +

MK0Te
αm(t)

α−MK0T
ε.

It remains to denote k = max{M0 + MK0TM0eαm(T )

α−MK0T
,M + M2K0Teαm(T )

α−MK0T
} to get first that

d((x, f),S(x2, y2)) ≤ k[|x1 − x2|+ |y1 − y2|].

By interchanging (x1, y1) and (x2, y2) we obtain

dH(S(x1, y1),S(x2, y2)) ≤ k[|x1 − x2|+ |y1 − y2|]

and the proof is complete.

An easy consequence of Theorem 3.1 is
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Corollary 3.2. Let Hypothesis be satisfied and let α > MK0T . Then the map (x0, y0) → S1(x0, y0) is
Lipschitz continuous on X ×X with nonempty values in C(I,X).

If the assumptions of Theorem 3.1 are satisfied the solution set S1(x0, y0) is not closed in C(I,X). In the
following result one see that if X is reflexive and the set-valued map F (., .) is convex valued and integrably
bounded then S1(x0, y0) ⊂ C(I,X) is closed.

Proposition 3.3. Assume that X is reflexive, α > MK0T and let F (., .) : I×X → P(X) be a convex valued
set-valued map that satisfies Hypothesis. Assume that there exists k(.) ∈ L1(I,X) such that for almost all
t ∈ I and for all x ∈ X, F (t, x) ⊂ k(t)B.

Then for every x0, y0 ∈ X, the set S1(x0, y0) ⊂ C(I,X) is closed.

Proof. Take xn(.) ∈ S1(x0, y0) such that |xn−x|C → 0. There exists fn(.) ∈ L1(I,X) such that (xn(.), fn(.))
is a trajectory-selection pair of (1.1) ∀n ∈ N. We put hn(t) = e−αm(t)fn(t), t ∈ I.

Since F (., .) is integrably bounded, we deduce that fn(.) is bounded in L1(I,X) and ∀ε > 0,∃δ > 0
such that ∀E ⊂ I, µ(E) < δ, |

∫
E hn(s)ds| < ε uniformly with respect to n. X is reflexive and so by the

Dunford-Pettis criterion ([9]), taking a subsequence and keeping the same notations, we may assume that
hn(.) converges weakly in L1(I,X) to some h(.) ∈ L1(I,X).

We recall that for convex subsets of a Banach space the strong closure coincides with the weak closure.
Since hn(.) converges weakly in L1(I,X) to h(.) ∈ L1(I,X) then for all p ≥ 0, h(.) belongs to the weak
closure of the convex hull co{hn(.)}n≥p of the subset {hn(.)}n≥p. It coincides with the strong closure of
co{hn(.)}n≥p. So, there exist λni > 0, i = n, . . . k(n) such that

k(n)∑
i=1

λni = 1, gn(.) =

k(n)∑
i=n

λni hi(.) ∈ co{hn(.)}n≥h

and such that gn(.) converges strongly to f(.) in L1(I,X). Define rn(.) =
∑k(n)

i=n λ
n
i fi(.) Therefore, there

exists a subsequence gnj (.) that converges to h(.) almost everywhere. In particular, rnj (.) converges almost
everywhere to r(.) = eαm(.)h(.) ∈ L1(I,X). With Lebesgue’s dominated convergence theorem, for every
t ∈ I we obtain

lim
j→∞

∫ t

0
U(t, s)rnj (s)ds =

∫ t

0
U(t, s)r(s)ds

Define

y(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
U(t, s)r(s)ds, t ∈ I

and note that

|x(t)− y(t)| ≤ |x(.)− xnj (.)|C + |
∫ t

0
U(t, s)rnj (s)ds−

∫ t

0
U(t, s)r(s)ds|,

which yields x(t) = y(t) ∀t ∈ I.
Moreover, for almost every t ∈ I

rnj (t) ∈
k(nj)∑
i=nj

λ
nj
i F (t, xi(t)) ⊂ F (t, x(t)) + L(t)

k(nj)∑
i=nj

λ
nj
i |x(t)− xi(t)|B.

Since limi→∞ |x(t)− xi(t)| = 0, we deduce that f(t) ∈ F (t, x(t)) a.e.(I) and the proof is complete.

Following similar ideas as in the proof of Theorem 3.1 we obtain an existence result for problem (1.1).
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Theorem 3.4. Let Hypothesis be satisfied and let α > MK0T and let y(.) be a mild solution of the problem

x′′ = A(t)x+

∫ t

0
K(t, s)g(s)ds x(0) = x1, x′(0) = y1,

where g(.) ∈ L1(I,X) and there exists p(.) ∈ L1(I,R) such that

d(g(t), F (t, y(t))) ≤ p(t), a.e. (I).

Then for every ε > 0 there exists x(.) a mild solution of (1.1) satisfying for all t ∈ I

|x(t)− y(t)| ≤ (1 + MK0T
α−MK0T

eαm(t))(M0|x0 − y0|+M |x1 − y1|)+
αMK0Teαm(t)

α−MK0T

∫ T
0 e−αm(s)p(s)ds+ ε.

(3.5)

Proof. We keep the same notations as in the proof of Theorem 3.1.
Consider the following set-valued maps

H(t, x) = F (t, x) + p(t)B, (t, x) ∈ I ×X,

B̃x1,y1,f (t) = H(t,− ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0
U(t, s)f(s)ds), t ∈ I,

Ñx1,y1(f) = {φ(.) ∈ L1(I,X); φ(t) ∈ B̃x1,y1,f (t) a.e. (I)}, f ∈ L1(I,X).

Obviously, H(., .) satisfies Hypothesis.
As in the proof of Theorem 3.1 we deduce that Ñx1,y1(.) is a MK0T

α -contraction on L1(I,X) with closed
nonempty values.

Next we show the following estimate

dH(Nx0,y0(f), Ñx1,y1(f)) ≤ M0

α
|x0 − x1|+

M

α
|y0 − y1|+

∫ T

0
e−αm(t)p(t)dt (3.6)

∀ f(.) ∈ L1(I,X).
Take φ ∈ Nx0,y0(f), δ > 0 and, for t ∈ I, define

G1(t) = B̃x1,y1,f (t) ∩ {z ∈ X; |φ(t)− z| ≤
L(t)(| ∂∂sG(t, 0)||x1 − x0|+ |G(t, 0)||y1 − y0|) + p(t) + δ}

With the same arguments used for the set-valued map G(.) in the proof of Theorem 3.1, we deduce that
G1(.) is measurable with nonempty closed values. Let ψ(.) be a measurable selection of G1(.). It follows
that ψ(.) ∈ Ñy0,y1(f) and one has

|φ− ψ|1 =
∫ T

0 e−αm(t)|φ(t)− ψ(t)|dt ≤∫ T
0 e−αm(t)[L(t)(| ∂∂sG(t, 0)||x1 − x2|+ |G(t, 0)||y1 − y2|) + p(t) + δ]dt ≤
M0
α |x0 − x1|+ M

α |y0 − y1|+
∫ T

0 e−αm(t)p(t)dt+ δ
∫ T

0 e−αm(t)p(t)dt.

Since δ > 0 was arbitrary, as above, we obtain (3.6). Applying Proposition 2.3 we find

dH(Fix(Nx0,y0), F ix(Ñx1,y1)) ≤ M0
α−MK0T

|x0 − y0|
+ M
α−MK0T

|x1 − y1|+ α
α−MK0T

∫ T
0 e−αm(t)p(t)dt.

Since g(.) ∈ Fix(Ñx1,y1) we find that there exists f(.) ∈ Fix(Nx0,y0) such that for any ε > 0

|g − f |1 ≤ M0
α−MK0T

|x0 − x1|+ M
α−MK0T

|y0 − y1|+
α

α−MK0T

∫ T
0 e−αm(t)p(t)dt+ ε

MK0Teαm(T ) .
(3.7)

It remains to define x(t) = − ∂
∂sG(t, 0)x0 +G(t, 0)y0 +

∫ t
0 U(t, s)f(s)ds, t ∈ I. One has

|x(t)− y(t)| ≤M0|x0 − x1|+M |y0 − y1|+MK0Te
αm(t)|f − g|1.

From the last inequality and (3.7) we obtain (3.5).
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