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Abstract

In this paper, we introduce generalized Suzuki type Zg q,,,— contraction with respect to ¢ by using the
notion of Cg—simulation function introduced by Liu, Ansari, Chandok and Radenovi¢[19] and prove the
existence of PPF dependent fixed points in Banach spaces. We draw some corollaries and an example is
provided to illustrate our main result.
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1. Introduction and Preliminaries

Metric fixed point theory is a suggestive area which includes useful methods, directions, and notions for
dealing with various problems. In this area, Banach contraction principle is considered as a fundemental
result. In this principle, Banach proved the existence of fixed points in complete metric spaces in a particular
manner. Due to its importance and way of construction of the proof, many authors attracted and proved its
generalizations and extensions by introducing a new function like a—admissible mapping, C'—class function,

etc., for more details we refer 1], 2, B [12] [13], 16, 22| 24] 26].
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Recently, Khojasteh, Shukla and Radenovi¢[11] introduced the notion of simulation function in order to
express different contractivity conditions in a simple, unified manner and they obtained some fixed point
results. Later, many authors extended and generalized the simulation function by using different types of
functions, for more details we refer [15, [I7, 19] 2T], 23] 25].

Throughout this paper, we denote the real line by R, RT = [0, 00), and N is the set of all natural numbers,
7 is the set of intergers.

In 2014, Ansari [I] introduced the concept of C'— class function and many authors extended and gener-
alized various fixed point results by using C'—class functions as a main source in complete metric spaces.

Definition 1.1. [1] A mapping G : Rt x RT™ — R is called a C—class function if it is continuous and for
any s,t € RT, the function G satisfies the following conditions:

(i) G(s,t) < s and

(ii) G(s,t) = s implies that either s =0 ort = 0.

We denote the family of all C—class functions by A.

Example 1.2. [1] The following functions belong to A.

(i) G(s,t) = s —t for all s,t € RT.
(ii) G(s,t) = ks for all s,t € RT where 0 < k < 1.
(i1i) G(s,t) = T + y for all s, t € R where r € RT.

(iv) G(s,t) = sB(s) for all s,t € R* where §: Rt —[0,1) is continuous.
(v) G(s,t) = s — qﬁ( ) for all s,t € Rt where ¢ : Rt — RT is continuous
and ¢(t) = 0 if and only if t = 0.
(vi) G(s,t) = sh(s,t) for all s,t € R where h : RT x Rt — RT is continuous

such that h(s,t) <1 for all s,t € RT.
In 2015, Khojasteh, Shukla and Radenovi¢[II] introduced the simulation function as follows.

Definition 1.3. [I1] A function ¢ : RT x RT — R is said to be a simulation function if it satisfies the
following conditions:

(¢1) ¢(0,0) = 0;

((2) C(t,s) < s—t forallt,s >0

(C3) if {tn},{sn} are sequences in (0,00) such that lim t, = lim s, > 0,

n—oo n—oo

then lim sup ((tn, sn) < 0.

n—o0

We denote the set of all simulation functions in the sense of of Definition [1.3| by Zy.

Example 1.4. [I1, [15] Let ¢; : RT — RT be a continuous function with ¢;(t) = 0 if and only if t = 0 for
1=1,23. Then the following functions ¢ : RT x RT — R belong to Zy.
(i) ((t,s) = 75 —t for allt,s € RT.
(ii) C(t,s) = As —t for allt,s e RT and 0 < A < 1.
(1ii) C(t,8) = p1(s) — @pa2(t) for all t,s € RT, where ¢1(t) <t < ¢o(t)
for allt > 0.
(iv) C(t,s) = s — ¢3(s) —t for allt,s, € RT.

Definition 1.5. [T1l] Let (X, d) be a metric space, T : X — X be a mapping and ¢ € Zy. Then T is called
a Z— contraction with respect to ¢ if

((d(Tz, Ty),d(z,y)) > 0 (1)
for any x,y € X.

Theorem 1.6. [11] Let (X,d) be a complete metric space and T : X — X be a Zy—contraction with
respect to (. Then T has a unique fized point u in X and for every xy € X the Picard sequence {xy,} where
Tp = Txpn_1 for any n € N converges to the fixed point of T
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Definition 1.7. [16] Let T be a self mapping on X and let o : X x X — RT be a function. We say that T
is an a—admissible mapping if for any x,y € X with a(x,y) > 1 implies a(Tx, Ty) > 1.

In 2016, Karapinar[I5] introduced the notion of a—admissible Zg—contraction with respect to the sim-
ulation function ¢ and proved the existence of its fixed points in complete metric spaces.

Definition 1.8. [15] Let T be a self-mapping defined on a metric space (X,d). If there exist ( € Zy and
a: X x X — R such that

(e, y)d(Tx, Ty), d(z,y)) = 0 (2)

for all x,y € X, then we say that T is an a—admissible Zg— contraction with respect to (.

Definition 1.9. [22] Let T : X — X be a mapping and o : X x X — RT be a function. We say that T is
an a—orbital admissible if
reX, alz,Tz) >1 = oTz,T?z) > 1. (3)

Furthermore, T is called a triangular a—orbital admissible if T is a—orbital admissible and
z,y€ X, alx,y) >1 and o(y,Ty) >1 = a(z,Ty) > 1. (4)

Theorem 1.10. [15] Let (X,d) be a complete metric space, ¢ € Zy and let T : X — X be an a—admissible
Z i — contraction with respect to (. Suppose that
(i) T is triangular a—orbital admissible,
(i) there exists xg € X such that a(xg, Txo) > 1,
(111) T is continuous.
Then there exists u € X such that Tu = u.

In 2017, Kumum, Gopal and Budhia[I7] introduced the notion of Suzuki type Zpy—contraction by com-
bining the Suzuki type contraction and Zy— contraction and proved the existence of its fixed points in
complete metric spaces.

Definition 1.11. [17/ Let (X, d) be a metric space, T : X — X be a mapping and ( € Zy. Then T is called
a Suzuki type Zp— contraction with respect to ¢ if

%d(x,Ta:) <d(z,y) = ((d(Tx,Ty),d(z,y)) >0 (5)

for any x,y € X with x # y.

Definition 1.12. [I7] Let T : X — X be a mapping and xo € X be aribitrary. Then T is said to possess

property (K) if for a bounded Picard sequence

Ty = Tan—1, n=1,2,3,..., there exist subsequences {xn,, } and {z,, } such that klim d(xpm,, Tn,) =C >0
—00

where my, > n, >k, k € N then

1

id(xmk—l’xmk) < d(xmk_l’xnk_l) (6)
holds.

Theorem 1.13. [17] Let (X,d) be a complete metric space, ( € Zg and T : X — X be a Suzuki type
Z g —contraction with respect to (. Then T has a unique fized point u in X and for every xg € X the Picard

sequence {xy,} where r, = Tx,_1 forn =1,2,3, ..., converges to the fized point of T, provided T' has property
(K).

In 2018, Padcharoen, Kumum, Saipara and Cahipunyal2I] introduced the notion of generalized Suzuki
type Zpg—contraction and proved the existence of its fixed points in complete metric spaces.
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Definition 1.14. [21] Let (X, d) be a metric space, T : X — X be a mapping and ( € Zy. Then T is called
generalized Suzuki type Zp— contraction with respect to ¢ if

§(e, T2) < d(,y) = C(d(Tw, Ty), M(z,9)) > 0 (7

for any x,y € X with x # y, where
d(z, T d(y, Tz
M(x,y) = max{d(z,y),d(z, Tx),d(y, Ty), LT 5dwTely,

Theorem 1.15. [21] Let (X,d) be a complete metric space, ( € Zy and T is a generalized Suzuki type
Z i — contraction with respect to (. Then T has a fixed point.

In 2015, Roldan, Karapinar, Roldan, Martinez|25] modified the Definition of simulation function as
follows.

Definition 1.16. [25] A function ¢ : RT x RT — R is said to be a simulation function if it satisfies the
following conditions:
(C4) €(0,0) = 0;
(¢s) C(t,s) <s—t forallt,s > 0;
(C6) if {tn},{sn} are sequences in (0,00) such that lim t, = lim s, >0
n—oo n—oo
and t, < s, then limsup (tn, s,) < 0.
n—oo

Clearly every simulation function in the sense of Definition [I.3]is also a simulation function in the sense
of Definition [1.16| Roldan, Karapmnar, Roldan, Martinez|25] shown that its converse is not true(Example
3.3, [25]).

In 2018, Liu, Ansari, Chandok and Radenovi¢[19] generalized the simulation function introduced by
Khojasteh, Shukla and Radenovié¢|IT] by using C'—class function as follows.

Definition 1.17. [19] A mapping G : RT x Rt — R has the property Cq if there exists an Cg > 0 such that
(i) G(s,t) > Cg implies s > t, and
(ii) G(t,t) < Cq for all s,t € RT.

Example 1.18. [19] The following functions G : RT™ x RT — R are functions of A that are from Definition
and having the property Cq. For all s,t € RT,
) property
(i) G(s,t) =s—t,Cq =r,r € RT,
g _ (2+1)t _
(“) G(S,t) =8—= 1+ aCG = 07

(iii) G(s,1) = 5.k = 1,06 = 1,7 > 2.

Definition 1.19. [T9/A function ¢ : RT x RT — R is said to be a Cg—simulation function if it satisfies the
following conditions:
(¢7) ¢(0,0) = 0;
(¢s) C(t,s) < G(s,t) for all t,s > 0; here function G : Rt x RT — R* is an element of A which has
property Cg;
(Co) if {tn}, {sn} are sequences in (0,00) such that lim t, = lim s, >0
n—oo n—oo
and t,, < s, then limsup ((t,, s,) < Cg.

n—o0

We denote the set of all Cg—simulation functions by Zg.

Example 1.20. We define ¢ : RT x RT — R by ((t,5) = As — t, where A € (0,1) and G : RT x RT — R by
G(s,t) = s—t for any s,t € RT.

Clearly ((0,0) =0 and G € A with Cg = 0.

Clearly ((t,s) = As —t < s —t = G(s,t) and hence ( satisfies ((g).

If {t,},{sn} are sequences in (0,00) such that nh_)ngo t, = nh_{glo sp=k>0
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and t, < sn for allm € N, then
limsup (tn, sp) = limsup(As, —t,) = Ak —k=(A—1)k <O.
n—oo

n—o0

Therefore  satisfies (C9) and hence ¢ € Zg.
Karapimar, Kumam and Salimi [16] introduced the notion of triangular a—admissible mappings as follows.

Definition 1.21. [16)] Let T be a self mapping on X and let a: X x X — RT be a function. Then T is said
to be a triangular a— admissible mapping if for any x,y,z € X,

alz,y) >1 = a(Tz,Ty) > 1 and

alz,z) > 1, a(z,y) >1 = a(z,y) > 1.

In 1977, Bernfeld, Lakshmikantham and Reddy|7] introduced the concept of fixed point for mappings that
have different domains and ranges which is called PPF (Past, Present and Future) dependent fixed point.
Furthermore, they gave notion of Banach type contraction for non-self mapping and proved the existence
of PPF dependent fixed points in the Razumikhin class for Banach type contraction mappings, for further
details we refer [5], [6l, 9] 10, 14} [18].

Let (E,||.||z) be a Banach space and we denote it simply by E. Let I = [a,b] C R and Ey = C(I, E),
the set of all continuous functions on I equipped with the supremum norm |||z, and we define it by

19l| g, = sup [|o(t)|[g for ¢ € Ep.
a<t<b

For a fixed ¢ € I, the Razumikhin class R, of functions in Ej is defined by R. = {¢ € Ey/ ||¢| |g, = llé(c)] 5}
Clearly every constant function from I to E belongs to R, so that R, is a non-empty subset of Ej .

Definition 1.22. [7/ Let R. be the Razumikhin class of continuous functions in Ey. We say that
(i) the class R, is algebraically closed with respect to the difference if
¢ — Y € R, whenever ¢, € R..
(ii) the class R, is topologically closed if it is closed with respect to the
topology on Ey by the norm ||.||g, -

The Razumikhin class of functions R, has the following properties.

Theorem 1.23. [J] Let R, be the Razumikhin class of functions in Ey. Then
(i) for any ¢ € R. and o € R, we have ap € R,.
(ii) the Razumikhin class R. is topologically closed with respect to the norm
defined on Ej.

(i) "R, = {¢ € Ey/¢: 1 — E is constant} .
c€la,b]

Definition 1.24. [7] Let T : Ey — E be a mapping. A function ¢ € Ey is said to be a PPF dependent fized
point of T if T = ¢(c) for some c € I.

Definition 1.25. [7/ Let T : Ey — E be a mapping. Then T is called a Banach type contraction if there
exists k € [0,1) such that

[T¢ —TY|lg < kll¢ —¢llg, for all ¢, € Ey.

Theorem 1.26. [7/ Let T : Ey — E be a Banach type contraction. Let R. be algebraically closed with respect
to the difference and topologically closed. Then T has a unique PPF dependent fixed point in R..

Definition 1.27. Letc€ . Let T : Ey — E and o : E x E — R* be two functions. Then T is said to be a
ac—admissible mapping if for any ¢,v9 € Ey,

a($(0), () 21 = a(T$,Te) > 1. (8)

Definition 1.28. Letc€ I. Let T : Eg — E and p: E X E — R" be two functions. Then T is said to be a
te—subadmissible mapping if for any ¢,v € Ey,

W(d(e),0(0) <1 = (T, TY) < 1. (9)
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Ciri¢, Alsulami, Salimi and Vetro[8] introduced the concept of triangular a,.—admissible mapping with
respect to p. as follows.

Definition 1.29. [§/ Let c€ I and T : Ey — E. Let a,u : E X E — R" be two functions. Then T is said
to be a triangular a.—admissible mapping with respect to u. if for any ¢, 9, p € Ey,

(1) alg(c), ¥(c)) = u(e(c), ¥(c)) d:> a(T),Ty) = u(To, Ty)
(i) a((c), ¥(c)) = u(d(e), ¥(c), a((ec), () = p(i(c), p(c))
= a(d(c), p(c)) = u(e(c), ¢(c)).

Note that if u(x,y) =1 for any =,y € E, then we say that T is a triangular
ae.—admissible mapping and if a(x,y) = 1 for any x,y € F, then we say that
T is a triangular p.—subadmissible mapping.

(10)

Lemma 1.30. [§] Let T be a triangular a.—admissible mapping with respect to .. We define the sequence
{on} by Thp = dnt1(c) for alln € NU{0}, where ¢o € R is such that a(po(c), Tpo) > p(po(c), T'po). Then
a(dm(c), dn(c)) = puldm(c), dn(c)) for all m,n € N with m < n.

If u(z,y) =1 for any =,y € E in Lemma [1.30, we get the following lemma.

Lemma 1.31. Let T be a triangular a.—admissible mapping. We define the sequence {¢n} by T = Pp+1(c)
for alln € NU{0}, where ¢g € R, is such that a(po(c), Tpo) > 1. Then a(pm(c), pn(c)) > 1 for allm,n € N
with m < n.

If a(z,y) =1 for any x,y € E in Lemma we get the following lemma.

Lemma 1.32. Let T be a triangular p.—subadmissible mapping. We define the sequence {¢n} by T'dp =
¢n+t1(c) for alln € NU {0}, where ¢pg € R is such that u(po(c), Too) < 1. Then u(pm(c), pn(c)) <1 for all
m,n € N with m < n.

We use the following proposition to prove Lemma

Proposition 1.33. If {a,} and {b,} are two real sequences, {b,} is bounded, then liminf(a, + b,) <
lim inf a,, 4+ lim sup b,,.

Lemma 1.34. Let {¢n} be a sequence in Ey such that ||y — ¢nt1||g, — 0 as n — co. If {¢n} is not a
Cauchy sequence, then there exists an € > 0 and two subsequences {¢m, } and {pn, } of {¢dn} withmy > ng > k
such that

Hgbnk - (bmkHEO > €, H¢nk - ¢mk—1HEO <€ and
) i llon, ~ Omerillg, =€ i) Jm (60, 11— Ol = €
iii) klggo || fny, — ¢mkHEO =6 i) klggo | Pny+1 — ¢mk+1HEO =€
Proof. If {¢,,} is not a Cauchy sequence then there exists an € > 0 and two subsequences {¢p,, } and {¢p, }
with mg > ny > k satisfying

P — mill g, = € (11)
We choose my, the least positive integer satisfying . Then we have

|| bny, — ¢mkHE0 > e and |[¢n, — ¢mk—1HEO <€ (12)

We now prove (i).
By triangular inequality we have

€ < ||¢n, — (ZsmkHEO <||¢n, — ¢mk+1‘|E0 + | Pmpt+1 — ¢mk”E0
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Now by applying Proposition with a, = |[¢n, — Pm,+1] g, and
b, = |[Pmy+1 — ¢mk||EO we have
e < liminf [|6n, — i1l (13)
k—o0

(since [|¢n — Pnt1llp, — 0 as n — o)
By triangular inequality we have

H¢nk - ¢mk+1”EO < H¢nk - ¢mk—1”EO + H¢mk—1 - ¢mk‘|E0
< e+ [|omy—1 — ¢mk”EO (by )

On applying limit superior as k — oo we get

im sup [[¢n;, — Gmy+1llg, <€ (14)

k—o0

(since ||¢n — Pn+1llg, — 0 as n — o0)
From and we get
e < liminf |[¢y, — ¢mk+1||E0 < limsup ||¢n, — ¢Mk+1”E0 <e
k—o0 k—o0
Therefore
klggo || @y, — ¢mk+1||E0 = €. (15)

Hence (i) holds.
We now prove (ii).
By triangular inequality we have
€ < |lon, — ¢mkHEO < ln, — ¢nk+1HEO + [|dng+1 — ¢mkHEO :
Now by applying Proposition with a = |[¢n,+1 — dmy || 5, and
bk, = |[¢n), — Pny+1ll g, we have
€ < Hminf|ény 1 — bl - (16)
k—o0

(since ||¢n — Pn+1llg, — 0 as n — o)
By triangular inequality we have

bnit1 = Pl gy < MlPns1 = Ol gy + 1lone — dmitallgy + 1l dmit1 — Emyll g, -
On applying limit superior as k — oo we get

Hm sup [, 41 = Pmy |l g, < € (17)

k—o0

(from and ||¢n — dnt1llg, = 0asn — oo)
From and we get
e < liminf |[¢, 41 — ¢mk||EO < limsup [[¢p,+1 — d’mkHEO Se
k—o0 k—o0
Therefore
1 (|91 — G, = <. (18)
This proves (ii).

We now prove (iii).

From we have ||¢n, — Oyl g, > €.

On applying limit inferior as k — oo we get
lin it |6, — G5, > €. (19)

By triangular inequality we have

bne = Imill gy < Mony, = dnitall gy + [1Pn11 = Pl g, -
On applying limit superior as k — oo we get

limsup [|¢n,, = Py ||, <€ (20)

k—00
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(from and ||¢n — dnt1llg, = 0asn — oo )
From and we get
€ < liminf ||¢p, — ¢mkHE0 < limsup||¢n, — d)mkHE'o <e
k—o0 k—o00
Therefore
i {16, — byl = €. (21)
Hence (iii) holds.
We now prove (iv).
By triangular inequality we have
€< Hﬁbnk - ¢mk‘|E0 < H¢nk - ¢nk+1HEO + "¢nk+1 - ¢mk+1HE0 + H¢mk+1 - ¢mkHEO :
Now by applying Proposition with a;, = ||¢n,+1 — ¢mk+l||E0 and
bk = Hd)nk - ¢nk+1HEO + H¢mk+1 - ¢mkHE0 we have

€ <Hmin [lgn, 1~ b1l - (22)

(since [|¢n — Pn+1llg, — 0 as n — o)
By triangular inequality we have

qunk—i-l - d)mk-i-lHEo < H¢nk+1 - (Z)nkHEO + Hd)nk - (Z)mkHEO + H(bmk - (bmk-&-lHEO .
On applying limit superior as kK — oo we get

limsup |[¢ny+1 = Smyt1ll g, < €. (23)
k—o00

(from and ||¢n — dnt1llg, = 0asn — oo )
From and we get
e < liminf |[¢, 41 — ¢mk+1HEO < limsup [[¢p,+1 — ¢mk+lHE0 < €.
k—o0 k—so0
Therefore
klggo H(bnk-i-l - ¢mk+1HEO =6 (24)

so that (iv) holds. O

In Section 2, we introduce different types of Suzuki type Zy—contractions
(Zg—contractions) by using simulation functions in Zy(Zg.) Also, we define generalized Suzuki type
ZG,a,un—contraction with respect to ¢ in Banach spaces. In Section 3, we prove the existence of PPF
dependent fixed points of generalized Suzuki type Zg o ,,—contraction with respect to ¢. In Section 4 we
draw some corollaries and an example is provided to illustrate our main result.

2. Suzuki type Zy—contractions

We denote
U = {n|n:Rt = R* is continuous, nondecreasing and
n(t) =0 < t=0}.

Definition 2.1. Letc € I. Let T : Ey — FE be a function and ( € Zg. Then T is called a Zg—contraction
with respect to ¢ if

CITe = TY[|E, |l — ¥llE) =0 (25)
for any ¢, € Ej.

Remark 2.2. [t is clear from the definition of simulation function that ((t,s) < 0 for allt > s > 0.
Therefore, if T is a Zg— contraction with respect to ¢ then

IT¢ = Tlle < l¢ = ¥ll5 (26)

for any ¢, € Ey. Therefore every Zg— contraction mapping is contractive and hence it is continuous.
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Definition 2.3. Let ¢ € I. Let T : Egy — FE be a function and ( € Zy. Then T is called Suzuki type
Z i — contraction with respect to C if

%IW(C) —T¢lle <ll¢ = ¥llg, = C(IT¢ —TYl5; ¢ = PllE) =0 (27)

for any ¢, € Ey with ¢ #£ 1.

Remark 2.4. [t is clear from the definition of simulation function that ((t,s) < 0 for all t > s > 0.
Therefore, if T is a Suzuki type Zg— contraction with respect to  then

1
Sllgle) =Tolle <ll¢ = ¥llp, = |IT¢ —T¥[lE <ll¢ =Vl (28)

for any ¢, € Ey with ¢ # 1.
Definition 2.5. Letc € I. Let T : Eg — E be a function and ¢ € Zy. Then T is called generalized Suzuki
type Zg— contraction with respect to C if

%llcﬁ(C) —T9llp <ll¢ —¥lle, = C(|T¢ —TY[|lp, M(¢,¢)) 20 (29)

for any ¢, € Ey with ¢ # 1), where

M(¢,v) = max{[|¢ — Y|y, [[¢(c) — T¢>||E,||¢() TY||g,
é(c)— T¢IIE+|I¢(C T¢>HE}

Remark 2.6. [t is clear from the definition of simulation function that ((t,s) < 0 for allt > s > 0.
Therefore, if T is a generalized Suzuki type Zg— contraction with respect to  then

%ll@ﬁ(C) —Tlle <ll¢ = Yllg, = |IT¢—TY|le < M(¢,¢) (30)

for any ¢, € Ey with ¢ # 1), where

M(¢,¢) = max{||¢ — ¢||m,, l|¢(c) - T¢HE,H (c =T,
(c) w||E+|I¢(c T<1>HE}

Definition 2.7. Letc € I. Let T : Eg — E be a function and ( € Zy. If there exists o« : E x E — R such

that
sllgle) = Telle <l — ¢llm = 51)
C(a(@(e), Y(Th — Tl p, M(,0)) > 0

for any ¢, € Ey with ¢ # 1, where

M(¢,4) = max{||¢ — ¥|[ko; ||¢(c) - T¢|IE,|I¢() Y| g,
90Tyl V() -Tells y

then we say that T is a generalized Suzuki type Z H@—contmctzon with respect to (.

Definition 2.8. Let c € I. Let T : Ey — E be a function and ( € Zy. If there exist o : E x E — R and
n € ¥ such that
sllo(e) = Tolle <16 — ¢llm, = (32)
((a(d(e), v (e)n(|Td — T¥|[p), n(M(¢,¢))) = 0
for any ¢, € Ey with ¢ # 1, where

M(¢, ) = max{[|¢ — ¢[|ry, |o(c) — Tk, [|v(c) — TY||E,
ll¢(c)— T¢'||E+||7/)(C) T¢HE}

then we say that T is a generalized Suzuki type Z H,a,n contraction with respect to (.

Remark 2.9. Ifn is the identity mapping in Deﬁnition@ then T is a generalized Suzuki type Z p o— contraction
with respect to .
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Definition 2.10. Let c € I. Let T : Ey — E be a function and { € Zg. If there exist a,pu: E x E — RT
andn € ¥ such that

31(0(0), (e)llo(c) = TollE < |6 — ¥llp, = (33)
Cleo(e), ¥(e)n((|T¢ — TYl|e), n(M(e,¥))) = Cg

for any ¢, € Ey with ¢ # ¢, where

M(¢,v) = max{[|¢ — ¥[|g,. ||¢(c) — TO||E, |[¢(c) — TY||E,
[[¢(c)— T¢|IE+|I¢(C) T¢HE}

then we say that T is a generalized Suzuki type ZG@’W] contraction with respect to (.

Remark 2.11. If T is a generalized Suzuki type Zq o un— contraction with respect to ¢ then

S((e), ()]16(c) ~ Tollm < [|6 = ¥llz, = ”
ol (c). ()n(||T6 — T ) < n(M(&,))

for any ¢, € Ey with ¢ # ¢, where
M (¢, ) = max{[|¢ — ||z, [¢(c) = T¢l|m, [|1(c) — TY||p,
ll¢(c)— T¢|IE+||7/)(C T¢HE}

For, we assume that M($,1) > 0. Then n(M (¢, w))
If there exist ¢, € Eqy such that either a(¢(c),(c)) = 0 or ||[T¢ — T||g = 0 then the inequality is
trivial.

Suppose that a(p(c),¥(c)) #0 and ||T'¢p — TY||g # 0 for any ¢, € Ey. By ((g), we get

Ca < ¢(a(o(c), Y(e)n(||Td — TY||e), n(M(¢,v)))

< Gn(M(¢,v)), (g(c), Y(e))n([[T¢ — T||r)).

Now from (i) of Deﬁm’tz’on of property Cgq, we get the inequality .

Remark 2.12. (3) If u(z,y) =1 for any x,y € E in the inequality then T is called a generalized Suzuki
type Zq a,n—contraction with respect to ¢.
(i) If a(z,y) = 1 and p(x,y) =1 for any x,y € E in the inequality
then T'is called a generalized Suzuki type Zq ,,— contraction with respect
to C.
(iii) If a(z,y) =1 = p(x,y) for any x,y € E and n = identity in the
inequality then T is called a generalized Suzuki type Zg— contraction with respect to C.

3. Existence of PPF dependent fixed points

Theorem 3.1. Letc€ 1. Let T : Ey — E be a function satisfying the following conditions:
(i) T is a generalized Suzuki type Zg o n—contraction with respect to ¢,
(ii) T is a triangular a.—admissible mapping and triangular p.—subadmissible mapping,
(i1i) R. is algebraically closed with respect to the difference,
() if {on} is a sequence in Ey such that ¢, — ¢ as n — oo,
&(6n(©), 6n1(c)) = 1 and u(Bn(c), dn11(€)) < 1 for any n € NU {0}
then a(pn(c), d(c)) > 1 and p(Pn(c), d(c)) <1 for any n € NU{0} and
(v) there exists ¢g € R such that a(¢po(c), T'¢o) > 1 and p(po(c), Teo) < 1.
Then T has a PPF dependent fized point in R..
Moreover, if a(xz,y) > 1,u(x,y) < 1 for any x,y € E and if T is one-one then T has a unique PPF
dependent fixed point in R..

Proof. From (v), we have ¢g € R, such that a(¢g(c),T¢g) > 1 and
w(gpo(c), Tpo) < 1. Let {¢n} be a sequence in R, defined by

Tén = ¢nt1(c) and ||¢ni1 = dnllEy = [|dnt1(c) = Pnlc)l| (35)
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for any n =0,1,2,3....
Since T is traingular a,.—admissible and triangular p.—subadmissible mappings, by Lemma[I.31] and Lemma
.32 we have

a(¢m(c),dn(c)) 21 and  p(dm(c), dn(c)) <1 (36)

for any m,n € N with m < n.

If there exists n € NU {0} such that ¢,, = ¢p+1 then T¢,, = dnyi1(c) = dpn(c) and hence ¢, € R, is a PPF
dependent fixed point of 7.

Suppose that ¢, # ¢p4+1 for any n € NU {0}.

We consider

M (¢n, bni1) = max{||pn — dnt1l|Eys [|Pn(c) — Tonllm, [|Pnr1(c) — Toni1llE,
\\¢n(0)—T¢n+1|\E42r|\¢n+1(0)—T¢nHE}

= ma‘X{H(bn - an-‘rlHEov H‘bn-ﬁ-l - ¢n+2HEO}' (37)
Clearly
311(9n (), dnt1(c))l|n(c) = Tl < %ll%(@ — nt1(0)l|E
= §H¢n - (bn—l—lHEo
< ||¢n - ¢n+1||E0'
From , we have
Ca < ((a(dn(c), pn+1(e))n(||Tdn — Thns1llE) n(M(dn, dnt1))). (38)

Suppose that M (¢n, ¢ni1) = ||Pnr1 — Gni2l|E,-
Clearly a(¢n(c), dnsi1(c))n(||Tén — Tdnt1l|E) > 0 and n(M (¢n, prni1)) > 0.
From , we have
Ca < ((aPn(c), dnr1())nldn+1 — dnrallEo), (|| dnr1 — dnrallB,))

< G(||on+1 — Pnr2llBy), a(dn(c), dni1())n(|[dnt1 — dnrallm))-(by (Cs))
Now by the property Cg and , we get
N(||ént1 — dnrallB) > (dn(c), dnr1())n(|[dn+1 — Pntollk,)

> 77(H¢n+1 - ¢n+2”Eo)v
a contradiction.

Therefore
M(¢n, bnt1) = ||dn — dnt1llE, and hence ||¢n11 — Pni2llEy < ||dn — nt1llE,-
Therefore the sequence {||¢n — ¢n+t1l|E,} is a monotonically decreasing
sequence in Rt and hence it is convergent.
Let HILH;O ||¢n — dn+1l|E, = k (say). Suppose that k > 0.
Clearly 77(H¢n - ¢n+1”E0) > 0.
From , we have
Ca < ((a@n(c), pnir()n(l|Tdn — Thnialle), n(M(dn, pni1)))
= ((a(¢n(c); Pnsr())n([Thn — Téns1ll£), n(||Pn — ns1llE))

< G(U(H% - ¢n+1”Eo)7a(¢n(C)a ¢n+1(c))77(HT¢n - T¢n+1HE))'
Now by the property Cg, we get

N(llon = ¢n1llz) > aldn(c), dnia ()| T¢n — Thniallr) (39)

= a(dn(c), Pnir1(c))n(llPns1 — dnrallEy)
> N(||ons1 — Pnt2l|Ey)-
On applying limits as n — oo, we get
U(k) > Jhngoa(¢n(c)7 ¢n+1(c))77(”¢n+1 - ¢n+2”E0) > U(k)
Therefore

Jim a(6u(0): Gura (o = dusalz,) = (k) > 0. (40)
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Clearly li_>m M(én, Pnt1) = k.
Since n is continuous we have
i (M (6, dr)) = (k) > 0. (41)

On applying limit superior as n — oo to , we get
Cg < limsup C(a(¢n(0), ¢n+1(c))77("T¢n - T¢n+1”E)7 U(M(%, ¢n+1>))

= h%szp C(Oé(¢n(c>, ¢n+1(0))77(H¢n+1 - ¢n+2HE0)7 77(H¢7’L - ¢7’L+1HEO>)
< C¢ (from , , and ({g)),

a contradiction.
Therefore £k = 0 and hence

1im [[¢n — dniall, = 0. (42)

We now show that the sequence {¢,} is a Cauchy sequence in R..

Suppose that the sequence {¢,} is not a Cauchy sequence.

Then there exists an € > 0 and two subsequences {¢n,, } and {¢,, } of {¢,} with my > n; > k such that
l|Pny, — OmpllEs > €, ||Pny, — Gmy—1llE, < € and from Lemma we have

lim ‘|¢nk - ¢mkHE0 =¢€ (43)
k—o0

and
kli)HC}O qunk - ¢mk+1”E0 = €= k;ll)n;o ||¢nk+1 - d)mk“EO
= klggo H(bnk‘i‘l - ¢mk+1HEO :
Since 7 is continuous, we get
klinolo (| Pny+1 — (bmk‘f'lHEo) =n(e) > 0. (44)

We consider

M(d)nk? ¢mk) = maX{H(bnk - ¢mkHEO7 H(;snk (C) - T(ankHE? H‘bmk (C) - T(ZsmkHE,
H(bnk(c)_T(ﬁmkHE'Hld)mk (c)_T¢nk||E}
2

= max{||¢nk - @Z)mk”Eo’ Hd)nk - ¢nk+1”Eov ’|¢mk - @bmk-&-lHEm
H(b’Rk_¢m;€+1||E0+H¢’mk_¢nk+1||Eo }
5 .

On applying limits as k — oo, we get
lim M (¢n,, ¢m,) = € and hence
k—o0

T (M (fgs 6m,)) = () > 0. (45)
From and , there exists k1 € N such that

MO (G b)) > 1) 50 for amy b > ky (46)

and
N[ T b, — Thmyll2) = 1| bngt1 — bmgsillme) > B > 0 for any k > ki.
From , we get

a(fn (€), oy (NN Tbny, — Todml|£) = ([ Thn, — Tdmll£) >0 (47)

for any k > k.

Suppose that there exists k > ki such that ||¢n, — dn,+1llE, > ||Pn, — Gmyl|Eo-
On applying limits as k — 0o, we get 0 > €, a contradiction.

Therefore

||¢nk - ¢nk+1||E‘o < H@bnk - ¢mk||Eo (48)
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for any k > k.

Now for any k > k1, we have

%:U((Z)nk (C)?d)mk (C))Hgbnk(c) - T¢nkHE < %Hﬂﬁnk - ¢nk+1‘|E0 (Since ng < mg )
< %”d)nk - ¢mk”E0
< ||¢nk - ¢mk||E0'

From , we get

Ca < (((@n,(¢); Gmy (NN Tny, = Tomy || £), n(M (dn s by ))) (49)

< G(M (Pny Py ))s @y (€), Dy ()| T by, — T, || E))-
(from , and ((g))

Now by the property Cg, we get
(M (Pny, Pmy)) > (Dny,(€), Oy (NI T ny, — Tbm, || 2) (50)

> 77(HT¢711€ - T(bmk“E) - 77(H¢nk+1 - ¢mk+1HEO)‘
On applying limits as k — oo, we get

(61, (6), b (1T, — T 1) = n(e) > 0. 61)
On applying limit superior as k — oo to ([{49), by and (o) we get
Cg < limsup C(a(¢nk (C), ¢mk (C))n(’|T¢nk - T¢mk | |E)7 H(M(Qf?nk, ¢mk)))

k—o0
< Cq,

a contradiction.

Therefore the sequence {¢,} is a Cauchy sequence in R,.

Since Ej is complete, there exists ¢* € Ej such that ¢, — ¢* as n — oo.
Since R, is topologically closed, we have ¢* € R..

We now show that T'¢* = ¢*(c). Suppose that T'¢* # ¢*(c).

From (B6)), we have a(¢n(c), dnt1(c)) > 1 and p(dn(c), dnii(c)) <1

for any n € NU {0}. From (iv), we get

o(6n(€),6°(€)) = 1 and u(dn(c), 6°()) < 1 for any n € NU {0},

First we show that either

31Un(c), 6" ()lgn(c) = Tonlle < l|on — ¢*[| 5,

or

3UPnr1(c), 0 (O)|dn+1(c) = Téni1llp < |ldn+1 — ¢*[| 5, holds
for any n € NU{0}.
Suppose that there exists m € NU {0} such that

%u(%(C)a ¢ (NPm(e) = Tomllz > [|om — ¢*|m, (52)

and

1
SUEm11(€), 9 (O)|Sm+1(¢) = Tom1llE 2 l|Pm+1 — &7 By (53)

From , we have
[|om — &*||Ey < %N(d)m(C)a(ﬁ*(C))H(ﬁm(c) —Toml|lE
< 5l6m(c) = Thml| 5.
Therefore
2||pm — ¢*l|Ey < [lom(c) — ¢* (e + 16" (c) = TomllE
= ||pm — ||y + ||0* — Pm+1llEo
and hence

|¢m = &l 5o < [[om+1 = ¢"[ 0
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< L(Gms1(0), (Dl ms1(c) — Tomanlli (by B3
< %Hﬁbm—i—l - ¢m+2”E‘o-

Clearly

H¢m+1 - ¢m+2||Eo < Hﬁém - ¢m+1”E0
< ||pm — *|Eo + 19" — Pmt1l| B,
< H|Pmt1 — dmr2llB + 3| Omt1 — Smr2| B0
= [|pm+1 — Pm+2ll 5o,

a contradiction.

Therefore either
2ﬂ(¢n ) ( ))H@z( ) T¢7ZHE < H¢n _¢*HE0

or
31(Pnt1(c), *(O)|Pn+1(c) = Thntillp < [|dnr1 — ¢*|l5y
holds for any n € NU {0}.
Case (i): Suppose that 5(¢n(c), *(¢))l|dn(c) = Toullp < |60 — ¢"||5,-
From -, we get
Ca < ((alon(c), o™ ()| Tdn — Td* || By), n(M (dn, ¢7)))-

We consider

M (¢pn, ¢") = max{||dn — &£y, [|Pn(c) — Tnl|Ey. |67 (c) = T"||E,
llfn (c)—To* ||E+||¢> (0)— T¢>nHE}_

If M(¢n,¢*) =0 then T¢* = ¢*(c), a contradlctlon

Therefore M (¢, ¢*) > 0 and hence n(M (¢, ¢*)) > 0

If n(||T¢n — To*||E,) = 0 then T'¢p,, = T'¢* and hence T'¢* = ¢pp41(c).

On applying limits as n — oo, we get To* = ¢*(c¢), a contradiction.

Therefore n(||T'¢, — T¢*||r) > 0 and hence

a(¢n(c), ¢ ())n([[T¢n — T*||5) > 0.

On applying limits to M (¢, ¢*) as n — oo, we get

Tim M(dy, ¢") = [16*(c) — T6"||e.

Since n is continuous, we have

lim 7(M(én, ¢*)) = n([|¢"(c) = T¢||E) >0

n—o0

From , we have
Ca < C(alon(c), o™ ()n(|[Tén — To*||£), n(M(¢n, ¢7)))

< G((M(fn, ¢%)), apn(c), o™ (c))n([|[Ton — To*[| ). (by (¢s))
Now by the property Cg, we get

(M (¢n, ¢7)) > adn(c), ¢ ()| Tdn — T¢"||k)

2 n(|[Tén = Te"||E) = nl[¢n+1(c) = Té*|| ).
On applying limits as n — oo, we get

1im a(6u(0). " ()n(IT6n — T6*||2) = n(]16" () — T6"[|) > 0

On applying limit superior as n — oo to (54)), by and ({y) we get
Ca < limsup ((a(on(c), o™ (c))n([|Tén — To*[|£), n(M(én, ¢%))) < Ca,
a Contrzﬁﬂgiion.
Case (ii): Suppose that

31(9n11(c), 8* ()| dn+1(c) = Thntille < ||dnt1 — &% -
From , we get

Ca < C(a(dnt1(c), o™ ()| Thn+1 — T |Ey), n(M (dnt1, 7))

(57)
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We consider

M(pni1,¢") = max{||pni1 — ¢*[| £y |ont1(c) = Ton i1l gy, |07 (c) — T,
[6n41()=To" |l 416" () Tonsalln

If M(¢nt1,¢*) =0 then T¢* = ¢*(c), a contradiction.

Therefore M (¢pp41,¢*) > 0 and hence n(M (¢nt1, ¢*)) > 0.

I n(||Tpn+1 — To*||g) = 0 then T'¢py1 = T'¢* and hence ¢y q2(c) = To*.

On applying limits as n — oo, we get T¢p* = ¢*(c), a contradiction.

Therefore n(||T¢n+1 — Td*||g) > 0 and hence

&(m11(c), ()1 Ténir — Té|[) > 0

On applying limits to M (¢nt1,¢*) as n — oo, we get

Tim M(6u01.67) = [6°(c) - Té*[|

Since 1 is continuous, we have

lim (M (¢ni1,¢%)) = 1(ll¢*(c) = T¢*||p) > 0. (59)

n—oo

From , we have

Ca < C(a(dnt1(c), 0" ()| Tdntr — T¢*||£), n(M (dnt1, "))
< G(M(Pnt1,9")), apnt1(c), o™ ())n(||Tpni1 — T¢*[|E)). (by (Cs))
Now by the property Cg, we get

N(M(¢nt1,¢%)) > a(dnt1(c), o™ ()n([Ton1 — To"|| ) (60)

> ([ T¢n+1 — T"||p) = nl|¢n+2(c) — To*[| ).
On applying limits as n — oo, we get

Jim a(ni1(¢), 67 (@)n([[Tons1 = To*||6) = n(ll¢”(c) = To*||&) > 0. (61)

On applying limit superior to as n — 0o, by and ({g) we get
Co < limsup ((a(dni1(c) ¢ ()1 Tnt1 = T p), n(M(bnt1, ¢%)))

< Cgq,
a contradiction.

Therefore from Case(i) and Case (ii), we conclude that T'¢* = ¢*(c) and hence ¢* € R, is a PPF
dependent fixed point of T

Suppose that T is one-one, a(z,y) > 1 and p(z,y) < 1 for any z,y € E.
We now show that T has a unique PPF dependent fixed point in R..
Let ¢,v € R. be two PPF dependent fixed points of T.
Then T'¢ = ¢(c) and T = 9(c).
Since R, is algebraically closed with respect to the difference, we have
16— ¥l = [16(c) — (O)] 5. Suppose that ¢ # .
If ||T¢p — T||g =0 then T'p = T1.
Since T is one-one we have ¢ = 1, a contradiction.
Therefore ||T'¢p — T||g # 0 and hence ||[T'¢p — T||g > 0.
Clearly 7(|IT6 — Tt|) > 0 and hence a(é(c), ¥(€))n(ITé — Tel[x) > 0.
Clearly 0 = Lu(é(c), v())|6(c) — Tl m < ll6 — ¥l
From , we get

Car < Cal(e), B(ITS — Tellp), n(M(, %))). (62)

We consider

M(,4) = max{||¢ — Pl|g,, [[6(c) = T||s, [[v¥(c) = TV,
1) =To]e+{e()=Télle

2
— max{llé — ¥z, L= HUEO=de
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= max{||¢ — ¢||gy, [|¢ — ¥||E,} = ||¢ — ||k, and hence
n(M(,v)) > 0.
By and ((g), we get
Ca <G(n(M(¢,v)), a(g(c), v(c))n(|[T¢ = Tl|e))-
Now by the property Cq, we get
n(M(p,)) > al(e), v(e)n(|Te — T[|g) = n(|[T¢ — TY|[p) and which implies that n(||¢ — ¥[[g,) >

n(1T¢ — T|p)
=n(l[¢(c) = ¥ (c)lle)
=n(ll¢ — ¥k,
a contradiction.
Therefore ¢ = 1) and hence T has a unique PPF dependent fixed point in R.. O

4. Corollaries and Examples

Corollary 4.1. Letce I. Let T : Ey — E be a function satisfying the following conditions:
(1) T is a generalized Suzuki type Zg qn— contraction with respect to ,
(ii) R is algebraically closed with respect to the difference,
(i13) T is a triangular a.—admissible mapping,
(iv) there exists ¢g € Re such that a(po(c), T¢o) > 1 and
(v) if {édn} is a sequence in Ey such that ¢, — ¢ as n — oo,
&(6(), bus1(€)) > 1 for any n € NU{0} then a(én(c), 6(c)) > 1
for any n € NU{0}.
Then T has a PPF dependent fized point in R.. Moreover, if T is one-one and a(x,y) > 1 for any x,y € E
then T has a unique PPF dependent fized point in R..

Proof. By taking u(x,y) =1 for any z,y € E in Theorem we obtain the desired result. O]

Corollary 4.2. Letce I. Let T : Ey — E be a function satisfying the following conditions:

(i) T is a generalized Suzuki type Zg ,— contraction with respect to ,

(ii) R is algebraically closed with respect to the difference.

Then T’ has a PPF dependent fixzed point in R.. Moreover, if T is one-one then T has a unique PPF dependent
fized point in R..

Proof. By taking a(x,y) = 1 for any x,y € E in Corollary we obtain the desired result. O]

Corollary 4.3. Letce I. Let T : Ey — E be a function satisfying the following conditions:
(i) T is a generalized Suzuki type Zp on— contraction with respect to ¢,
(ii) R is algebraically closed with respect to the difference,
(i11) T is a triangular a.—admissible mapping,
(iv) there exists ¢g € Re such that a(po(c), T¢o) > 1 and
(v) if {¢pn} is a sequence in Ey such that ¢, — ¢ as n — oo,
(6n(©), Bns1(c)) > 1 for any n € NU{0} then a(gn(c), #(c)) > 1
for any n € NU {0}.
Then T has a PPF dependent fixed point in R.. Moreover, if T is one-one and o(x,y) > 1 for any x,y € E
then T has a unique PPF dependent fized point in R..

Proof. By taking pu(z,y) =1 for any z,y € E,G(s,t) = s —t for any s,t € RT and C = 0 in Theorem |3.1
we obtain the desired result. O

Corollary 4.4. Letce€ 1. Let T : Ey — FE be a function satisfying the following conditions:
(1) T is a generalized Suzuki type Zg o— contraction with respect to ¢,
(ii) R. is algebraically closed with respect to the difference and
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(113) T is a triangular a.—admissible mapping,
(iv) there exists ¢o € R. such that a(po(c), T¢o) > 1 and
(v) if {¢pn} is a sequence in Ey such that ¢, — ¢ as n — oo,
(6n(€), Bns1(c)) > 1 for anmy n € NU{0} then a(ga(c), #(c)) > 1
for any n € NU{0}.
Then T has a PPF dependent fixed point in R.. Moreover, if T is one-one and o(x,y) > 1 for any x,y € E
then T has a unique PPF dependent fized point in R..

Proof. By taking n = Identity mapping in Corollary [£.3] we obtain the desired result. O

Corollary 4.5. Letce I. Let T : Ey — E be a function satisfying the following conditions:
(i) T is a generalized Suzuki type Zg— contraction with respect to ¢,
(ii) R. is algebraically closed with respect to the difference.
Then T’ has a PPF dependent fixed point in R.. Moreover, if T is one-one then T has a unique PPF dependent
fized point in R..

Proof. By taking a(x,y) = 1 for any z,y € E in Corollary we obtain the desired result. O]

Example 4.6. Let E=R, c=1€1=[%,2]CR, Ey=C(l,E).
We define T : Ey — E by

Tqb:{ ¢1((05) if 0<¢(c)<1

if otherwise,

for any ¢ € Ey.

We define n: R™ — RT by n(z) = 2z for any v € RT. Clearly n € V.

We define ¢ : RT x RY — R by ((t,s) = As — t, where A € (0,1),Cq =0 and
G:RY xRt - R by G(s,t) =s—t for any s,t € RT.

Clearly ¢ € Zg.(Example .

Let ¢,v € Eqy be such that ¢ #£ 1.

Assume that

1
Slle(e) =Tl <ll¢ = Vllp,. (63)

Case (i): Suppose that Tp = % and Ty = (C).
Clearly ||T$ — T||p = 15|¢(c ) Y|l whzch implies that

n(|T¢ — Tyl ) = n(le(c) —w(e)lle) = lolc) — ¥ ()||k
- %Hf( >¢\| T¢HE]{HT¢H|T$< )ﬁb(J )(‘ILE]@
<7z E, t+ E Y
< 5116 = ¥llm, + 5176 — Telle + 176 = b(c)lle]
= 1ll6 = ¥lls + 5 [55116(c) — (Ol +11Tw = %(c)|]
< Yo — |5, + sl551¢ — ¥llm + 179 — ()| 6]
< TM(6,v) + §l3gM (6, ) + M(6,0)]
=[5 + s T+ §IM (0. 0)
Theref :1298M( ¢)=%W(M(¢7¢))
D(IT6 = Thll) < e 7(M(6,)). (64)

256

Case (ii): Suppose that T'¢ = @ and T = wéc).
Clearly ||T¢ — TY||g = 1||¢(c) — 1(c)||g which implies that

n(IIT¢ = T9llp) = n(gllé(c) — v(o)lle) = 1llé(c) — v(c)lle
< %[H(b(C) Tollg] + 1l1Td — v (c)||£]
<5l —Vlle, + i[HT¢ —()llE] (by[63)
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<3l —¥llm + 3 l[IT¢ — Tl|e + |T9 — ¥()]|£]
= 3llo —¥llg, + i[%ll(ﬁ((f) —()e + [TY —¥(o)|E]
< 5l6 = Ylle, + (5110 — Yl + T — v (c)||e]
< %M(d%l/}) + i[ZM(¢,9) + M(¢,9)]
= [%“‘ 32 + ]M(qﬁ,d))
— ZM(6,v) = 2 n(M(6,0)).
Therefore .
n(IIT¢ = TYlle) < 57 n(M(¢, ). (65)
Case (iii): Suppose that Tqb = % and T = wgc).
Clearly ||To — TY||E H @HE which implies that
0(|[T¢ — TY| ) —n<\|¢c> %@HE) = ||%C> - Y|
<192 - Blls+ 1% - 221e

29| (by@

< fllo - ¢MEO+H?§ f%|r4+|m8
< g - w%+uw¢/w%+uwwﬂm

<%|I¢> ¢‘|Eo+1%8||¢ V||, + Zllv(0)]e
= 1llo = YllEy + w5110 — YllE, + 1TV — ¥ (0)||E
siM( )+158 (¢, 0) + M(¢, 1))

T
_|_

25 + UM(¢,)
) = 8L n(M(,)).

I
‘H
NO|OY
cof—
S

Therefore
161

N7 = TYlle) < 5p n(M(,9)). (66)

M Suppose that To = ¢§f) and Ty = w1(§)~
Clearly ||Top — TY||g = ”¢(C

n(|T¢ — To||p) = n(|| 22 — ¥
< || _ 7W|+W

3116 = ¥llm + 117

> W“ |

%
||E (by

/\

< i - wo+W“ MIHW@ ||
<5l —YllE + 351l — ¥l + 5511w (e)lle
gaW—wmfuﬁW—wmfu%wme
=zl — ¥l|g, + 32H¢ V||, + [TV —2(c)||e
géM(cb V) + 55 M(p,0) + M(9,0)
= [ + 32 + 1] (‘75 w)
= %M(GZ) V) = 64 77( (,v)).
Therefore 19
n(IT¢ = Tlle) < o7 n(M(,4)). (67)

We choose A\ = max{ 24596, gi, %gé, éi} Clearly X € (0,1).

From , (@/, and @) we get
n(1T¢ — Tlle) < /\ n(M(,1)).
This tmplies that

An(M(e,¢)) —n(||T¢ —TY||g) > 0 and hence
C([Tg —TY|[), n(M(o,v))) > 0. (68)

Therefore T' is a generalized Suzuki type Zq ,—contraction with respect to (.
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For any n € R, we define ¢, : [ = E by

na? if veli1]
1

¢n($)={ n if e€[l,2].

2

Clearly ¢, € Eo,||énllE, = ||¢n(c)||E and hence ¢y, € R. for any n € R.
Let Fo = {¢n, | n € R}. Then Fy C R, and Fy is algebraically closed with respect to the difference.

Therefore T satisfies all the hypotheses of Corollary [{.9 and hence ¢po € R, is a PPF dependent fived

point of T'.
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