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Abstract
A numerical algorithm based on Hermite polynomials for solving the Cauchy singular in-
tegral equation in the general form is presented. The Hermite polynomial interpolation
of unknown functions is first introduced. The proposed technique is then used for ap-
proximating the solution of the Cauchy singular integral equation. This approach requires
the solution of a system of linear algebraic equations. Two examples demonstrate the
effectiveness of the proposed method.
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1. Introduction
Singular integrals of various types arise when simulating the physical behavior of com-

plex engineering systems. That is also the case of fractional calculus that relies on singular
integrals and became an essential topic in the study of phenomena in various disciplines
[12,13,19–21,27]. Moreover, many initial and boundary value problems can be casted into
solving singular integrals. For example, the problem of surface water wave scattering by
a thin vertical barrier, that occurs in the linearised theory of water waves, can be reduced
to a homogeneous singular integral equation with Cauchy kernel [6].
In this paper, we consider the Cauchy singular integral equation (CSIE) as follows

a(x)w(x)φ(x) + b(x)
∫ β

α

w(t)φ(t)
t − x

dt −
∫ β

α
k(x, t)w(t)φ(t)dt = f(x), (1.1)

where α < x < β and a(x), b(x) and f(x) are known real functions. The function k(x, t) is
the kernel of the integral equation, φ(t) denotes an unknown function and w(t) represents
the known weight function. The kernel function is assumed to be continuous and square
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integrable. For a(x) = 0 we have a first kind integral equation of (1.1). Otherwise, it
is an integral equation of the second kind. This type of integral equation was discussed
in [22, 25]. The CSIE (1.1) has several applications, such as the mixed boundary value
problem, the elasticity for cracked media, or the solution of contact problem in solid
mechanics [6].
Analytical schemes for obtaining the solutions of these problems were proposed for special
cases [7, 9, 18]. However, often we need a general numerical method to solve the CSIE
(1.1). The single Cauchy kernel problem can be transformed into the Fredholm type
integral equation with singular kernel, and may be solved using conventional schemes
[1, 3–5,8, 10,11,16,17,23,26,28].
This paper applies the Hermite interpolation procedure to solve the CSIE (1.1) and is
organized as follows. Section 2 introduces the properties of Hermite polynomials. Section
3 develops the numerical technique for solving the CSIE (1.1) in the general form. Section
4 presents several test problems, comparing the numerical and exact solutions, to assess
the accuracy and applicability of the proposed technique. Finally, Section 5 highlights the
main conclusions.

2. Hermite polynomials interpolation
Let x0, x1, . . . , xn be real node points. The interpolation conditions at each node xi,

i = 0, 1, . . . , n, for Hermite interpolation are as defined

P (j)(xi) = cij , (2.1)

for j = 0, 1, · · · , ki − 1 and i = 0, 1, · · · , n. Hence, the total number of conditions for this
interpolation procedure is m + 1 = k0 + k1 + . . . + kn. Assume that Πm is the space of all
polynomials of degree at most m. Then, the following theorem guarantees the existence
and uniqueness of such interpolation polynomial and its proof is given in [14].

Theorem 2.1. There exists a unique polynomial P in Πm fulfilling the interpolation
conditions in equation (2.1). We can write the Lagrange form of the Hermite interpolation
polynomial. Let x0, x1, ..., xn be distinct nodes in [a, b]. The Hermite polynomial of degree
2n + 1 such that

H2n+1(xi) = f(xi), H ′
2n+1(xi) = f ′(xi), i = 0, 1, ..., n, (2.2)

is given by

H2n+1(x) =
n∑

j=0
f(xj)hj(x) +

n∑
j=0

f ′(xj)gj(x), (2.3)

where hj(x) = L2
j (x)(1 − 2(x − xj)L′

j(x)) and gj(x) = (x − xj)L2
j (x) with the convention

that Lj(x) represents Lagrange polynomial.

The convergence and norm estimates of the Hermite interpolation at the zeros of the
Chebyshev polynomials are investigated by Al-Khaled and Alquran [2].

3. The proposed numerical scheme
In this section we use the properties of the Hermite polynomial interpolation to solve

the CSIE (1.1). Let us consider the unknown function φ(t) ∈ C1([α, β]), where α and
β are real numbers, and that C1([α, β]) denotes the set of all continuously differentiable
functions on the interval [α, β]. For approximating φ(t), we divide the interval [α, β], into
n partitions and we assume that t0, t1, ..., tn are the distinct interpolation points where
α = t0 < t1 < ... < tn = β. Now let x be an arbitrary point in [α, β] that differs from
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t0, t1, ..., tn. Assume that Hermite interpolation formula of φ(t), at t1, t2, · · · , tn and x, is
given by

H2n+1(t) =
N∑

j=1
φ(tj)L2

j (t)(1 − 2(t − tj)L′
j(tj)) +

N∑
j=1

φ′(tj)(t − tj)L2
j (t)

+φ(x)L2
N+1(t)(1 − 2(t − x)L′

N+1(x)) + φ′(x)(t − x)L2
N+1(t). (3.1)

Let σN (t) =
∏N

i=1(t − tj). Consequently, we have σ′
N (tj) =

∏N
i=1,i ̸=j(tj − ti). In terms

of σN (t), the Lagrange polynomial will be given as

Lj(t) = σN (t)(t − x)
σ′

N (tj)(t − tj)(tj − x)
, j = 1, ..., N. (3.2)

We now approximate solution of CSIE (1.1) in two steps. First let us define

(Sφ)(x) =
∫ β

α

w(t)φ(t)
t − x

dt, α < x < β. (3.3)

Replacing the unknown function φ by its Hermite interpolation H2N+1 in the above rela-
tion, one obtains

(SN φ)(x) = (SφN )(x) = (SH2N+1)(x) =
∫ β

α

w(t)H2N+1(t)
t − x

dt

=
N∑

j=0
φ(tj)

∫ β

α

w(t)
t − x

L2
j (t)(1 − 2(t − tj)L′

j(tj))dt

+
N∑

j=0
φ′(tj)

∫ β

α

w(t)
t − x

(t − tj)L2
j (t)dt

+φ(x)
∫ β

α

w(t)
t − x

L2
N+1(t)(1 − 2(t − x)L′

N+1(x))dt

+φ′(x)
∫ β

α

w(t)
t − x

(t − x)L2
N+1(t). (3.4)

For the first-term, we have
N∑

j=0
φ(tj)

∫ β

α

w(t)
t − x

L2
j (t)(1 − 2(t − tj)L′

j(tj))dt

=
N∑

j=0
φ(tj)

∫ β

α

w(t)L2
j (t)

t − x
dt − 2

N∑
j=0

φ(tj)
∫ β

α

w(t)
t − x

L2
j (t)(t − tj)L′

j(tj)dt. (3.5)

Then

N∑
j=0

φ(tj)
∫ β

α

w(t)L2
j (t)

t − x
dt =

N∑
j=1

φ(tj)
∫ β

α

w(t)σ2
N (t)(t − x)

σ′2
N (tj)(t − tj)2(tj − x)2 dt

=
N∑

j=1
φ(tj)wj(x), x ̸= tj , (3.6)

where

wj(x) =
∫ β

α

w(t)σ2
N (t)(t − x)

σ′2
N (tj)(t − tj)2(tj − x)2 dt, x ̸= tj . (3.7)
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Also, we have

2
N∑

j=0
φ(tj)

∫ β

α

w(t)
t − x

L2
j (t)(t − tj)L′

j(tj)dt =
N∑

j=1
2φ(tj)L′

j(tj)
∫ β

α

w(t)
t − x

L2
j (t)(t − tj)dt

=
N∑

j=1
2φ(tj)L′

j(tj)(S(L2
j (t)(t − tj)))(x), (3.8)

where

(S(L2
j (t)(t − tj))(x) =

∫ β

α

w(t)
t − x

L2
j (t)(t − tj)dt, x ̸= tj . (3.9)

Using (3.6) and (3.8), formula (3.5) can finally be expressed as
N∑

j=0
φ(tj)

∫ β

α

w(t)
t − x

L2
j (t)(1 − 2(t − tj)L′

j(tj))dt

=
N∑

j=1
φ(tj)(wj(x) − 2L′

j(tj)(S(L2
j (t)(t − tj)))(x)

=
N∑

j=1
φ(tj)Kj(x), x ̸= tj , j = 1, 2, . . . , N, (3.10)

where
Kj(x) = wj(x) − 2Lj(tj)(S(L2

j (t)(t − tj)))(x), j = 1, 2, . . . , N. (3.11)
Similarly, for the second-term of (3.4), one can get

N∑
j=0

φ′(tj)
∫ β

α

w(t)
t − x

(t − tj)L2
j (t)dt =

N∑
j=1

φ′(tj)Zj(x), x ̸= tj , j = 1, 2, ..., N, (3.12)

where

Zj(x) =
∫ β

α

w(t)σ2
N (t)(t − x)

σ′
N (tj)(t − tj)(tj − x)2 dt, x ̸= tj . (3.13)

The third-term of (3.4) can be written as

φ(x)
∫ β

α

w(t)
t − x

L2
N+1(t)(1 − 2(t − x)L′

N+1(x))dt

= φ(x)
∫ β

α

w(t)
t − x

L2
N+1(t)dt − 2φ(x)

∫ β

α
w(t)L′

N+1(x)dt. (3.14)

Thus

φ(x)
∫ β

α

w(t)
t − x

L2
N+1(t)dt = φ(x)

σ2
N (x)

(Sσ2
N )(x), (3.15)

where (Sσ2
N (x))(x) =

∫ β

α

w(t)σ2
N (t)

t − x
dt. In addition,

2φ(x)
∫ β

α
w(t)L′

N+1(x)dt = 2Cφ(x)L′
N+1(x), (3.16)

where C =
∫ β

α w(t)dt.
Then, using (3.15) and (3.16), formula (3.14) can be rewritten as follows

φ(x)
∫ β

α

w(t)
t − x

L2
N+1(t)(1 − 2(t − x)L′

N+1(x))dt

= φ(x)
σ2

N (x)
(Sσ2

N )(x) − 2Cφ(x)L′
N+1(x). (3.17)
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Now we want to compute the fourth-term of (3.4). In this case a direct calculation yields

φ′(x)
∫ β

α

w(t)
t − x

(t − x)L2
N+1(t) = D

φ′(x)
σ2

N

, (3.18)

so that D =
∫ β

α w(t)σ2
N (t)dt. From the above calculations, one can get the following

formula for approximating the integral

(SN φ) =
N∑

j=1
φ(tj)Kj(x) +

N∑
j=1

φ′(tj)Zj(x)

+ φ(x)((Sσ2
N )(x)

σ2
N (x)

− 2CL′
N+1(x)) + D

φ′(x)
σ2

N (x)
. (3.19)

In the next step, we approximate the term
∫ β

α k0(x, t)w(t)φ(t)dt of the CSIE (1.1). Let
Q2N+1(t) be a Hermite polynomials interpolation of k0(x, t)φ(t) at the nodes t1, t2, ..., tN .
Then, we have

Q2N+1(t) =
N∑

j=1
k0(x, tj)φ(tj)L2

j (t)(1 − 2(t − tj)L′
j(tj))

+
N∑

j=1
(∂k0

∂t
φ(tj) + k0(x, tj)φ′(tj))(t − tj)L2

j (t). (3.20)

Substituting relation (3.20) into
∫ β

α k0(x, t)w(t)φ(t)dt, it results∫ β

α
k0(x, t)w(t)φ(t)dt

=
∫ β

α
w(t)

N∑
j=1

k0(x, tj)φ(tj)L2
j (t)(1 − 2(t − tj)L′

j(tj))

+
∫ β

α
w(t)

N∑
j=1

(
∂k0
∂t

(x, tj)φ(tj) + k0(x, tj)φ′(tj)
)

(t − tj)L2
j (t). (3.21)

We have∫ β

α
w(t)

N∑
j=1

k0(x, tj)φ(tj)L2
j (t)(1 − 2(t − tj)L′

j(tj))

=
N∑

j=1
φ(tj)

∫ β

α
k0(x, tj)w(t)L2

j (t)dt −
N∑

j=1
φ(tj)

∫ β

α
2k0(x, tj)w(t)L2

j (t − tj)L′
j(tj)dt

=
N∑

j=1
(w(0)

j (x) − w
(1)
j (x))φ(tj) (3.22)

with

w
(0)
j (x) =

∫ β

α
k0(x, tj)w(t)L2

j (t)dt,

w
(1)
j (x) = 2

∫ β

α
k0(x, tj)w(t)L2

j (t)(t − tj)L′
j(tj)dt, (3.23)
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and∫ β

α
w(t)

N∑
j=1

(
∂k0
∂t

(x, tj)φ(tj) + k0(x, tj)φ′(tj)
)

(t − tj)L2
j (t)

=
N∑

j=1
φ(tj)

∫ β

α

∂k0
∂t

(x, tj)w(t)(t − tj)L2
j (t)dt +

N∑
j=1

φ′(tj)
∫ β

α
k0(x, tj)w(t)(t − tj)L2

j (t)dt

=
N∑

j=1
φ(tj)w(2)

0 (x) +
N∑

j=1
φ′(tj)w(3)

j (x), (3.24)

where

w
(2)
j (x) =

∫ β

α

∂k0
∂t

(x, tj)w(t)(t − tj)L2
j (t)dt, x ̸= tj ,

w
(3)
j (x) =

∫ β

α
k0(x, tj)w(t)(t − tj)L2

j (t)dt, x ̸= tj . (3.25)

Thus, we have∫ β

α
k0(x, t)w(t)φ(t)dt =

N∑
j=1

w
(4)
j (x)φ(tj) +

N∑
j=1

w
(3)
j (x)φ′(tj), (3.26)

where
w

(4)
j (x) = w

(0)
j (x) − w

(1)
j (x) + w

(2)
j (x). (3.27)

Substituting (3.15) and (3.22) into CSIE (1.1) it yields

b(x)
N∑

j=1
Kj(x)φ(tj) + b(x)

N∑
j=1

Zj(x)φ′(tj) −
N∑

j=1
w

(4)
j (x)φ(tj) −

N∑
j=1

w
(3)
j (x)φ′(tj)

+
{

a(x)w(x) + b(x)
(

(Sσ2
N )(x)

σ2
N (x)

− 2C

)}
φ(x)

+ D
b(x)φ′(x)

σ2
N (x)

= f(x), x ̸= tj , j = 1, 2, . . . , N. (3.28)

Choosing xi, i = 1, 2, . . . , 2N , such that xi ̸= tj , for j = 1, 2, · · · , N , we obtain the
following system of linear equations

b(xi)
N∑

j=1
Kj(xi)φ(tj) + b(xi)

N∑
j=1

Zj(xi)φ′(tj) −
N∑

j=1
w

(4)
j (xi)φ(tj) −

N∑
j=1

w
(3)
j (xi)φ′(tj)

+
{

a(xi)w(xi) + b(xi)
(

(Sσ2
N )(xi)

σ2
N (xi)

− 2C

)}
φ(xi)

+ Db(xi)φ′(xi)
σ2

N (xi)
= f(xi), i = 1, . . . , 2N. (3.29)

Solving (3.29) we can obtain the unknowns φ(tj) and φ′(tj), j = 1, 2, . . . , N .

4. Illustrative numerical examples
In this section we illustrate of the proposed scheme and assess its feasibility. We consider

two examples for which the analytical solution is known. The performance of the suggested
scheme is analyzed in the perspective of the percentage absolute error (PAE) defined as:

PAE = AE

|Exact solution|
× 100%, (4.1)

where AE is the absolute error.



980 B.P. Moghaddam et al.

Example 4.1. In this example we choose the kernel function k(x, t) = − 1
t+x+6 , the

weight function w(t) = 1
1−t , and the values α = −1 and β = 1. Considering a(x) = 1 and

b(x) = − 1
π we have the following singular integral equation:

φ(x)
1 − x

− 1
π

∫ 1

−1

φ(t)
(t − x)(1 − t)

dt +
∫ 1

−1

φ(t)
(t + x + 6)(1 − t)

dt = f(x), (4.2)

where

f(x) =
(√

2
5

)(3
5

)−1
4
( 1

x + 4
+ π

x + 2

)
− π

√
2

x + 2

(
x + 7
x + 5

) 1
4

.

It is known that the exact solution of (4.12) is φ(t) = 1
t+4 [15]. We choose the node

points ti = cos
(

πi

M + 1

)
, i = 1, 2, · · · , M , and the points xi as the zeros of the Chebyshev

and Legendre polynomials, respectively. After obtaining the values of φ(tj) and φ′(tj),
j = 1, 2, . . . , N , by means of the Hermite interpolation formula, we can approximate
solution of (4.2). Figure 1 shows that approximating solutions of (4.2) with magnitude of
the AE, in the interval [−1, 1] for M = N = 15. The PAE of (4.2) for M = N = 2 and
M = N = 4 are reported in Table 1.

Figure 1. Example 4.1: (left) comparison of the exact and the numerical approx-
imations, (right) magnitude of the AE, with proposed scheme for M = N = 15.

Table 1. Example 4.1: Comparison of the PAE, for different numbers of points
in the interval [−1, 1] and two identical values of M and N .

PAE
tk M = N = 2 M = N = 4

−1.0 2.400 × 10−3 1.035 × 10−4

−0.5 − 2.618 × 10−4

0.0 1.251 × 10−3 2.011 × 10−4

0.5 − 1.125 × 10−4

1.0 2.500 × 10−3 2.469 × 10−4

Example 4.2. In this example we consider a(x) = 0, b(x) = 1, k(x, t) = 0, f(x) =
x4 + 5x3 + 2x2 + x − 11

8 and the weight function w(t) = 1√
1−t2 . Thus, the singular integral

equation is given by∫ 1

−1

φ(t)
(t − x)

√
1 − t2

dt = x4 + 5x3 + 2x2 + x − 11
8

, −1 < x < 1. (4.3)
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The exact solution of (4.3) is φ(t) = 1
π

(
t5 + 5t4 + 3

2
t3 − 3

2
t2 − 5

2
t − 9

8

)
[24].

Likewise to the previous example, Figure 2 presents the exact solution of (4.3), its
numerical approximation by means of the proposed algorithm and the magnitude of the
AE in the interval [−1, 1] with M = N = 15. Moreover, The numerical results of (4.3) are
listed in Table 2.

Figure 2. Example 4.2: (left) comparison of the exact and the numerical approx-
imations, (right) magnitude of the AE, with proposed scheme for M = N = 15.

Table 2. Example 4.2: Comparison of the PAE, for different numbers of points
in the interval [−1, 1] and two identical values of M and N .

PAE
tk M = N = 2 M = N = 4

−1.0 3.994 × 10−3 1.587 × 10−4

−0.5 − 1.022 × 10−4

0.0 2.091 × 10−3 1.040 × 10−4

0.5 − 1.174 × 10−4

1.0 1.587 × 10−3 2.709 × 10−4

5. Conclusion
In this paper an important class of one-dimensional singular integral equations was con-

sidered. A numerical scheme based on the Hermite polynomial interpolation was proposed
to solve the general form of the Cauchy singular integral equation. The numerical results
for two examples show that proposed numerical algorithm is an accurate and reliable
technique.
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