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Abstract

In this paper, we construct a complex semi-symmetric metric F-connection on an anti-
Ké&hler manifold. First, we present some results concerning the torsion tensor of the
complex semi-symmetric metric F-connection. Finally, we find expressions of the curvature
tensor, the conharmonic curvature tensor and the Weyl projective curvature tensor of such
connection, and study their properties.
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1. Introduction

A linear connection V on an n—dimensional differentiable manifold M is said to be
a semi-symmetric connection if its torsion is of the form: S(X,Y) = p(Y)X — p(X)Y,
where p is a 1—form. The connection V is a metric connection if there is a Riemannian
metric ¢ on M such that Vg = 0, otherwise it is non-metric. If the connection V is
both semi-symmetric and metric, then it is called a semi-symmetric metric connection.
Hayden [5] defined and studied semi-symmetric metric connections. After that, Yano [10]
proved the theorem: A Riemannian manifold admits a semi-symmetric metric connection
whose curvature tensor vanishes if and only if Riemannian manifold is conformally flat.
As a generalization of semi-symmetric metric connections, Yano and Imai [12] defined a
semi-symmetric metric F-connection on a Kéhler manifold and obtained some results by
using the Bochner curvature tensor.

An anti-Kéhler or Kéhler-Norden manifold means a triplet (M, g, F') which consists of
an n = 2m dimensional differentiable manifold M, an almost complex structure F' and a
pseudo-Riemannian metric g such that g(FX,Y) = g(X,FY) and VF = 0 for all vector
field X and Y on M, where V is the Levi-Civita connection of g. Such manifolds also refer
to as generalized B—manifolds [4] or as almost complex manifolds with Norden metric [1]
or as almost complex manifolds with B—metric [2].

An almost Hermitian manifold (M, g, F') always admits a unique natural connection A
with a torsion T such that V¢F = 0, V¥ = 0 and T¢(FX,Y) = TY(X, FY) for all
vector fields X,Y on M. This connection known as the canonical Hermitian connection or
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the Chern connection. Analogously to the canonical Hermitian connection on an almost
Hermitian manifold, Ganchev and Mihova in [3] defined on an almost complex manifold
with Norden metric (M, g, F) a natural connection V'’ (i.e., V'F = 0, V'g = 0) with a
torsion T satistying T/(X,Y, Z2)+T' (Y, Z,X)-T(FX,Y,FZ)-T'(Y,FZ,FX) = 0. This
connection is called canonical and it is proved that it is unique on (M, g, F').

In this paper, we define on an anti-Kéhler manifold a canonical connection (i.e, a linear
connection such that the anti-Hermitian structures (g, F') are parallel with respect to
it) with torsion S locally expressed by Sijk = pjéf' — pﬁf — ptthFik + ptFitij and
study its torsion and curvature properties. We are calling the canonical connection as
a complex semi-symmetric metric F-connection. Also, note that the torsion tensor S
of the complex semi-symmetric metric F-connection satisfies S(FX,Y) = S(X,FY) =
FS(X,Y) for all vector fields X,Y on M. Hence we can say that the considered complex
semi-symmetric metric F-connection on an anti-K&hler manifold is different from the
canonical connections in [2,3,7]. This paper is organized as follows. In section 2, we
introduce anti-Kéhler manifolds and give a brief account of information of pure tensors,
holomorphic tensors and Tachibana operator. Also we construct, using the method of
Hayden [5], a complex semi-symetric metric F- connection on an anti-Ké&hler manifold.
In the next section, we investigate conditions for the torsion tensor of the complex semi-
symmetric metric F-connection to be holomorphic and recurrent. In the last section, we
investigate expressions of the curvature tensor, the conharmonic curvature tensor and the
Weyl projective curvature tensor of such connection and study their properties. Also, an
example is presented.

2. A complex semi-symmetric metric /'-connection

An anti-Kéhler manifold is an n = 2m dimensional differentiable manifold M,, equipped
with a (1,1)—tensor F' = (F,”) and a pseudo-Riemannian metric tensor g = (g;;) which
satisfy the following conditions:

FFR) = o], (2.1)
FFgr; = FiF g (2.2)
and
ViF,7 =0.

Here we use the notation Vj, to denote the operator of the Riemannian covariant derivation.
Throughout this paper, the notation Vi will be used for the same purpose. The condition
(2.2) is purity condition of the pseudo-Riemannian metric g with respect to the almost
complex structure F. We also note that we get, as a consequence of (2.2), F; = Fj;. As
it is already known, the almost complex structure F' satisfies additionally the condition
gleiijl = —g;; and is trace-free, which can be written as glekl = 0, where Fj; = glek,].
Such manifolds are an object of interest of geometers and physicists. In [6], it is proved
that the condition Vi F,” = 0 is equivalent to the holomorphicity (analyticity) of the anti-
Hermitian metric g, that is, (¢rg),.. = 0, where ¢ is the Tachibana operator applied to

g

kij
Let (M, g, F) be an anti-Ké&hler manifold. The following conditions hold [6, 8]:

i) The Levi-Civita connection on (M, g, F') is pure with respect to F’;
1) The Riemannian curvature tensor R on (M,, g, F') is pure with respect to F;
i7i) The Riemannian curvature tensor R is holomorphic: (¢rR) kijf = 0, where ¢p is
the Tachibana operator applied to R.

For any (p, ¢)—tensor K, purity and holomorphicity are defined as follows:
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Definition 2.1. If A (p,q)—tensor K = ( K12 ]p) satisfies the condition

1112...5q

Ji---Jp m Ji---Jp m o __ J1..-Jp mo__
szg zqF‘n - Kzlm zqF’zz - - Kzlzz szq -
KmJQ ]pF J1 — KJlm ]pF J2 — _ K]l]Q ’mF ]p

11...9q 11...0q 11...0q
then the tensor K is called as a pure tensor with respect to the tensor F', where F' = (FZ] )
is a (1,1)—tensor. The Tachibana operator ¢ applied to the pure (p,q)—tensor K is
given by [9]

(¢FK).71,717 (23)

ki1...iq

— ma t]l Jp*ak(KOF)]l Jp

11...0q 11...0q

q
Z 8Z>\Fk Kjl Jp ) +Z(aiju_8 ) K’L1...m...zr,

11...M...0q J1---Js
pn=1
where
(KOF)Jl Jp K]l -Jp Fm = K]1 .Jp EF.m
11...9¢ - mig...lq" 91 - 11%2...M" g
Kmm JpF Ji — _ KJ1J2 mF Jp

11...0q 11...%g

If the pure tensor K satisfies ¢ K = 0, then it is called as a ¢p—tensor. If the (1,1)—tensor
F is a complex structure, then a ¢—tensor is a holomorphic (analytic) tensor [9] (for
Tachibana operator and its applications, see [8] and [11]).

A linear connection V on (M, g, F') is said to be a metric F-connection if the following
conditions are satisfied:

i) Vagij = 0, (2.4)
ii) VaF,) = 0,
where V;, denotes the operator of covariant derivation with respect to V. We consider a
complex semi-symmetric metric F'-connection V whose torsion tensor is in the form:

SiF = p;oF — piok — pF'EF 4 pFUEF (2.5)
where p; are local components of any 1—form p.

Let ffj be the components of the complex semi-symmetric metric F-connection V. If
we put

Tk k k
where I‘f’j are the components of the Levi-Civita connection V of g and Ti]} are the com-

ponents of a (1,2)—tensor field T on M,,, then the torsion tensor S of V is given by

k_Tk vk _ 1k k
Sij _Fij_rji_Tij —ng

Because the connection (2.6) must be provided the first formula of (2.4), by employing
the method proposed by Hayden in [5], we find

T,F =p;of — p°gij — peF}' FF + p FH' Fy,
where p* = p;g*, F¥ = F,'g'* and F;; = F,*g;;. Hence the connection (2.6) becomes
U5 =Tk + piol — phgij — pFFF + po M Ey. (2.7)
Also, using (2.7) we can easily verify

=k . . . .
Consequently, the components I';; of the complex semi-symmetric metric F-connection V
are in the form (2.7).
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3. Torsion properties of the complex semi-symmetric metric F-connection

This section is devoted to the properties of the torsion tensor of the complex semi-
symmetric metric F'-connection V.

Proposition 3.1. On an anti-Kdhler manifold (M, g, F) equipped with the connection
(2.7), the torsion tensor S of the connection (2.7) is pure with respect to F'.

Proof. By using (2.1) and (2.5), it follows that S,”fljFim = Sfijm = SZ’;F,,’:, that is, the
torsion tensor S is pure. U

An F-connection is pure if and only if its torsion tensor is pure [8]. Thus we can say
that the connection (2.7) is pure with respect to F.

Theorem 3.2. On an anti-Kdihler manifold (M,,, g, F') equipped with the connection (2.7),
the torsion tensor S of the connection (2.7) is a holomorphic tensor if the 1—form p is
holomorphic.

Proof. Let (M,, g, F) be an anti-Ké&hler manifold and V be its Levi-Civita connection
with components F?]

If we apply the Tachibana operator ¢ to the torsion tensor S of the connection (2.7),
we get

(67 Sk’ (3.1)
= F"(0mSi;) — O(S} )
= ka(vmsfj + Ffm’sij + anjszl's - ansSiSj)
—F(ViS} + TS5 + TS — TiLS)
= F"(VmSyy) = Fa(ViS3)-
Substitution (2.5) into (3.1) gives
(¢Fs)kijl = [ka(vmpj) - ij(vkpm)]dg — [F" (Vi) — Fim(vkpm)](sé'
+F"F 5 (Vimps) + Vkpz']Fjl - [kaFjs(vaS) + Vkpj]Fil-
On the other hand, for the 1—form p, we calculate
(PrP)k; = Fp"(Omps) — Ok(F;""pim)
= F"(Vmpj + yps) — F5™ (Vipm + Tinps)
= F"(Vapj) = " (Vipm).

From this, we can say that the 1—form p is holomorphic if and only if

Fi (Vimpj) = Fi* (Vipm)- (3.2)
Assumming that the 1—form p is holomorphic, then (3.1) becomes (¢F5)kijl =0, that
is, the torsion tensor S is a holomorphic tensor which completes the proof. (|

From now on, we will take into account such a special case of complex semi-symmetric
metric F'-connections which its 1—form p is holomorphic, that is, the following condition
always holds:

ka(Vij) = ij(Vkpm)
As a result of (3.1) and Proposition 3.1, we can write
ka<vmsijl) = Fim(vksmjl) - ij(vksiml)' (3~3)

A (p,q)—tensor T is called recurrent with respect to a given linear connection if its

components satisfy o o
VAR, = onKG T

where w = (wp,) is the recurrence 1—form.
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Theorem 3.3. On an anti-Kdihler manifold (M, g, F) equipped with the connection (2.7),
the torsion tensor S with respect to the connection (2.7) is recurrent, that is, Vkaj = wkS’fj

if and only if the 1—form p is recurrent with respect to ¥V, where wy, is the recurrence
1—form.

Proof. First we prove necessity. Assume that the torsion tensor S is recurrent, that is,
v dl l

Contracting the above equality with respect to ¢ and [, we obtain

On the other hand, from (2.5) we have
Sy = (n—2)p;. (3.5)
Thus, (3.4) and (3.5) give o
Vipj = Wkpj-

This means that the 1—form p is recurrent with respect to V. B
In contrast, let us assume that the 1—form p is recurrent with respect to V. Then
covariant differentiation of (2.5) with respect to the connection (2.7) directly gives

vksi]l‘ = (Vkpj) o — (Vkpi) 55' - (Vkpt) thFil + (Vkpt) F;‘tFjl

= wpjd;

— wipi6 — wip Fj '+ wppo U F

= wkSijl'
which completes the proof. O
Proposition 3.4. Let (M,,g,F) be an anti-Kdihler manifold equipped with the connec-
tion (2.7) and the 1—form p be recurrent with respect to the connection (2.7). Then the
recurrence 1—form w and the 1—form p are collinear, that is, wy, = apr, where « is an
arbitrary constant, if and only if the 1—form p is closed, that is, dp = 0.

Proof. Covariant differentiation of the 1—form p with respect to the connection (2.7)
yields

Vipj = Vipj — pipk + pmP" ik + PmPeFy ™ — prape ™ Fj
and

Vipk = Vo — 0ipk + Pmp" Gjk + PmPeF L F™ — pmp 7 Fjy,
from which it follows that

Vipj — Vipk = Vipj — Vpy.

Since the 1—form p is recurrent with respect to V, from the above equation we can write

WkPj — Wipk = VipPj — VD
Then the 1—form p is closed if and only if wyp; = w;jpy which means that the 1—forms w
and p are collinear, wx = apg, where « is an arbitrary constant. ]

4. Curvature properties of the complex semi-symmetric metric F-connection

This section deals with curvature properties of the connection (2.7). It is known that
the curvature tensor R of the connection (2.7) is characterized by

- h =h =h | =h =m =h =m
Rij = 0l — 0T, + Dy Ui — L Ui
Then, the curvature tensor R is as follows:
= h

+Fi thtﬂ'jt — thFktﬂ'it — Fithtﬂ'jt + ijthﬂ'it;
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where Rij,f are the components of the Riemannian curvature tensor and
1 1
ik = ViDL — PiPk + ipmpmgkj + pmpe L F - imetFWfij- (4.2)
Contracting (4.1) with respect to h and £, it follows that R, M=o

Theorem 4.1. Let (M,,g, F) be an anti-Kihler manifold equipped with the connection
(2.7). The curvature tensor of the connection (2.7) and the Riemannian curvature tensor
of the Levi-Civita connection coincide if the 1—form p satisfies V;p! + %plpl =0, where

P =g"'pi.
Proof. By assumption Rijli = Rijkl, from (4.1), we find
0 = —5%71']% + 55-71’% + gikﬂjl - gjkﬂil
—F'F'mj + F' By + FyFlmjy — Fip Pl

Contracting the above with respect to 7 and [, and then multiplying it by ¢’%, we have

n
2

tracer = Vp! + ppt = 0.

Now, we state and prove two lemmas that we shall need.

Lemma 4.2. On an anti-Kdihler manifold (M, g, F) equipped with the connection (2.7),
the tensor w given by (4.2) is symmetric if and only if the 1—form p is closed.

Proof. 1t follows immediately from (4.2) that mj, — 7 = Vpr — Vip; = (dp)jr. This
means that the tensor 7 is symmetric if and only if dp = 0, that is, the 1—form p is
closed. g

Lemma 4.3. On an anti-Kdhler manifold (M, g, F') equipped with the connection (2.7),
the tensor w given by (4.2) is a holomorphic tensor and thus the following relation holds:

(Vmﬂ'ij) ka = (Vkﬂmj) Fim = (V]Jrlm) ij

Proof. Let m be the tensor given by (4.2) on the anti-Kéhler manifold (M, g, F'). The
tensor 7 is pure with respect to F. In fact, using (2.1), (2.2) and (4.2) we have
Fy'mip — F'my, = (Vipe) B — (Vipe) F;' = 0.
We calculate
(Opm); = Fi" (Ommij) — Op(mim F}™) (4.3)
= (Vmmij) ™ — (Vimim) F;™
Applying (4.2) into (4.3), standard calculations give

(QbFTr)]m'j = (vmvipj) ka - (vkvmpj) Fz‘m~ (4'4)
If we apply the Ricci identity to the 1—form p, then we have

1
§p8Rmi; "

(VmVip) F™ = (ViVmps) F™ —
and

(ViVipm) F;™ = (ViVipm) F;™ — %Pstmfij
(4.4), with the help of the last two equation can be rewritten as follows:

1
(PpT)pi; = —§Ps(Rmikam — Ry F5).
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This immediately gives (¢5m), .. = 0. Hence, in view of (4.3) and the purity of the tensor

T wWe can write

kij
(mej) ka == (kamj) FZm == (vkﬂ'im) ij
This completes the proof. O

Theorem 4.4. On an anti-Kihler manifold (M, g, F) equipped with the connection (2.7),
the curvature tensor R of the connection (2.7) is a holomorphic tensor and thus the fol-
lowing relation holds: B B
(ViR VB = (ViR 4 F™).
Proof. Using the purity of the tensor 7, it is easy to see that
5] l o 1 o 1
Rz]k F ijk:F’zm - RzmkF]m Rz]ka )

that is, the curvature tensor R is pure with respect to F. o
Applying the Tachibana operator ¢ to the curvature tensor R, we have

<¢Fﬁ>kij§ (4.5)
= (8 Rz]l) 3k(§iﬂan§)
= F(VmBi| + TRyl + TR + TRl — ThRiy™)
—F (ViRy" + TR + T3 R P+ TRy f = ThRi ©)
= (vmﬁijlt)ka - (vkﬁijzm)an
from which, by (4.1), we find
(¢F§)kij§ = (¢FR)kij;

+H(Vemjm) Fl " = (Vo) B0+ [(Vinma) B — (Vimim) B ™0

H(Var) Byt = (Vinr}) ka]gjl—[(vkﬂ}”> Ef— (Vi) g
H(Vmmjs) B + Vkﬁjl] —[(Vmmis) " F° + vk‘ﬂ-il]F‘]
(V) B ES + Vil By —[ (Vs ) BE, + Vit Fy

When we take into account lemma 4.3, the last relation becomes (¢prR) ,m-jlt = 0, that is,
the curvature tensor R is a holomorphic tensor. Thus, by (4.5), we can write

(vmﬁijlt)ka - (Vkﬁm;lFim)'
O
Multiplying (4.1) by gp;, the curvature (0,4)—tensor is given in the form:
Rijiw = Riji — 9amjk + gpmin + 9k — gjema + FuFy, 'mj (4.6)
—FjFlmiy — Fy Bl mj + FjpFy g,
where R;;j; are the curvature (0,4)—tensor of the Levi-Civita connection V of g. We can
immediately say that the curvature (0,4)—tensor R satisfies the following properties:

i) Rijii = —Rjini,
1) Rijki = —Rijik.
Theorem 4.5. Let (M,,g, ) be an anti-Kdihler manifold equipped with the connection

(2.7) and let us assume that n > 6. The curvature (0,4)—tensor R of the connection (2.7)
holds the followings

i) Rijti — Reiij = 0,
i) Rijiy + Riiji + Rjkat =
if and only if the 1—form p is closed.
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Proof. i) From (4.6), we obtain
Rijki — Riiij (4.7)
= (my — ) gjk + (Trj — k) i + (Tike — Ta) G
+ (mj1 — mj) gir + FuFy' (mje — 75) + F By (i — mie)
+FF)t (Mg — i) + ijFlt (it — ;) -
If we assume that R;jx — Ryi; = 0, then (4.7) becomes
0 = (mu—ma) gk + (Tej — Tjk) g + (Tik — ki) i1
+ (mj1 — mij) gik + FuFy' (mje — m05) + FFy (s — mir)
+F By (e — mje) + FieFy b (mi — ) -
Transvecting the above with ¢%, we find
(n—4) (mp; — ) =0.
In view of n > 6, the last relation gives
ik — Tg; = 0
from which the result follows.
_ Conversely, using the fact that the 1—form p is closed, from (4.7) it is easy to see that
Rijii — Rpiij = 0.
1) We omit the proof because it can be established by the same way as in the proof of
(7). O

Theorem 4.6. On an anti-Kdihler manifold (M, g, F), the Ricci tensor of the connection
(2.7) is characterized by

ij = Rji + (4—n) Tk — gjktracem + ijFltmt,

where Rjy, is the components of the Ricci tensor of the Levi-Clivita connection of g. Let
us assume that n > 6, then the Ricci tensor is symmetric if and only if the 1—form p is
closed.

Proof. Contracting (4.1) with respect to i and [, we obtain
Rji, = Rji + (4 — n) i, — gjptracen + ijFltmt. (4.8)
Also, we have
Rjk — Rij = (4 — n) () — m5).-
This implies that Rjk — Ekj = 0 if and only if the 1—form p is closed. O
As a result of Theorem 4.5 and 4.6, we can state:

Theorem 4.7. Let (M,, g, F) be an anti-Kdhler manifold. The Ricci tensor of the con-
nection (2.7) is symmetric if and only if
Rijii — Riij =0
or
Rijki + Ryiji + Rjka = 0.

Let 7 be the scalar curvature of the connection (2.7), where 7 is obtained by contracting

the Ricci tensor (4.8): 7 = ¢/ kRjk. The scalar curvature 7 is given by
T = 7+42(2—n)tracer (4.9)

n—4

2
where 7 is the scalar curvature of the Riemannian manifold (M,, g).

= 74+22-n)(Vip+ npt),
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Example 4.8. The pseudo-Euclidean space R?" is given by pseudo-Euclidean metric
_ 9i5  9;;
(gaﬁ) < gi; 95 )
_ 62 O L. - <
= ( 0 _6ij>,z,]—1,...,n, ,j=n+1,..,2n.

Let C" be the complex space. The usual identification 7 of C" with R?" is given by
roz= (2422 ..,2")eC" = r(z)=Z = (a1, 22, ...,2" 9yl 2, .., y") € R"

where 2F = 2% +iy*, k = 1, ...,n. The canonical complex structure F' on R*" is determined
by the matrix
J J
(F ﬁ) _ (B
“ F/ FY
K]

or

F; F. 0 o
(Fa):< ’ ) >:< . ZJ)
Fﬁ Ffj di; 0

with respect to the natural basis of R?”. In the example, Greek indices take on values 1 to
2n. For all Z, W on R?” the metric g and the complex structure F' on R?" are related by the
equality g(FZ, FW) = —g(Z,W), that is, g is pure with respect to F. Hence (R?", g, F)
is an anti-Ké&hler Euclidean space. Note that the metric g is of signature (n,n).

We suppose that p, is a gradient, po = (pi,p;) = (9;f,0:f), f being a holomorphic
function. The condition for the function f to be locally holomorphic is given by [6]

((Z)Fdf)crﬁ = Fgaozaﬁf - 8J(Fﬁaaaf) + (85Fg)8af =0.
Then, the components of the complex semi-symmetric metric F-connection in (R?", g, F)
are the followings

=k =k =k =k
Ty = T3 =Ty =-T5 =06 — (Onf) 5"y,

ij
=k =k =k =k hk
Fij = Fﬁ = Pfj = _Fij = (%f) 55 + (%f) 6’%51‘]“

The torsion tensor of the complex semi-symmetric metric F-connection has the compo-
nents

Sk o= SE-sFo-sE-@nd-@nd.
k k k k k k
Sk o= sk =5F=—8F= (1)~ (0:) o
One verifies that the torsion tensor S is pure with respect to F' and furthermore (¢pS)] 5=
0, that is, S is holomorphic.

The components of the curvature tensor R of the complex semi-symmetric metric F-
connection are the followings

- 1
R%jk

_ sl L 5 -l g
= 5i7rkj+5j77ki 5k]7ri+5kz77j7
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- 1

Ri' = Rg,' =R =Ryp
= _Eﬁkz = —Ejk = _EijEZ = _7ijk !
= Olmyy — Shmp + Syt — Ot
where
Ty = —my = 0wdif + (Ogf) (05F) — (O (851)

+%5hm5zj [(075) (Omf) — (Onf) (Om[)]

Tty = Mg = 0p0;f — (0f) (05) — (O f) (95F) + 6" 855 () (O )
and 75 = ¢*’71,4. Simple calculations show that (¢r7),as = 0. Using this, one checks
that the curvature tensor R is pure with respect to F' and furthermore (¢rR) o a% =0,

that is, R is holomorphic. B
The components of the curvature (0,4)-tensor R are the followings

R%jkz = Rijkl = RijEz = _RTij
= —Ryp=-Rgg= Ry =R,
= —Oumy; + Oty = Oy + 0k,

Rym = —Rin = Rm = Ry
Ry =R = —Bag = R
= OuTj — 0jiTk; + OpjTi — OpiTji.

It is a straightforward verification that the conditions

Raaﬂ'y = _Rcwﬁ’yy

Roaﬂw = _Raa'yﬂ7

Raaﬁ'y = Rﬁ'yaou

Eaaﬂw + Rlﬁm + Eﬂaav =0
are fulfilled. B
For the Ricci tensor Rg,, we get

Rj, = 2(1—n)my; — 20k tracer,
o) l

R]/k == —2n7rk‘j + 25kj7rlv

Rjk = R]% = —2n7rEj — 20 tracer

from which it follows that the condition Rg, = R,z is verified, which means that the Ricci
tensor of our connection in (R?", g, F) is symmetric.

A pseudo-Riemannian manifold is called an Einstein space if the equation
Rk = Agji

holds with a scalar function A. The pseudo-Riemannian manifold with any complex semi-
symmetric metric F-connection in which the Ricci tensor satisfies the equation

R(jk) = 795k
may be called an Einstein space, where 7 is a scalar function and Ry is symmetric part
of Ricci tensor of the complex semi-symmetric metric F-connection.
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Theorem 4.9. Let (My,,g,F) be an anti-Kihler manifold and the pseudo-Riemannian
manifold M, be an FEinstein space with respect to the Levi-Civita connection. Then the
pseudo-Riemannian manifold M, equipped with the connection (2.7) will be an Einstein

space with respect to the connection (2.7) if the 1—form p satisfies
2(2—n) n—4
n

2

where X is a scalar function coming from the Einstein property of Riemannian spaces, that
z's, Rjk = )\gjk.

— A= (Vip' + ),

Proof. Using (4.8), the symmetric part of the Ricci tensor of the connection (2.7) is given
by

_ 1

R(jk) = §(Rjk + Rjk)
1

= 5{2Rjk + (4 —n) (7 + mi5) — 2g;Ktracem + 2ijFlt7rlt}

4—n
= Rjp+ 5 (7Tjk + 7Tk;j) — gjktracem + ijFltmt.

If we transvect the last equation with ¢7%, then we get

Rind™ = Rjg’™ + (4 - 2n)tracen
ngkgjk = )\gjkgjk + 2(2 — n)tracer
2(2 —
YA = thcew,
n

where tracer = Vp! + %plpl . Thus the connection (2.7) is Einstein if the equation
y—A= M(lel + %plpl) holds. O

n

The conharmonic curvature tensor with respect to the connection (2.7) is given by

_ 1 — _ _ _
Vijkt = Rijrr — > [Rjkgil — Rikgj — Rjugir + Rilgjk} .
Using (4.6) and (4.8) we have

(4.10)
Vijki = Vige, + FaFlmj — FyFlmy — FiFymje + Fi Byt

—" [(27rjk — gjktracem + ijFmtﬂmt) gil

— (27Tik — gixtracerm + Fikatﬂ'mt) gji
— (27le — gjitracem + Flemtwmt) gir + (27711 — gytracem + FilFmtﬂ'mt) Gjk)s
where V1, is the conharmonic curvature tensor with respect to the Levi-Civita connection.

Theorem 4.10. Let (My, g, F) be an anti-Kdihler manifold equipped with the connection
(2.7). If the conharmonic curvature tensor with respect to the connection (2.7) vanishes,
then the scalar curvature of the connection (2.7) vanishes.

Proof. 1If we assume that V;;,; = 0, from (4.10) we have
0 = Viju+ FuFlmjy — FuFlng — FpFy'mj + FjFlmy
_ﬁ[@ﬂjk — gk + ijFthmt) gil — (27% — gy + Fikatﬂ'mt) gji
- (27le — gy + Flethmt> gik + (27Tz‘l — gami + Fz’lFmtﬂmt) 9jk)-
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When we multiply the last equation by g¢%, using the condition Vijklg“ = Vijk b=
— 59k, we find
1 n—4 T
Vi + + = _———— =0,
P Ton—n) T T PP T ey
where A = ﬁ, n o= ”T_Zl and 7 and T respectively are the scalar curvatures of the
Levi-Civita connection and the connection (2.7). This completes the proof. O

Theorem 4.11. Let (M, g, F) be an anti-Kahler manifold equipped with the connection
(2.7). If the conharmonic curvature tensors with respect to the connection (2.7) and the
Levi-Civita connection coincide, then the 1—form p satisfies Vip! + "T_lelpl =0.

Proof. Let Vi = Viju, from (4.10) we obtain
(4.11)
0 = FyFlmy— FpFlme — FuFlmjpe + FiFytmy
_ 1
n—2
— (277”C — gixtracerm + Fikatﬂ'mt) gji
-

[(27rjk — gjptracem + ijFmtwmt) gil

27y — gjitracem + Flemtﬂmt> gik + (27711 — gytracem + FilFmtﬂ'mt> Gjk)-
Transvecting (4.11) by g%, we have
(2 = n)mjp + gjrtracem = 0. (4.12)
Transvecting (4.12) by ¢7*, we find
2tracemr =0
which leads to V;p! + 252 pp! = 0. O

Theorem 4.12. Let (M, g, F) be an anti-Kdihler manifold equipped with the connection
(2.7). Then the conharmonic curvature tensor with respect to the connection (2.7) has the
following properties:

0) Vijie = =V jiki,
i) Vg = —Vijik,
i1i) Under the condition of n > 6, Vijkl + Vkiﬂ + ijl-l = 0 if and only if the 1—form
p is closed.

Proof. i) Interchanging ¢ and j in (4.10), and then adding it to (4.10), we have
Vijki + Vit = Vijia + Viika-

Since in a Riemannian manifold Vi + Vjir = 0, we find Vz’jkl + Vjikl = 0. Similarly the
proof of (iz) can easily be proven.
i1) From (4.10), using Vijr + Viiji + Vjka = 0 we can write

Vijkl + sz‘jl + ijil (4.13)
= FyF (mji — mj) — FpF) (my — m6) — FuF}' (mie — m0)
2

— 5l (mjk = ) g = (mik — i) g1+ (mi — i) gual-

It is a direct consequence of (4.13) that dp = 0 implies Vl-jkl + Vkijl + ijil = 0.
If we assume that V;jk + Vit + V ki = 0. Transvecting the last equation with F & and
then it with ;¥  we obtain (n — 4) (m;; — m;;) = 0 which gives the result. O
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The Weyl projective curvature tensor with respect to the connection (2.7) is given by

_ _ 1 —
Pijki = Rijil — —7 [Rjkgil — Rz’kgjz] ‘ (4.14)
Substituting the values of R;jr; and Ry from (4.6) and (4.8) respectively into (4.14), we
get
Pijp (4.15)
= Pyu+ 9imji — gjpma — FuFylmj + FjFy'my
1
+F1kFl tﬂ'jt - ijFl tﬂit — m[(gﬂjk — gjktmceﬂ + ijFmtﬁmt)gil
—(3mir, — girtracer + FypF™ e ) gi1),

where Pjj;;; is the Weyl projective curvature tensor with respect to the Levi-Civita con-
nection.

Theorem 4.13. Let (M, g, F') be an anti-Kihler manifold equipped with the connection
(2.7). If the Weyl projective curvature tensor with respect to the connection (2.7) vanishes,
then the 1—form p is closed, under the condition of n > 6.

Proof. Let P;ji = 0. Then from (4.15) we get
0 = P+ gimji — gixma — FuFylmj + FjFlm + FiFy '
—Fjp Byt — ﬁ[(?ﬁfﬂc — gk + Fi F™ ) it
— (37t — giempy, + Fir ™ Tt g51).
Transvecting the previous equation by ¢!, we have
Py "+ (n = 4) (miy — mj) = 0.

Since in a Riemannian manifold, the following equation holds: P k =0, the result

immediately follows, under the condition of n > 6. O
Theorem 4.14. Let (M, g, F) be an anti-Kdihler manifold equipped with the connection

(2.7). Then the Weyl projective curvature tensor with respect to the connection (2.7) has
the following properties:

i) Pijri = —Pjir,

1) ?ijk:l + Pkiﬂ + ?jkil = 0 if and only if the 1—form p is closed.
Proof. i) Interchanging ¢ and j in (4.15), and then adding it to (4.15), we obtain

Pijki + Pjiki = Pijii + Pjiki-

Since in a Riemannian manifold P;jx; + Pjix = 0, we find Piji = —Pjik-
it) From (4.15), using Pz + Priji + Pjri = 0 we get
Pijii + Priji + Pjra (4.16)
= FpF (mi —ma) — FaFy! (mj — m5) — FuFj' (my — )
3
= ik = ) giu— (mak = i) g+ (mij — i) gnal -

It follows directly from (4.16) that dp = 0 implies P;jx; + Piji + Pjri = 0.
Conversely, let us assume that Fijkl —1—?;41-]'1 +ijil = 0. When we transvect (4.16) with

g%, it reduces to
on — 8
(n_l ) (Thj — i) =0

from which the result follows. O
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