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Abstract
In this short note, our aim is to solve two problems in the theory of disjointness pre-
serving operators. Firstly, we obtain the converse direction of Hart’s Theorem which was
given in [D.R. Hart, Some properties of disjointness preserving operators, Mathematics
Proceedings, 1985]. As a result, we get an affirmative solution of an open problem given
by Y.A. Abramovich and A.K. Kitover in [Inverses of disjointness preserving operators,
Mem. Amer. Math. Soc., 2000].
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1. Introduction
All vector spaces are considered over the reals only. Let G and H be Riesz spaces. An

operator S : G → H is called disjointness preserving if Sx ⊥ Sy for all x, y ∈ G satisfying
x ⊥ y ( i.e., |x| ∧ |y| = 0 ). A positive operator S : G → H is disjointness preserving
if and only if S is a Riesz homomorphism. An operator π : G → G on a Riesz space is
said to be band preserving whenever π(B) ⊆ B holds for each band B of G. π is a band
preserving operator if and only if π(x) ⊥ y whenever x ⊥ y in G. A band preserving and
order bounded operator π is called orthomorphism of G and the set of all orthomorphisms
of G is denoted by Orth(G). Every orthomorphism is disjointness preserving and order
continuous. The order ideal generated by the identity operator I in Orth(G) is called the
ideal centre of G and is denoted by Z(G). Both of Orth(G) and Z(G) under composition
are f -algebras, having the identity operator I as a unit.

We refer to [2, 4, 6, 8] for definitions and notations which are not explained here. All
Riesz spaces in this paper are Archimedean.

The following theorem was proved by Hart in [3].

Theorem 1.1 ([3, Theorem 2.1]). Let G, H be Riesz spaces and S : G → H be a surjec-
tive, order bounded, disjointness preserving operator. Then there exists a uniquely defined
disjointness preserving operator Ψ : Z(G) → Z(H) satisfying Ψ(π)S = Sπ for every
π ∈ Z(G).
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The following two problems will be our main concern in this work. The first problem
deals with the converse of Hart’s Theorem. The second problem is an open problem given
by Abramovich and Kitover in [1].
Problem 1.2. Let G, H be Riesz spaces and S : G → H be an operator. If there exists
a disjointness preserving operator Ψ : Z(G) → Z(H) such that Ψ(π)S = Sπ for every
π ∈ Z(G), then S is disjointness preserving operator.
Problem 1.3 ([1, Problem 8.2]). Assume that both vector lattices G and H have a cofinal
family of projection bands. Let S : G → H be a bijective operator such that the mapping
π → SπS−1 (or resp. π → S−1πS) is an isomorphism from Z(G) onto Z(H) (or resp.
from Z(H) onto Z(G)). Does this imply that S is disjointness preserving?

If the operator π → Ψ(π) = SπS−1 is an isomorphism from Z(G) onto Z(H), then Ψ is
a disjointness preserving map as Ψ is an algebra homomorphism from the f -algebra Z(G)
to the f -algebra Z(H) and Ψ provides Ψ(π)S = Sπ for every π ∈ Z(G). So, if we solve
the first above mentioned problem, we get the second problem as a result. In general, the
answer to the first problem is negative.
Example 1.4. Let G be the Riesz space of piecewise affine, continuous functions on
[0, 1] . Then, Z(G) consists only of multiples of identity (i.e., Z(G) = {λI : λ ∈ R}) [5] .
Let H = G and take S to be an arbitrary operator that does not preserve disjointness.
However, there exists a disjointness preserving operator Ψ : Z(G) → Z(H) such that
Ψ(π)S = Sπ for every π ∈ Z(G).

2. Main results
Now, we recall some definitions.

Definition 2.1. (i) A Riesz space G has rich center if for each u, v ∈ G satisfying
|u| ≤ |v| there exists a central operator π ∈ Z(G) such that |π| ≤ I and πv = u.

(ii) A Riesz space G is said to have the principal projection property if every principal
band in G is a projection band.

(iii) A Riesz space G has a cofinal family of projection bands if for each non-zero band
B there is a non-zero projection band D ⊆ B.

Every σ-Dedekind complete Riesz space satisfies the definitions (i), (ii) and (iii). Any
C(K) space of continuous functions on a zero-dimensional compact space K is a typical
example of a Riesz space with a cofinal family of projection bands. If G satisfies the
principal projection property, then the affirmative solution of the Problem 1.2 was given
in [7].
Proposition 2.2 ([7, Proposition 3.7]). Let G, H be vector lattices, G having the principal
projection property. Let S : G → H be a linear operator. If there exists a disjointness
preserving map Ψ from Z(G) to Z(H) such that Ψ(π)S = Sπ for every π ∈ Z(G), then S
is a disjointness preserving operator.

If G has rich center, then the affirmative solution of the Problem 1.2 is given in the
next proposition.
Proposition 2.3. Let G, H be vector lattices and G has rich center. Let S : G → H be a
linear operator. If there exists a disjointness preserving map Ψ from Z(G) to Z(H) such
that Ψ(π)S = Sπ for every π ∈ Z(G), then S is a disjointness preserving operator. In
addition, if S is a bijective operator then S−1 is a disjointness preserving operator.
Proof. Let u⊥v in G. We may assume without loss of generality that u ≥ 0 and v ≥ 0.
Since the center Z(G) is rich there exist π1, π2 ∈ Z(G)+ such that π1(u + v) = u and
π2(u + v) = v. If we take γ1 = π1 − π1 ∧ π2 and γ2 = π2 − π1 ∧ π2, then γ1 ∧ γ2 = 0. Since

π1 ∧ π2(u + v) ≤ π1(u + v) = u, π1 ∧ π2(u + v) ≤ π2(u + v) = v
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we have π1 ∧ π2(u + v) = 0. This yields γ1(u + v) = u and γ2(u + v) = v. Now we obtain

0 ≤ |Su| ∧ |Sv|
= |Sγ1(u + v)| ∧ |Sγ2(u + v)|
= |Ψ(γ1)S(u + v)| ∧ |Ψ(γ2)S(u + v)|
= |Ψ(γ1)| |S(u + v)| ∧ |Ψ(γ2)| |S(u + v)|
= (|Ψ(γ1)| ∧ |Ψ(γ2)|) |S(u + v)|
= 0

which yields Su⊥Sv and S is disjointness preserving. If S is a bijective operator, the proof
is completed by Proposition 3.8 in [7]. �

Theorem 2.4. Let S : G → H be a bijective operator between vector lattices G and H.

(1) If G has a cofinal family of projection bands and there exists a disjointness pre-
serving map Ψ from Z(G) to Z(H) such that Ψ(π)S = Sπ for every π ∈ Z(G),
then S is a disjointness preserving operator.

(2) If H has a cofinal family of projection bands and there exists a disjointness pre-
serving map Ψ from Z(H) to Z(G) such that SΨ(π) = πS for every π ∈ Z(H),
then S−1 is a disjointness preserving operator.

(3) If G and H have a cofinal family of projection bands and there exists a surjective
disjointness preserving map Ψ from Z(G) to Z(H) such that Ψ(π)S = Sπ for
every π ∈ Z(G), then S and S−1 are disjointness preserving operators.

Proof. (1) Let us first show that S−1(Bh) ⊆ BS−1h for each h ∈ H (where Bh is the
band generated by h). Assume, contrary to what we claim, that there exists t ∈ Bh

such that S−1t /∈ BS−1h. Thus, we can find u ∈ Bd
S−1h such that

∣∣S−1t
∣∣ ∧ |u| ̸= 0. Let

z =
∣∣S−1t

∣∣ ∧ |u|. From the hypothesis there exists a non-zero projection band B ⊆ Bz

and the projection P : G → B yields PS−1t ̸= 0 and PS−1h = 0. Using the hypothesis,
we have S−1Ψ(P )h = PS−1h = 0 where Ψ is the operator from Z(G) to Z(H) defined
by Ψ(π) = SπS−1 for each π ∈ Z(G). Since S−1 is one to one we have Ψ(P )h = 0. As
Ψ(P ) ∈ Z(H), it can be easly shown that Ψ(P ) = 0 on Bh. Thus, we obtain Ψ(P )t = 0.
This implies that PS−1t = S−1Ψ(P )t = 0, a contradiction. Now we will show that S is a
disjointness preserving operator. Take arbitrary u, v ∈ G with u⊥v. There exist h, t ∈ H
such that S−1h = u and S−1t = v. By the first part of the proof, we have

S−1(Bh) = S−1(BSu) ⊆ BS−1h = Bu and S−1(Bt) = S−1(BSv) ⊆ BS−1t = Bv

which yields BSu ⊆ S(Bu) and BSv ⊆ S(Bv). Since S is one to one we obtain

BSu ∩ BSv ⊆ S(Bu) ∩ S(Bv) = S(Bu ∩ Bv) = {0} ,

which means Su⊥Sv. (2) The proof is same as (1). (3) It is clear that Ψ is one to
one operator from Z(G) to Z(H). Hence, Ψ−1 is the operator from Z(H) to Z(G) and
Ψ−1(π) = S−1πS for each π ∈ Z(H). From (1) and (2), S and S−1 are disjointness
preserving operators. �

Affirmative solution of the Problem 1.3 with the weaker hypothesis is given in the next
corollary.

Corollary 2.5. Let S : G → H be a bijective operator between vector lattices G and H.
If G has a cofinal family of projection bands and for each π ∈ Z(G) the operator SπS−1

is an element of Z(H), then S is a disjointness preserving operator.
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