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SEPARATION AXIOMS IN ČECH CLOSURE ORDERED SPACES

IREM EROGLU AND ERDAL GUNER

Abstract. In this paper, we generalize closure spaces by an preorder and we
give some order seperation axioms in Čech closure ordered spaces.

INTRODUCTION
Topological spaces can be generalized by many ways. Leopoldo Nachbin[6] de-

veloped a way to generalize topological spaces by an order. He defined topological
ordered spaces, such that a triple (X, τ,≤) where τ is a topology and ≤ is a rela-
tion of partial order on X. He investigated some properties of topological ordered
spaces.
In 1968 McCartan[9] studied Ti−ordered seperation axioms (i = 1, 2, 3, 4) in

topological ordered spaces.
The other way to generalize topological spaces is closure operators. Eduard

Čech[4] defined Čech closure spaces or dually pretopological spaces. A.S.Mashhour
and M.H.Ghanim[1] investigated properties of Čech closure spaces.
The aim of this paper is to define Čech closure ordered spaces and investigate

some ordered seperation axioms in this spaces. For topological spaces we refer the
reader to R. Engelking[8]. For closure spaces we refer to [3],[7].

1. PRELIMINARIES

Now, we will give some basic definitions about closure spaces and orders.

Definition 1. Let X be a set. An order (partial order) on X is a binary relation
≤ on X such that, for all x, y, z ∈ X
i) x ≤ x
ii) x ≤ y and y ≤ x imply x = y
iii) x ≤ y and y ≤ z imply x ≤ z
These conditions are referred to, respectively as reflexivity, antisymetry and tran-

sivity. A set X equipped with an order relation ≤ is said to be an ordered set (or
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space.

c©2016 Ankara University
Communications de la Facu lté des Sciences de l’Université d’Ankara. Séries A1. Mathematics and Statistics.

1



2 IREM EROGLU AND ERDAL GUNER

partially ordered set).A relation ≤ on a set X which is reflexive and transitive but
not necessarily antisymmetric is called a quasi-order or preorder [2].

Definition 2. Let X and Y be ordered sets. A map ϕ from X to Y is said to be an
order-embedding if and only if the following be satisfied x ≤ y in X iff ϕ(x) ≤ ϕ(y)
in Y .

Definition 3. Let X designate a preordered set. A subset A ⊆ X is said to be
decreasing if a ≤ b and b ∈ A imply a ∈ A. The smallest decreasing set containing
A will be shown by d(A). A subset A ⊆ X is said to be increasing if a ≤ b and
a ∈ A imply b ∈ A and the smallest increasing set containing A will be shown by
i(A) [4].

Definition 4. Let us consider a topological space (X, τ) equipped with a preorder
≤. The triple (X, τ,≤) is called topological ordered space [5].

Definition 5. If X is a set and u is a single-valued relation on P (X) ranging
in P (X), then we shall say that u is a closure operation for X provided that the
following conditions are satisfied,
c1) u(∅) = ∅
c2) A ⊆ u(A) for each A ⊆ X
c3) u(A ∪B) = u(A) ∪ u(B) for each A ⊆ X and B ⊆ X.
A structure (X,u) where X is a set and u is a closure operation for P , will be

called a closure space ([1],[3]).

Definition 6. Let (X,u) be a closure space. There is associated the interior oper-
ation intu usually denoted by int, such that for each A ⊆ X,
intuA = X − u(X −A)

Definition 7. Let X be a set, u and v are closure operators on P (X). The closure
operator u is said to be coarser than v, or v is said to be finer than u, if for each
A ⊆ X, v(A) ⊆ u(A).

Definition 8. A neighbourhood of a subset A of X is any subset U of X containing
A in its interior. We will show the neighbourhood family of A by N (A).
Let x ∈ U , U ⊆ X. U is called a neighbourhood of x if and only if x ∈ intuU.

Neighbourhoods family of a point x will be shown by N (x).

Definition 9. A family {Ai : i ∈ I} of subsets of a closure space (X,u) will be
called closure-preserving if for each J ⊆ I, ∪

i∈J
u(Ai) = u( ∪

i∈J
Ai).

Definition 10. The product
∏
α∈I
(Xα, uα) of a family {(Xα, uα) : α ∈ I} of closure

spaces is the closure space (
∏
α∈I

Xα, u) where
∏
α∈I

Xα denotes the Cartesian product

of the sets Xα, α ∈ I and u is the closure operator generated by the projections
πα :

∏
α∈I

Xα → Xα, defined by u(A) =
∏
α∈I

uαπα(A) for each A ⊆
∏
α∈I

Xα.
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2. T1-ORDERED CLOSURE ORDERED SPACES

In this section, defining T1−ordered closure ordered space we will investigate
some properties.

Definition 11. Let (X,u) be a Čech closure space and ≤ be a preorder on X. Then
the triple (X,u,≤) will be called closure ordered space.

Definition 12. Let (X,u,≤) be a closure ordered space,
i) (X,u,≤) is upper T1−ordered iff for each pair of elements a � b in X, there

exists a decreasing neighbourhood U of b such that a /∈ U.
ii) (X,u,≤) is lower T1−ordered iff for each pair of elements a � b in X, there

exists an increasing neighbourhood U of a such that b /∈ U.

If both of the conditions are satisfied, then (X,u,≤) will be called T1−ordered
closure ordered space.

Example 1. Let X = {a, b, c}, ≤ = {(a, a), (b, b), (c, c), (a, b), (b, a)} be a preorder
on X and u : P (X)→ P (X) is defined such that,
u({a}) = {a, b}, u({b}) = {b}, u({c}) = {c}, u({a, b}) = {a, b},
u({a, c}) = X, u({b, c}) = {b, c}, u(X) = X, u(∅) = ∅,
Then (X,u,≤) is a T1−ordered closure ordered space.

Theorem 1. Let (X,u,≤) be a closure ordered space, then the following conditions
are equivalent,
i) (X,u,≤) is lower(upper) T1−ordered space
ii) For each a � b in X there exists U (V ) a neighbourhood of a such that x � b

(a � x) for all x ∈ U (x ∈ V )
iii) For each x ∈ X, [←, x] ([x,→]) is closed.

Proof. i)⇒ ii) Let (X,u,≤) is lower T1−ordered space and a � b in X, then there
exists U ∈ N (a), U is decreasing and b /∈ U. So, x � b for all x ∈ U.
ii)⇒ iii) Let x ∈ X and suppose that [←, x] is not closed, so u([←, x]) 6= [←, x].

There exists z ∈ u([←, x]) and z /∈ [←, x], so z � x. From ii), there exists U ∈ N (z)
and for each y ∈ U , y � x. But this contradicts with z ∈ u([←, x]). Consequently,
[←, x] is closed.
iii)⇒ i) Let a, b ∈ X and a � b. From iii), [←, b] is closed and X−[←, b] is open,

so X− [←, b] ∈ N (a).We find an increasing neighbourhood of a and b /∈ X− [←, b].
(X,u,≤) is lower T1−ordered space. �

It can be similarly shown for upper T1−ordered spaces.

Proposition 1. Let (X,u,≤) be a T1−ordered closure ordered space. Then every
closure operator weaker than u with the same preorder is T1−ordered closure ordered
space.
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Proof. Let v be a closure operator which is weaker than u and (X,u,≤) be a
T1−ordered closure ordered space. Then we can write for each x ∈ X, v([x,→]) ⊆
u([x,→]) = [x,→] and v([←, x]) ⊆ u([←, x]) = [←, x]. So, (X, v,≤) is a T1−ordered
space. �

Proposition 2. Every subspace of a T1−ordered closure ordered space is a
T1−ordered.

Proof. Let (X,u,≤) be a T1−ordered closure ordered space and (A, uA,≤A) be a
subspace of (X,u,≤). We will use Theorem1, so it will be shown that for each
a ∈ A, [a,→]A = [a,→] ∩A and [←, a]A = [←, a] ∩A are closed in (A, uA,≤A).
uA([a,→]A) = uA([a,→] ∩A) = u([a,→] ∩A) ∩A ⊆ u([a,→]) ∩ u(A) ∩A =
u([a,→])∩A = [a,→]∩A = [a,→]A, so uA([a,→]A) ⊆ [a,→]A. Hence [a,→]A ⊆

uA([a,→]A), uA([a,→]A) = [a,→]A, so (A, uA,≤A) upper T1-ordered.
It can be similarly shown for [←, a]A. Consequently, (A, uA,≤A) T1 − ordered

space. �

Proposition 3. Let (X,u,≤) and (Y, v,≤′) are closure ordered spaces and f :
(X,u,≤) → (Y, v,≤′) is a continuous and order-embedding function. If (Y, v,≤′)
T1−ordered space, then (X,u,≤) is T1−ordered space.

Proof. Let (Y, v,≤′) be a T1−ordered space and a, b ∈ X, a � b. Because of f
is order embedding, f(a) �′ f(b). Hence (Y, v,≤′) T1−ordered space, there exists
increasing neighbourhood U of f(a) and decreasing neighbourhood V of f(b) such
that f(b) /∈ U , f(a) /∈ V.
f−1(U) is an increasing neighbourhood of a and f−1(V ) is a decreasing neigh-

bourhood of b, since f is an order-embedding and continuous function. f(b) /∈ U ⇒
b /∈ f−1(U) and f(a) /∈ V ⇒ a /∈ f−1(V ). Consequently, we found an increasing
neighbourhood f−1(U) of a such that b /∈ f−1(U) and decreasing neighbourhood
f−1(V ) of b such that a /∈ f−1(V ), so (X,u,≤) is T1− ordered. �

Definition 13. Let (X,u,≤) be a closure ordered space. t↑ = {A ⊆ X : u(Ac) = Ac

and A is an increasing set}, t↓ = {A ⊆ X : u(Ac) = Ac and A is a decreasing set}
are topological spaces on X. They are called upper and lower topology associated
with (X,u,≤).

Proposition 4. Let (X,u,≤) be a closure ordered space. Then the followings are
true,
i) If (X, t↑,≤) is lower T1 − ordered space, then (X,u,≤) is lower T1−ordered

space.
ii) If (X, t↓,≤) is upper T1− ordered space, then (X,u,≤) is upper T1−ordered

space.
iii) If (X, t↑,≤) is lower T1−ordered and (X, t↓,≤) is upper T1−ordered space,

then (X,u,≤) is T1−ordered space.
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Proof. i) Let (X, t↑,≤) be a lower T1 − ordered space. We will show that for each
x ∈ X, [←, x] is closed. If we show the closure operator of (X, t↑,≤) with cl, cl is
coarser than the operator u. So, we can write u([←, x]) ⊆ cl([←, x]) = [←, x] ⇒
u([←, x]) = [←, x]⇒ (X,u,≤) is lower T1−ordered space.
ii) Let (X, t↓,≤) is upper T1− ordered space. We will show that for each x ∈ X

[x,→] is closed. Because of (X, t↓,≤) is upper T1 − ordered space, we can write
u([x,→]) ⊆ cl([x,→]) = [x,→]⇒ (X,u,≤) is upper T1−ordered.
iii) it can be obtained from i) and ii). �

3. T2−ORDERED CLOSURE ORDERED SPACES

In this section, we will give the definition of T2−ordered closure ordered spaces
and we will investigate some of its properties.

Definition 14. Let (X,u,≤) be a closure ordered space. (X,u,≤) is called
T2−ordered closure space if and only if for each a, b ∈ X 3 a � b, there exist an
increasing neighbourhood U of a and decreasing neighbourhood V of b such that
U ∩ V = ∅.
If (X,u,≤) is T2−ordered, then (X,u,≤) is T1−ordered.

Theorem 2. Let (X,u,≤) closure ordered space. Then the followings are equiva-
lent,
i) (X,u,≤) is T2−ordered
ii) For each a, b ∈ X 3 a � b, there exist U ∈ N (a), V ∈ N (b) 3 ıf x ∈ U and

y ∈ V, then x � y
iii) The graph of the partial order of X is closed in product closure space X×X.

Proof. i)⇒ ii) and ii)⇒ iii) is clear, so we will only prove iii)⇒ i)
Let a, b ∈ X and a � b. The graph of the partial order is G≤ = {(x, y) : x ≤ y}.
a � b ⇒ (a, b) /∈ G≤ ⇒ (a, b) /∈ u(G≤) ⇒ U ∈ N (a), V ∈ N (b) such that

(U ×V )∩G≤ = ∅. Let say U ′ = i(U) and V ′ = d(V ), then U ′ and V ′ are increasing
and decreasing neighbourhood of a and b, respectively.
U ′ ∩ V ′ = i(U)∩ d(V ) = ∅. To show that, suppose i(U)∩ d(V ) 6= ∅. Then, there

exists a such that a ∈ i(U) ∩ d(V )⇒ a ∈ i(U) and a ∈ d(V )⇒ x ∈ U : x ≤ a and
y ∈ U : a ≤ y ⇒ Hence ≤ is a transitive relation, x ≤ y. But this contradicts with
(U × V ) ∩G≤ = ∅, so i(U) ∩ d(V ) = ∅. �
Proposition 5. Every subspace of a T2−ordered closure ordered space is a
T2−ordered space.

Proof. It can be obtained smilar to Proposition 2. �
Proposition 6. Let (X,u,≤) and (Y, v,≤′) are closure ordered spaces and f :
(X,u,≤) → (Y, v,≤′) is a continuous and order-embedding function. If (Y, v,≤′)
T2−ordered space, then (X,u,≤) is T2−ordered space.

Proof. It can be obtained similar to Proposition 3. �
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Proposition 7. Let (X,u,≤) closure ordered space. If (X, t↑,≤) or (X, t↓,≤) is
T2-space, then (X,u,≤) is T2−ordered space.

Proof. Let (X, t↑,≤) be a T2 − space and a, b ∈ X such that a � b, then a 6= b.

Hence (X, t↑,≤) is T2-space, there exist disjoint open neighbourhoods U of a and V
of b. Hence U ∈ t↑, U is an increasing neighbourhood of a and d(V ) is a decreasing
neighbourhood of b such that U ∩ d(V ) = ∅. Otherwise, if U ∩ d(V ) 6= ∅ ⇒ ∃x ∈
U ∩ d(V )⇒ x ∈ U and x ∈ d(V ).
x ∈ d(V ) ⇒ ∃v ∈ V such that x ≤ v. Hence U is increasing and x ≤ v, v ∈ U,

so v ∈ U ∩ V and U ∩ V 6= ∅ which is a contradiction. Consequently, we found
disjoint increasing neighbourhood U of a and decreasing neighbourhood d(V ) of b,
so (X,u,≤) is T2−ordered space. �

4. REGULAR−ORDERED CLOSURE ORDERED SPACES

In this section, we will give the definition of regular ordered topological space.
Then, we will generalize McCartans τ − compatibly subspace definition and we will
investigate some properties.

Definition 15. Let (X,u,≤) be a closure ordered space.
i) (X,u,≤) is called lower regular ordered if for each decreasing set A ⊆ X and

each element x /∈ u(A) there exist disjoint neighbourhoods U of x and V of A such
that U is increasing and V is decreasing.
ii) (X,u,≤) is called upper regular ordered if for each increasing set A ⊆ X and

each x /∈ u(A) there exist disjoint neighbourhoods U of x and V of A such that U
is decreasing and V is increasing.

If both of the conditions are satisfied, then (X,u,≤) will be called regular ordered
closure ordered space.
(X,u,≤) is T3−ordered⇔ (X,u,≤) regular ordered and T1−ordered space.

Example 2. Let X = {a, b, c} and ≤ = {(a, a), (b, b), (c, c), (a, b), (b, a)} and
u : P (X)→ P (X) is defined such that,
u({a}) = {a}, u({b}) = {a, b}, u({c}) = {c}, u({b, c}) = X,u({a, c}) = {a, c},
u({a, b}) = {a, b}, u(X) = X,u(∅) = ∅. (X,u,≤) is a regular ordered closure ordered
space.

Theorem 3. Let (X,u,≤) be a closure ordered space. Then the followings are
equivalent,
i) (X,u,≤) is lower(upper) regular ordered closure space
ii) For each x ∈ X and U(V ∈ N (x)) ∈ N (x) 3 U (V )is increasing (decreasing),
there exists U ′(V ′) ∈ N (x) increasing (decreasing) neighbouhoods such that
u(U ′) ⊆ U (u(V ′) ⊆ V ).

Proof. i) ⇒ ii) Let (X,u,≤) be a lower regular ordered space and x ∈ X and U
be an increasing neighbourhood of x. U ∈ N (x)⇒ x ∈ U ⇒ x /∈ U c ⇒ x /∈ u(U c).
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Suppose x ∈ u(U c), then U ∈ N (x) and U ∩ U c = ∅ which is a contradiction. So,
x /∈ u(U c). Hence (X,u,≤) is lower regular ordered, there exist
an increasing neighbourhood V1 of x and decreasing neighbourhood V2 of U c

such that V1 ∩ V2 = ∅. V2 ∈ N (U c) ⇒ U c ⊆ intu(V2) = (u(V c2 ))
c ⇒ u(V c2 ) ⊆ U.

Hence V1 ∩ V2 = ∅, V1 ⊆ V c2 and V
c
2 ∈ N (x) since V1 ∈ N (x). Consequently, we

found an increasing neighbourhood V c2 of x such that u(V
c
2 ) ⊆ U.

It can be similarly shown for upper regular ordered space.
ii) ⇒ i) We will show (X,u,≤) is lower regular ordered space. Let A ⊆ X

be a decreasing set and x /∈ u(A). x /∈ u(A) ⇒ ∃U ∈ N (x): U ∩ A = ∅. Hence
U ∈ N (x), i(U) is an increasing neighbourhood of x. From ii) there exists an
increasing neighbourhood V of x such that u(V ) ⊆ i(U). u(V ) ⊆ i(U)⇒ (i(U))c ⊆
(u(V ))c = intu(V

c) and A ⊆ (i(U))c, since U ∩ A = ∅ ⇒ U ⊆ Ac and Ac is
increasing set, so i(U) ⊆ i(Ac) = Ac ⇒ A ⊆ (i(U))c ⊆ intu(V

c). We found a
decreasing neighbourhood V c of A and an increasing neighbourhood V of x such
that V c ∩ V = ∅, so (X,u,≤) is lower regular ordered space. It can be similarly
shown for upper regular ordered space. �

Proposition 8. If (X,u,≤) T3−ordered closure ordered space, then (X,u,≤) is a
T2−ordered closure space.

Proof. Let (X,u,≤) T3−ordered closure ordered space and a, b ∈ X, a � b holds.
Because of (X,u,≤) is T1−ordered, [←, b] is closed, so u([←, b]) = [←, b] and
a /∈ u([←, b]). There exist U ∈ N (a) increasing neighbourhood and V ∈ N ([←, b])
decreasing neighbourhood such that U ∩ V = ∅. V ∈ N ([←, b]) ⇒ [←, b] ⊆
intu(V )⇒ V ∈ N (b), so (X,u,≤) is T2−ordered space. �

Proposition 9. Let (X,u,≤) and (Y, v,≤′) are closure ordered spaces and f :
(X,u,≤)→ (Y, v,≤′) is continuous, open, order-embedding and surjective function.
If (X,u,≤) regular-ordered space, then (Y, v,≤′) is regular−ordered space.

Proof. Let (X,u,≤) be a regular-ordered space and A ⊆ Y is a decreasing set and
f(x) /∈ v(A).By continuity of f,
f(u(f−1(A)) ⊆ v(A) ⇒ u(f−1(A)) ⊆ f−1(v(A)) ⇒ x /∈ u(f−1(A)) and be-

cause of (X,u,≤) is a regular-ordered space, ∃U ∈ N (x) 3 U is increasing, ∃V ∈
N (f−1(A)) 3 V is decreasing and U ∩ V = ∅. Hence, f is open map f(U) and
f(V ) are neighbourhoods of x and A such that f(U) ∩ f(V ) = ∅. So, (X,u,≤) is
lower regular-ordered, it can be similarly shown for upper regularity. Consequently,
(Y, v,≤′) is regular−ordered space. �

Remark 1. Every subspace of a regular ordered closure space may not be regular
ordered closure space.

Example 3. Let X = {a, b, c, d},
≤ = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, c), (a, c), (d, a)} and u : P (X) → P (X),
u({a}) = {a}, u({b}) = {a, b, c}, u({c}) = {c}, u({d}) = {d}, u({a, b}) = {a, b, c},
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u({a, c}) = {a, c}, u({a, d}) = {a, d}, u({b, c}) = {a, b, c},
u({b, d}) = X,u({c, d}) = {c, d}, u({a, b, c}) = {a, b, c}, u({a, c, d}) = {a, c, d},
u({a, b, d}) = X,u({b, c, d}) = X,u(X) = X,u(∅) = ∅.
(X,u,≤) is regular ordered space. Let A = {a, b, c} and

≤A = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)}, (A, uA,≤A) is not a regular ordered
space. Because, {b, c} ∈ N (b) and {b, c} is an increasing set, but there is no in-
creasing neighbourhood of b which is contained by u({b, c}).
We will give a definition which is a generalization of S.D.Mc.Cartan’s definition

of τ−compatibly ordered subspace.
Definition 16. Let (X,u,≤) be a closure ordered space. (A, uA,≤A) be a subspace
of (X,u,≤). If for each B ⊆ A increasing (decreasing) set, there exists B′ ⊆ X
increasing (decreasing) set such that B = B′ ∩ A. Then (A, uA,≤A) will be called
u− compatibly ordered subspace.
Theorem 4. Every compatibly subspace of a regular ordered closure ordered space
is a regular ordered space.

Proof. Let (X,u,≤) be a regular ordered space and (A, uA,≤A) be a u-compatibly
ordered subspace, x ∈ A. Let for each B ⊆ A decreasing set, x /∈ uA(B). Since
(A, uA,≤A) is a u-compatibly ordered subspace there exists B′ ⊆ X decreasing
and B = B′ ∩ A. uA(B) = uA(B

′ ∩ A) = uA(B
′) ∩ uA(A) = u(B′) ∩ A and

x /∈ uA(B)⇒ x /∈ u(B′)⇒ There exist U ∈ N (x) an increasing neighbourhood and
V ∈ N (B′) decreasing neighbourhood, U ∩ V = ∅. Hence, B ⊆ B′ ⇒ V ∈ N (B).
(A, uA,≤A) is a lower regular ordered and it can be similarly shown for upper

regularity. So, (A, uA,≤A) is regular ordered space. �

5. NORMALLY-ORDERED CLOSURE ORDERED SPACES

In this section we will give the definition of normally ordered closure ordered
spaces and we will investigate some properties.

Definition 17. Let (X,u,≤) be a closure ordered space. (X,u,≤) is called nor-
mally ordered ⇔ ∀F1, F2 disjoint closed subsets of X, such that F1 is increasing,F2
is decreasing, there exist an increasing neighbourhood of F1, decreasing neighbour-
hood of F2 , respectively U1, U2 and U1 ∩ U2 = ∅.
(X,u,≤) T4−ordered ⇔ (X,u,≤) is T1−ordered and normally ordered space.

Example 4. Let X = {a, b, c}, ≤ = {(a, a), (b, b), (c, c), (a, b)} and
u : P (X)→ P (X),
u({a}) = {a}, u({b}) = {a, b}, u({c}) = {c}, u({b, c}) = X,
u({a, c}) = {a, c}, u({a, b}) = {a, b}, u(X) = X, u(∅) = ∅. Then, (X,u,≤) is a
normally ordered closure ordered space.

Theorem 5. Let (X,u,≤) be a closure ordered space. Then the followings are
equivalent,
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i) (X,u,≤) is normally ordered
ii) For each increasing(decreasing) closed set F and each increasing(decreasing)

open set U such that F ⊆ U , there exists an increasing(decreasing) neighbourhood
of F such that u(V ) ⊆ U.

Proof. i) ⇒ ii) Let (X,u,≤) be a normally ordered space and F ⊆ X increasing
closed set and F ⊆ U such that U is an increasing open set, so F ∩ U c = ∅. Since
(X,u,≤) is normally ordered, there exist an increasing neighbourhood of F and
decreasing neighbourhood of U c, respectively V1, V2 and V1 ∩ V2 = ∅.
We can write F ⊆ intu(V1) and U c ⊆ intu(V2)⇒ (intu(V2))

c ⊆ U ⇒ u(V c2 ) ⊆ U.
We find an increasing neighbourhood of F and u(V c2 ) ⊆ U holds.
ii) ⇒ i) We will show that (X,u,≤) is normally ordered. Let F1 and F2 are

disjoint closed sets such that F1 is increasing and F2 is decreasing. Hence, F1∩F2 =
∅ ⇒ F1 ⊆ F c2 and F c2 is an increasing open set. From ii), there exists an increasing
neighbourhood U of F1, such that u(U) ⊆ F c2 ⇒ F2 ⊆ (u(U))c = intu(U

c), so U c

is a decreasing neighbourhood of F2. We found an increasing neighbourhood U of
F1 and decreasing neighbourhood U c of F2 such that U ∩ U c = ∅. Consequently,
(X,u,≤) is a normally ordered space. �

Proposition 10. Let (X,u,≤) be a normally ordered space and Y ⊆ X be a closed
subspace and Y = i(Y ) = d(Y ). Then, (Y, uY ,≤Y ) is a normally ordered subspace.

Proof. Let F1, F2 disjoint closed sets in Y such that F1 is increasing, F2 is de-
creasing. Then F1 and F2 are disjoint closed sets in X. Because of (X,u,≤) is
normally ordered, there exist an increasing neighbourhood of F1 and a decreasing
neighbourhood of F2, respectively U1, U2 and U1 ∩ U2 = ∅. Then, U1 ∩ Y is an
increasing neighbourhood of F1 in Y, U2 ∩ Y is a decreasing neighbourhood of F2
and (U1 ∩ Y ) ∩ (U2 ∩ Y ) = ∅. Consequently, (Y, uY ,≤Y ) is a normally ordered
subspace. �

Proposition 11. Let (X,u,≤) and (Y, v,≤′) are closure ordered spaces and
f : (X,u,≤)→ (Y, v,≤′) is a closed, continuous and order-embedding function.
If (Y, v,≤′) normally-ordered space, then (X,u,≤) is normally−ordered space.

Proof. Let F1 and F2 be a disjoint closed subsets of X such that F1 is an increasing
set and F2 is a decreasing set . Then, f(F1) and f(F2) are closed sets in Y such
that f(F1) is increasing and f(F2) is decreasing. Because of (Y, v,≤′) normally-
ordered space, there exist an increasing neighbourhood of f(F1) and decreasing
neighbourhood of f(F2), respectively U1, U2 such that U1 ∩ U2 = ∅, so f−1(U1) ∈
N (F1) 3 f−1(U1) is increasing, f−1(U2) ∈ N (F2) 3 f−1(U2) is decreasing and
f−1(U1) ∩ f−1(U2) = ∅. Consequently, (X,u,≤) is normally−ordered space. �
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