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Abstract. This paper presents a Multi-Place Foraging algorithm called
Lévy Walk and Firefly Recruiting Algorithm (LWFR). Unlike most of
the studies on foraging available in the literature, the proposed foraging
robots aim to maintain the survivability of their nests and collaborate
to maintain the survivability of other depots when needed. The algo-
rithm uses: (1) Lévy Walk to search for objects;(2) Firefly algorithm to
attract robots in neighborhood. The attraction model, inspired by the
behavior of Fireflies, provides an indirect and costless communication.
Numerical simulations show that the proposed algorithm can maintain
the survivability of different nests.
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1 Introduction

Swarm Robotics is a new approach to the coordination of large numbers of robots
whose main inspiration stems from the observation of social insects [1]. It has
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emerged as the application of swarm intelligence (SI) to Multi-Robot Systems
(MRS). Swarm robotics emphases on the physical embodiment of individuals
and realistic interactions among the individuals, and between the individuals
and the environment. It is characterized by the emergence of a synchronized
behavior at system level, which emerges despite the individuals being relatively
incapable, the lack of centralized coordination and the simplicity of interactions
[2].

Foraging is considered as the main benchmark in the field of swarm robotics.
It is known as the act of searching for objects and when found, transport them
to a common location. Robot foraging is considered an effective metaphor for ad-
dressing complex real-world applications such as target detection, object trans-
portation, motion planning and different agricultural tasks. Foraging related
works use either one central nest (Central Place Foraging) or multiple nests
(Multiple Place Foraging). Central-Place Foraging (CPF) uses a centrally-placed
nest from which robots depart and return as they collect resources [3]. The large
study of CPF in literature provides efficient strategies for different resource dis-
tributions. Unfortunately, inter-robot collisions and long paths travelled to the
central-place decrease the foraging efficiency and affect the scalability when in-
creasing robots number and environment size. Multiple Place Foraging (MPF)
uses multiple nests that robots depart from and return to. It is inspired by be-
haviors observed in biology. For example, the polydomous colonies of Argentine
ants are comprised of multiple nests spanning hundreds of square meters. In ad-
dition, spider monkeys has been characterized as multiple central place foragers
[3].

Previous research studies have focused on the design of robotic systems with
a single nest and multiple nests. Most of classical foraging works do not consider
some pillar characteristics such as the sustainability of the system. In such sce-
narios, the foraging system is required to satisfy external demands. Thus, robots
need to maintain high levels of food in their nests. This paper presents an MPF
algorithm which considers the sustainability of the system. Robots in the pro-
posed algorithm use an attraction model inspired by the behavior of fireflies to
recruit other robots when their nest is in a critical situation.

The reminder of the paper is organized as follows: Section 2 describes several
related works. Then, Section 3 presents the flowchart and the pseudo code of
the proposed algorithm in, while experimental results are discussed in Section
4. Finally, Section 5 draws conclusions and provides several future perspectives.

2 Related Works

Castello et al. [4] proposed the Adaptive Response Threshold Model (ARTM),
an extension of the Fixed Response Threshold Model (FRTM) [5], in which the
response threshold is calculated dynamically rather than remaining fixed. ARTM
uses the level of food shortage as stimulus. The behavior of a robot is composed
of three states: (1) wait : At the beginning of the foraging mission all robots
are in wait state. The robot will initialize a timer that is used to control the
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intensity of stimuli. When the timer expires, robots will sense the current value
of stimuli and will calculate probability of foraging which allows it to go look for
food tokens and meet the demands of an external system that extracts food from
the swarm nest reserves at a given rate or to remain in wait state, (2) search:
Robot starts a random search for food tokens. If the robot finds a food token,
it switches to collect state, otherwise it continues searching, (3) collect : Once a
food is obtained, the robot returns home. it deposits food token into the nest
and switches to the wait state. A certain amount of food tokens were randomly
scattered within the simulation area. Every food token was replaced once it was
collected, maintaining the food distribution always constant. The system aims to
maintain a positive level of food at the nest during the whole foraging mission.
The efficiency and adaptability of ARTM were tested against the fixed response
threshold model RTM.

Castello et al. [6] presented an in depth explanation of the ARTM [4]. The
authors studied the adaptability of the model through computer simulations.
In the CPFA proposed in [7], foraging performance decreases as swarm size
and search areas scale up. In fact, increasing robot’s number produces more
inter-robot collisions and larger search areas produce longer travel distances. To
overcome the aforementioned problems, Lu et al. [3] proposed the Multiple-Place
Foraging Algorithm static (MPFAstatic). The authors proposed to use multiple
depots rather than a single one. Robots were initially assigned in equal numbers
to static nests. Each nest is placed at the center of one quadrant of a foraging
arena with 1/4 of the robots assigned to each nest. The robots return and deliver
targets to the closest nest, then they return to the position of the found target.
Different from CPFA, pheromone waypoints are only reported to the closest
depot. The main difference to the CPFA algorithm is the use of multiple nest
rather than a single one.

Lu et al. [8] proposed an extension of the MPFAstatic [3] the Multiple-Place
Foraging Algorithm with dynamic depots (MPFAdynamic). The main difference
with MPFAstatic [3] is that depots are dynamic and change their position ac-
cording to targets distribution. Depots are special robots initially distributed in
the search area and can carry multiple targets. The spatially distributed design
reduces robot transport time and reduces collisions among robots. Robots de-
part from a depot to forage for targets and then return to the closest depot to
deliver these targets (the closest depot may be different from the one the robot
departed from). Depots move to new locations based on the mean positions of
the remaining targets sensed by robots. The positions of the sensed targets are
stored at each depot when each robot returns to that depot.

For a successful deployment of foraging robots in real world, a new character-
istic of real world applications is considered in foraging works. This characteristic
is the sustainability of the system, where the system needs to serve external de-
mands on the basis of objects deposed in the nests. Thus, robots must maintain
high levels of objects in their nest or other nests.
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3 Proposed algorithm

This paper presents an MPF algorithm called Lévy Walk Recruiting Algorithm
(LWFR). The proposed algorithm considers demands provided by external sys-
tems. It is a hybridizing of two bi-inspired algorithms: Lévy Walk (LW) [9] and
Firefly (FF) [10]. The former is used to explore the search space, while the lat-
ter is used as recruiting model when collaboration is needed by a specific nest.
The flowchart illustrated in Figure 1 represents the behavior of LWFR robots,
where, continuous and dotted lines represent respectively positive and negative
responses. A textual description of the states of the proposed algorithm, its
parameters and the pseudo code of corresponding states are given in below.

– Start : in this state all the robots are around the nest with intensity I=0.
Depots are equidistant from each other and have the same quantity of food
F (t0). To simulate the extraction of an extern system, the F (t0) decreases in
time with predefined value. Objects are distributed randomly or in clusters
in the search space.

– Wait : in this state the robot is waiting in the nest for an activation to search
state. Each time, the robot calculates the decision function Fd using Equation
2 according to the stimulus in the nest. Equation 1 was used to calculate the
stimulus. The pseudo code of this state is given by algorithm 1

S(t) = F (t)− F (t0) (1)

Fd =

 Wait if S(t) < 0
Search if 0, 2× F (t0) < S(t) < 0, 4× F (t0)
Recruit if S(t) > 0, 4× F (t0)

(2)

1 repeat
2 Stay at Nest;
3 t=t+1;
4 until (Fd)(t) 6= waiting);
5 if (Fd(t) = search) then
6 Goto Search (Algorithm 2);

Algorithm 1: Wait

– Search: In this state, the robot starts searching its space using Lévy Walk
search strategy, where the random steps are generated according to Equation
3. Each robot can carry one object at a time. It can communicate with a
robot in its neighborhood if this latter has I>0 and belongs to another nest.
Then, the robot moves towards the other robot and changes to Recruit state,
else it changes to Collect state. The pseudo code of this state is given by
algorithm 2
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Fig. 1: Flowchart of the proposed algorithm



42 O. Zedadra et al.

l = l0 × (
1

beta
1
α

− 1) (3)

1 repeat
2 Walk using LévyWalk (Equation 3);
3 until (∃ Robotadj ∨ ∃ Object);
4 if (∃ Object) then
5 Goto Collect (Algorithm 3);
6 else
7 if (∃ Robotadj ∧ IntensityRobotadj > 0 ∧ Robotadj ∈ Other Nest) then
8 Move towards Robotadj ;
9 Receive Coordinates;

Algorithm 2: Search

– Collect : In this state, the robot collects the object and returns to nest. Then
it changes to Wait state. If the robot is recruited, it deletes the coordinates
of the current nest and return to its original one. The pseudo code of this
state is given by algorithm 3.

1 repeat
2 Walk towards Nest;
3 until (∃ Nest);
4 Depose Object;
5 Update Nest Information;
6 if (Robot is recruited) then
7 Update Nest Coordinates;
8 Goto Search (Algorithm 2);
9 else

10 Calculate Fd(t);
11 if (Fd(t) = waiting ) then
12 Goto Wait (Algorithm 1);
13 else
14 if (Fd(t) = search) then
15 Goto Search (Algorithm 2);
16 else
17 Goto Recruit (Algorithm 4);

Algorithm 3: Collect

– Recruit : In this state, the intensity I of the robot is substituted by the quan-
tity of objects missing in a nest (Om), that should be collected to guarantee
the nest survivability. The robot starts at searching objects and robots in
the search space, it should recruit Om robot. Robots in neighborhood are
attracted to the recruiting robot; the latter exchanges with them the coor-
dinates of its nest and updates its intensity I according to Equation 4. The
pseudo code of this state is given by algorithm 4.
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It+1 = It − 1 (4)

1 repeat
2 repeat
3 Search for Robotadj ;
4 until (@ Robotadj);
5 if (IntensityRobotadj = 0 ∧ Robotadj ∈ Other Nest) then
6 Send Coordinates;
7 Decrease Intensity using Equation 4;

8 Goto Search (Algorithm 2);
9 until (NbrecruitR ≥ Om);

Algorithm 4: Recruit

4 Experimental Results

The algorithm was implemented on the simulation platform Netlogo [11]. This
Section presents the modeling of the proposed system components in Section
4.1. Then, the experimental scenarios and the performance metrics in Section
4.2 are presented. The obtained results are compared and discussed in Section
4.3.

4.1 Modeling of System Components

Robots, search space, targets and nests are modeled as follows:

– Robots: modeled as agents of 4 patches size, with velocity of 1 step per tick,
a transport capacity of 1 object each time, a range vision of 15 patches and
a communication range of 4 patches.

– Search space: modeled as a 2D limited space with variable size.
– Targets: represented with one patch and are distributed randomly or in

clusters. Targets are regenerable.
– Nests: represented with 5 patches. The quantity of objects in each nest

decreases in time with a predefined value.

4.2 Experimental Scenarios

The performance metric used is presented in Equation 5:

– The survival percentage of nest φ Srateφ : represents the survival percentage
of a nest. A higher value of Srateφ indicates that robots were able to maintain
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positive object levels at that nest. Equation 5 was used to calculate the
Srateφ .

Srateφ =

N∑
i=1

S(φ, i)/N (5)

Fd =

{
1 if F (φ, i) >= 0
0 if F (φ, i) < 0

(6)

Two scenarios were used to test the performances of the LWFR (Table 1).
Where, Scenario 1 was used to test the influence of increasing the environment
size. Several configurations were applied with different environment sizes:30×30,
50 × 50, 80 × 80 and 100 × 100; and Scenario 2 is used to test the influence of
increasing the number of robots. Configurations with 5, 10 and 20 robots were
used.

Table 1: Parameters of scenarios 1 and 2

Parameter Value
Scenario 1: Varying Size of Environment
Environment size 30× 30, 50× 50, 80× 80, 100× 100

Robots Number 5 per depot
Depots Number 4
Targets Number 50 regenerable
Scenario 2: Varying Number of Robots
Robots Number 5, 10, 20, 30

Depots Number 4
Targets Number 50 regenerable
Environment size 50× 50

4.3 Results and Discussions

Table 1 presents the results obtained in the two scenarios. In addition, this
sections provides a comparison of LWFR when using long steps (LLWFR), and
the SLWFR which is the LWFR when using short steps.//

Scenario 1: Table 2 shows the Srateφ of the 4 depots independently (Figure
2(a)) when increasing environment size (30 × 30, 50 × 50, 80 × 80, 100 × 100).
Figure 2(a) illustrates that Srateφ is higher in small environment size (30× 30),
then while increasing the environment size the Srateφ decreases progressively un-
til environments with 50×50, but it decreases dramatically below 0.5 with large
environment size 80×80 and 100×100. Thus, the search strategy is still effective
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in small environment size, but becomes ineffective in larger environments. LL-
WFR gives always better results than the SLWFR one. It can be observed that
in some scenarios, SLWFR robots could not preserve positive values of Srateφ .

Table 2: Results of scenario 1, when increasing environment size

Env size 30× 30 50× 50 80× 80 100× 100

Algorithm D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

LLWFR Srateφ 0.9 0.8 0.9 0.9 0.8 0.5 0.4 0.6 0.8 0.4 0.5 0.7 0.4 0.2 0.5 0.3
SLWFR Srateφ 0.9 0.8 0.8 0.8 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0 0.1 0

Scenario 2: Table 3 shows the Srateφ of the 4 depots independently (Figure
2(b)) when increasing number of robots from 5 to 20 robot. With 5 robots, Srateφ

of depots is positive but do not reach higher values. But, with more robots (10
and 20 robots), the Srateφ reaches higher values meaning that while increasing
robots number, robots can equilibrate the Srateφ in most of depots helping the
system to function for long time. Unfortunately, the SLWFR gives worst results
with 5 and 10 robots, the Srateφ does not reach the 0.4 and even with 20 robots
the Srateφ does not attend the 0.5, this will not help the system to work for long
time.

Table 3: Results of scenario 2, when increasing number of robots

Robots Number 5 robots 10 robots 20 robots

Algorithm D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

LLWFR Srateφ 0.8 0.5 0.4 0.6 0.8 0.7 0.8 0.9 0.9 0.9 0.8 0.9
SLWFR Srateφ 0.2 0.2 0.1 0.2 0.3 0.4 0.3 0.3 0.5 0.5 0.5 0.4

5 Conclusion

This paper itroduced a Multi-Place Foraging algorithm called Lévy Walk and
Firefly Recruiting Algorithm (LWFR). Robots in LWFR algorithm use: (1) Lévy
walk as search strategy, which constitutes one of the best random walks to
explore the whole search space efficiently, (2) Firefly Algorithm as recruiting
model, where robots can use light to attract indirectly robots in neighborhood
and recruit them if possible to collaborate in transporting the needed quantity
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Fig. 2: Results obtained in scenario 1 and in scenario 2.

of objects to their nest. Numerical results prove the effectiveness of the proposed
algorithm in maintaining the survivability of their nests, allowing the system to
work for long time.

Based on the results of this study, future work include: (1) the implementation
of the proposed algorithm in the multi-robot simulator ARGoS [12], (2) the use
of other scenarios with varying the quantity of objects extracted from depots
and the time of extraction, (3) the test of other search strategies and their effect
on maintaining the survivability of depots.
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