
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 49 (2) (2020), 808 – 821

DOI : 10.15672/hujms.624000

Research Article

On C -coherent rings, strongly C -coherent rings
and C -semihereditary rings

Zhu Zhanmin

Department of Mathematics, Jiaxing University, Jiaxing, Zhejiang Province, 314001, P.R.China

Abstract
Let R be a ring and C be a class of some finitely presented left R-modules. A left R-
module M is called C -injective if Ext1

R(C,M) = 0 for every C ∈ C ; a left R-module
M is called C -projective if Ext1

R(M,E) = 0 for any C -injective module E. R is called
left C -coherent if every C ∈ C is 2-presented; R is called left strongly C -coherent, if
whenever 0 → K → P → C → 0 is exact, where C ∈ C and P is finitely generated
projective, then K is C -projective; a ring R is called left C -semihereditary, if whenever
0 → K → P → C → 0 is exact, where C ∈ C , P is finitely generated projective, then
K is projective. In this paper, we give some new characterizations and properties of left
C -coherent rings, left strongly C -coherent rings and left C -semihereditary rings.
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1. Introduction
Recall that a ring R is said to be left coherent [1, 19] if every finitely generated left

ideal of R is finitely presented, a ring R is said to be left semihereditary if every finitely
generated left ideal of R is projective. Coherent rings, semihereditary rings and their
generalizations have been studied extensively by many authors (see, for example, [1, 2,
4, 6, 11, 13–15, 19, 24, 26]). In [27], we introduced the concepts of left C -coherent rings
and left C -semihereditary rings, and in [28], we introduced the concept of left strongly
C -coherent rings. Let C be a class of some finitely presented left R-modules. Following
[27], a ring R is called left C -coherent if every C ∈ C is 2-presented; a ring R is called
left C -semihereditary, if whenever 0 → K → P → C → 0 is exact , where C ∈ C , P is
finitely generated projective, then K is projective. To characterize left C -coherent rings
and left C -semihereditary rings , in [27], we also introduced the concepts of C -injective
modules and C -flat modules. According to [27], a left R-module M is called C -injective if
Ext1

R(C,M) = 0 for every C ∈ C , a right R-module M is called C -flat if TorR
1 (M,C) = 0

for every C ∈ C . In [28], we introduced the concepts of C -projective modules and left
strongly C -coherent rings. Following [28], a left R-module M is called C -projective if
Ext1

R(M,E) = 0 for any C -injective module E; a ring R is called left strongly C -coherent,
if whenever 0 → K → P → C → 0 is exact, where C ∈ C and P is finitely generated
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projective, then K is C -projective. We shall denote the class of C -flat (resp., C -injective,
C -projective) modules by CF (resp., C I , CP).

In this article, we continues to study left C -coherent rings, left strongly C -coherent
rings and left C -semihereditary rings. Series characterizations and properties of these
rings will be given respectively.

Next, we recall some known notions and facts needed in the sequel.
Given a class L of R-modules, we shall denote by L ⊥ = {M : Ext1

R(L,M) = 0, L ∈ L }
the right orthogonal class of L , and by ⊥L = {M : Ext1

R(M,L) = 0, L ∈ L } the left
orthogonal class of L .

Let F be a class of R-modules and M an R-module. Following [9], we say that a
homomorphism φ : M → F where F ∈ F is an F-preenvelope of M if for any morphism
f : M → F ′ with F ′ ∈ F, there is a g : F → F ′ such that gφ = f . An F-preenvelope
φ : M → F is said to be an F-envelope if every endomorphism g : F → F such that
gφ = φ is an isomorphism. Dually, we have the definitions of F-precovers and F-covers.
F-envelopes (F-covers) may not exist in general, but if they exist, they are unique up
to isomorphism. It is easy to see that every C -injective preenvelope is monic, and every
C -projective precover is epic.

Following [9], a pair (A ,B) of classes of R-modules is called a cotorsion pair if A ⊥ = B
and ⊥B = A . A cotorsion pair (A ,B) is called hereditary [10, Definition 1.1] if whenever
0 → A′ → A → A′′ → 0 is exact with A,A′′ ∈ A then A′ is also in A . By [10, Proposition
1.2], a cotorsion pair (A ,B) is hereditary if and only if whenever 0 → B′ → B → B′′ → 0
is exact with B′, B ∈ B then B′′ is also in B. A cotorsion pair (A ,B) is called perfect
[10] if every R-module has an A -cover and a B-envelope. A cotorsion pair (A ,B) is
called complete (see [9, Definition 7.16] and [20, Lemma 1.13]) if for any R-module M ,
there are exact sequences 0 → M → B → A → 0 with A ∈ A and B ∈ B, and
0 → B′ → A′ → M → 0 with A′ ∈ A and B′ ∈ B.

Throughout this paper, R is an associative ring with identity and all modules considered
are unitary, C is a class of some finitely presented left R-modules. For any R-module M ,
E(M) will denote the injective envelope of M , M+ = Hom(M,Q/Z) will be the character
module of M and M∗ = Hom(M,R) will be the dual module of M .

2. C -coherent rings
Theorem 2.1. The following statements are equivalent for a ring R:

(1) R is a left C -coherent ring.
(2) For any projective left R-module P, P ∗ is C -flat.
(3) For any free left R-module F, F ∗ is C -flat.

Proof. (1)⇒(2). For any projective left R-module P , there is an index set I and an
R-module Q such that P ⊕ Q ∼= R(I). So we have P ∗ ⊕ Q∗ ∼= (R(I))∗ ∼= RI , and thus P ∗

is C -flat by [27, Theorem 3.3(4) and Proposition 2.6].
(2)⇒(3). It is clear.
(3)⇒(1). Let I be any index set. Then by (3), RI ∼= (R(I))∗ is C -flat, and so R is

C -coherent by [27, Theorem 3.3(4)]. �

Recall that a left R-module M is said to be FP-injective [19] if Ext1
R(A,M) = 0 for

every finitely presented left R-module A; a left R-module M is said to be P-injective
[16] if every homomorphism from a principal left ideal of R to M can be extended to a
homomorphism of R to M , it is easy to see that a left R-module M is P-injective if and
only if Ext1

R(R/Ra,M) = 0 for any a ∈ R. We recall also that a left R-module M is said
to be FI-injective [13] (resp., D-injective [14], copure injective [8] ) if Ext1

R(G,M) = 0
for every FP-injective (resp., P-injective, injective) left R-module G; a right R-module N
is said to be FI-flat [13] (resp., D-flat [14], copure flat [8]) if TorR

1 (N,G) = 0 for every
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FP-injective (resp., P-injective, injective) left R-module G. Inspired by these concepts,
we have the following concepts.

Definition 2.2. A left R-module M is said to be C I-injective if Ext1
R(G,M) = 0 for every

C -injective left R-module G; a right R-module F is said to be C I-flat if TorR
1 (F,G) = 0

for every C -injective left R-module G.

Proposition 2.3. The following statements are equivalent for a left R-module M:
(1) M is C I-injective.
(2) For every exact sequence 0 → M → E → L → 0 with E C -injective, E → L is a

C -injective precover of L.
(3) M is the kernel of a C -injective precover f : E → L with E injective.
(4) M is injective with respect to every exact sequence 0 → A → B → C → 0 with C

C -injective.

Proof. (1)⇒(2) and (1)⇒(4) are clear.
(2)⇒(3). It follows from the exact sequence 0 → M → E(M) → E(M)/M → 0.
(3)⇒(1). Let M be the kernel of a C -injective precover f : E → L with E injective.

Then f : E → im(f) is a C -injective precover, so, for any C -injective module N , the map
Hom(N,E) → Hom(N, im(f)) is epic and hence the map Hom(N,E) → Hom(N,E/M)
is epic. Thus, by the exactness of the sequence 0 → Hom(N,E) → Hom(N,E/M) →
Ext1

R(N,M) → 0, we have Ext1
R(N,M) = 0.

(4) ⇒ (1). For any C -injective module N , there exists an exact sequence 0 → K →
P → N → 0, where P is projective. Hence we get an exact sequence Hom(P,M) →
Hom(K,M) → Ext1

R(N,M) → Ext1
R(P,M) = 0, and thus Ext1

R(N,M) = 0 by (4).
Therefore, M is C I-injective. �
Remark 2.4. Since the class of all C -injective modules is closed under extensions, by
Wakamutsu’s Lemma (see [23, Lemma 2.1.1]), any kernel of a C -injective cover is C I-
injective .

Recall that a left R-module M is called reduced [9] if M has no nonzero injective
submodules.

Proposition 2.5. Let R be a left C -coherent ring. Then the following statements are
equivalent for a left R-module M:

(1) M is a reduced C I-injective module.
(2) M is the kernel of a C -injective cover f : E → L with E injective.

Proof. (1)⇒(2). Since M is C I-injective, by proposition 2.3, the natural mapping π :
E(M) → E(M)/M is a C -injective precover. Since R is left C -coherent, by [27, Corollary
3.7], E(M)/M has a C -injective cover. Note that there is no nonzero summand K of
E(M) contained in M as M is reduced, by [23, Corollary 1.2.8], π : E(M) → E(M)/M is
a C -injective cover.

(2)⇒(1). Let M be the kernel of a C -injective cover f : E → L with E injective. Then
by proposition 2.3(3), M is a C I-injective module. Now let K be an injective submodule
of M . Suppose E = K ⊕ N, p : E → N is the projective and i : N → E is the inclusion
for some submodule N of M . It is easy to see that f(ip) = f since f(K) = 0. So ip is an
isomorphism since f is a cover. Thus i is epic and hence E = N,K = 0. Therefore M is
reduced. �

Recall that a submodule A of left R-module B is said to be a pure submodule if for
all right R-module M , the induced map M ⊗R A → M ⊗R B is monic, or equivalently,
every finitely presented left R-module is projective with respect to the exact sequence
0 → A → B → B/A → 0. In this case, the exact sequence 0 → A → B → B/A → 0
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is called pure exact. An exact sequence 0 → A → B → L → 0 is called RD-exact [14]
if, for any a ∈ R, R/Ra is projective with respect to this sequence. We call a short
exact sequence of left R-modules 0 → A → B → L → 0 C -pure exact if every C ∈ C is
projective with respect to this sequence. Let A be a submodule of B, if the short exact
sequence of left R-modules 0 → A → B → B/A → 0 is C -pure exact, then we call A a
C -pure submodule of B and B/A a C -pure quotient module of B.

Next, we give some characterizations of C -injective modules.

Theorem 2.6. Let M be a left R-module, then the following statements are equivalent:
(1) M is C -injective.
(2) M is injective with respect to every exact sequence 0 → A → B → C → 0 of left

R-modules with C ∈ C .
(3) M is injective with respect to every exact sequence 0 → K → P → C → 0 of left

R-modules with C ∈ C and P finitely generated projective.
(4) Every exact sequence 0 → M → M ′ → M ′′ → 0 is C -pure.
(5) There exists a C -pure exact sequence 0 → M → M ′ → M ′′ → 0 of left R-modules

with M ′ injective.
(6) There exists a C -pure exact sequence 0 → M → M ′ → M ′′ → 0 of left R-modules

with M ′ FP-injective.
(7) There exists a C -pure exact sequence 0 → M → M ′ → M ′′ → 0 of left R-modules

with M ′ C -injective.

Proof. (1) ⇒ (2). It follows from the exact sequence

Hom(B,M) → Hom(A,M) → Ext1
R(C,M) = 0.

(2) ⇒ (3). It is obvious.
(3) ⇒ (1). It follows from the exact sequence

Hom(P,M) → Hom(K,M) → Ext1
R(C,M) → Ext1

R(P,M) = 0.

(1) ⇒ (4).Assume (1). Then we have an exact sequence Hom(C,M ′) → Hom(C,M ′′) →
Ext1

R(C,M) = 0 for every C ∈ C , and so (4) follows.
(4) ⇒ (5) ⇒ (6) ⇒ (7) is obvious.
(7) ⇒ (1). By (7), we have a C -pure exact sequence 0 → M → M ′ f→ M ′′ → 0 of left

R-modules where M ′ is C -injective, and so, for each C ∈ C , we have an exact sequence
Hom(C,M ′) f∗→ Hom(C,M ′′) → Ext1

R(C,M) → Ext1
R(C,M ′) = 0 with f∗ epic. Which

implies that Ext1
R(C,M) = 0, and (1) follows. �

Recall that a left R-module M is called pure injective [9, Definition 5.3.6] if it is injective
with respect to every pure exact sequence of left R-modules; a left R-module M is called
RD-injective [14] if it is injective with respect to every RD-exact sequence of left R-
modules. We call a left R-module M C -pure injective if it is injective with respect to
every C -pure exact sequence of left R-modules.

Proposition 2.7. Let R be a left C -coherent ring. Then every C -pure injective module
M has a C -injective cover f : N → M with N injective. Moreover, Ker(f) is a reduced
C I-injective left R-module.

Proof. By [27, Corollary 3.7], M has a C -injective cover f : N → M . Since N is C -
injective, by Theorem 2.6(4), the exact sequence 0 → N

i→ E(N) → E(N)/N → 0 is
C -pure exact, and so there exists g : E(N) → M such that gi = f . Note that f is a
cover, there exists h : E(N) → N such that fh = g. Thus fhi = f and hence hi is an
isormorphism. It follows that N is isomorphic to a direct summand of E(N) and so N is
injective. By Proposition 2.5, Ker(f) is a reduced C I-injective left R-module. �
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Theorem 2.8. Let R be a left C -coherent ring. Then a left R-module M is C I-injective
if and only if M is a direct sum of an injective left R-module and a reduced C I-injective
left R-module.
Proof. “ ⇐ ”. It is clear.

“ ⇒ ”. Let M be a C I-injective left R-module . Then by Proposition 2.3, E(M) →
E(M)/M is a C -injective precover. Since R is left C -coherent, E(M)/M has a C -injective
cover L g→ E(M)/M by [27, Corollary 3.7], so we have the following commutative diagram
with exact rows:

0 −−−−→ K
f−−−−→ L

g−−−−→ E(M)/M −−−−→ 0yϕ

yγ
∥∥∥

0 −−−−→ M
α−−−−→ E(M) π−−−−→ E(M)/M −−−−→ 0yσ

yβ

∥∥∥
0 −−−−→ K

f−−−−→ L
g−−−−→ E(M)/M −−−−→ 0

where K is a reduced C I-injective left R-module by Proposition 2.5. Note that g = g(βγ),
we have that βγ is an isomorphism, so E(M) = Ker(β) ⊕ im(γ), and thus Ker(β) is
injective. Since σϕ is an isomorphism by the Five Lemma, we have that M = Ker(σ) ⊕
im(ϕ) and im(ϕ) ∼= K. Moreover, by the Snake Lemma [17, Theorem 6.5], we have that
Ker(σ) ∼= Ker(β) is injective. This completes the proof. �
Proposition 2.9. Let M be a right R-module. Then M is C I-flat if and only if M+ is
C I-injective.
Proof. It follows from the isomorphism TorR

1 (M,G)+ ∼= Ext1
R(G,M+). �

Corollary 2.10. A pure submodule of a C I-flat module is C I-flat.
Proof. Let M be a C I-flat module and M1 a pure submodule of M , then the pure exact
sequence 0 → M1 → M → M/M1 → 0 induces a split exact sequence 0 → (M/M1)+ →
M+ → M+

1 → 0. By Proposition 2.9, M+ is C I-injective, so M+
1 is C I-injective, and

hence M1 is C I-flat by Proposition 2.9 again. �
Proposition 2.11. Let R be a ring and C be a class of some finitely presented left R-
modules.

(1) If M is a finitely presented C I-flat module, then it is a cokernet of a C -flat preen-
velope.

(2) If R is left C -coherent and L is the cokernet of a C I-flat preenvelope f : M → F ,
then L is C I-flat.

Proof. (1). Let M be a finitely presented C I-flat module. Then there exists an exact
sequence of right R-modules 0 → K → P → M → 0 with P finitely generated projective
and K finitely generated. We claim that K → P is a C -flat preenvelope. In fact, for any
C -flat module F , we have F+ is C -injective by [27, Theorem 2.7], and so TorR

1 (M,F+) = 0
since M is C I-flat. Hence, we have the following commutative diagram with α monic:

K ⊗ F+ α−−−−→ P ⊗ F+

τ1

y yτ2

Hom(K,F )+ β−−−−→ Hom(P, F )+

Since K is finitely generated and P is finitely presented, by [3, Lemma 2], τ1 is epic and
τ2 is an isomorphism, this follows that β is monic, and hence Hom(P, F ) → Hom(K,F ) is
epic, as required.
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(2). There is an exact sequence 0 → im(f) i→ F → L → 0. We claim that i : im(f) →
F is a C -flat preenvelope. In fact, for any C -flat module F1 and any homomorphism
φ : im(f) → F1, φf is a homomorphism from M to F1. Since f : M → F is a C -flat
preenvelope, there exists a ψ : F → F1 such that φf = ψf . Now, for any y ∈ im(f),
write y = f(x). Then φf(x) = ψif(x), i.e., φ(y) = ψi(y). It shows that φ = ψi, and so
i : im(f) → F is a C -flat preenvelope. Let N be any C -injective module. Since R is left
C -coherent, N+ is C -flat by [27, Theorem 3.3(8)], and so, the mapping Hom(F,N+) →
Hom(im(f), N+) is epic. Then, from the following commutative diagram :

Hom(F,N+) α−−−−→ Hom(im(f), N+)

σ1

y yσ2

(F ⊗N)+ β−−−−→ (im(f) ⊗N)+

where σ1 and σ2 are isomorphisms, we have that the mapping (F⊗N)+ → (im(f)⊗N)+ is
epic. Thus, the mapping im(f)⊗N → F⊗N is monic. But the C I-flatness of F implies the
exactness of 0 → TorR

1 (L,N) → im(f) ⊗N → F ⊗N , and therefore TorR
1 (L,N) = 0. �

3. Strongly C -coherent rings
Theorem 3.1. The following statements are equivalent for a ring R:

(1) R is a left strongly C -coherent ring.
(2) If 0 → K → E → L → 0 is an exact sequence of left R-modules with K C -injective

and E FP-injective, then L is C -injective.
(3) If 0 → K → E → L → 0 is an exact sequence of left R-modules with K C -injective

and E injective, then L is C -injective.
(4) R is left C -coherent, and if 0 → N → M → Q → 0 is an exact sequence of right

R-modules with M and Q C -flat, then N is C -flat.
(5) R is left C -coherent, and if 0 → N → M → Q → 0 is an exact sequence of right

R-modules with M flat and Q C -flat, then N is C -flat.
(6) R is left C -coherent, and if 0 → N → P → Q → 0 is an exact sequence of right

R-modules with P projective and Q C -flat, then N is C -flat.

Proof. (1)⇒(2). It follows from [28, Theorem 1(7)].
(2)⇒(3); and (4)⇒ (5) ⇒ (6) are trivial.
(3)⇒(1). Let M be a C -injective left R-module. Then by (2), E(M)/M is C -injective.

And so R is left strongly C -coherent by [28, Theorem 1(8)].
(1)⇒(4). It follows from [28, Theorem 1(9)] and [27, Proposition 3.11(2)].
(6)⇒(1). For any C -flat right R-module N , there exists an exact sequence 0 →

K → P → N → 0 with P projective. So K is C -flat by (6), and thus TorR
2 (N,C) ∼=

TorR
1 (K,C) = 0 for any C ∈ C . Therefore R is left strongly C -coherent by [28, Theorem

1(11)]. �
Proposition 3.2. Let R be a left strongly C -coherent ring. Then the following statements
are equivalent for a left R-module M:

(1) M is injective.
(2) M is both C -injective and C I-injective.
(3) There exists a C -injective cover f : M → N with N C I-injective.

Proof. (1)⇒(2). It is trivial.
(2)⇒(3). It is clear because M → M is a C -injective cover of M.
(3)⇒(1). Consider the exact sequence 0 → M

i→ E(M) → E(M)/M → 0. Since
R is a left strongly C -coherent ring, by [28, Theorem 1(7)], E(M)/M is C -injective, so
Ext1

R(E(M)/M,N) = 0. Thus there exists a homomorphism g : E(M) → N such that
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f = gi. Since f is a cover, there exists a homomorphism h : E(M) → M such that g = fh.
Hence f(hi) = f , and so hi is an isomorphism, this follows that i is left split, and therefore
M = E(M) is injective. �

Theorem 3.3. The following statements are equivalent for a ring R:
(1) R is a left strongly C -coherent ring.
(2) R is left C -coherent, and every C -injective C I-injective left R-module is injective.
(3) Each left R-module has a C -injective cover, and every C -injective C I-injective left

R-module is injective.
(4) R is left C -coherent, and for every C I-injective left R-module L, there there exists

a C -injective cover E → L with E injective.
(5) Each left R-module has a C -injective cover, and for every C I-injective left R-

module L, there there exists a C -injective cover E → L with E injective.
(6) Every C -pure quotient of a C -injective left R-module has a C -injective cover, and

for every C I-injective left R-module L, there exists a C -injective cover E → L with
E injective.

(7) Every C -pure quotient of a C -injective left R-module has a C -injective cover, and
every C -injective C I-injective left R-module is injective.

Proof. (1)⇒(2). Since R is left strongly C -coherent, by [28, Theorem 1(10)], it is left
C -coherent. Moreover, by Proposition 3.2, every C -injective C I-injective left R-module is
injective.

(2)⇒(3). It follows from [27, Corollary 3.7].
(1)⇒(4). It is clear that R is left C -coherent. Let L be any C I-injective left R-module.

Then by [27, Corollary 3.7], L has a C -injective cover f : E → L, and by Proposition 3.2,
E is injective.

(4)⇒(5). It follows from [27, Corollary 3.7].
(3)⇒(7), and (5)⇒(6) are trivial.
(6)⇒(7). Let M be a C -injective C I-injective left R-module. Then by (6), there exists

a C -injective cover f : E → M with E injective. Note that 1M : M → M is also a
C -injective cover of M , we have that M ∼= E, and hence M is injective.

(7)⇒(1). Let 0 → N
i→ E

f→ L → 0 be an exact sequence of left R-modules with N
C -injective and E injective. Then by Theorem 2.6(4), this exact sequence is C -pure, and
so L has a C -injective cover φ : E′ → L. Thus there exists a homomorphism g : E → E′

such that f = φg. Since f is epic, φ is also epic. Now, forming a pullback we obtain the
following commutative diagram with exact rows and columns (see [21, 10.3(1)]).

0 0y y
K Kyα

y
0 −−−−→ N −−−−→ P −−−−→

h2
E′ −−−−→ 0∥∥∥ yh1

yφ

0 −−−−→ N −−−−→ E −−−−→
f

L −−−−→ 0y y
0 0
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where P = {(x, y) ∈ E′ ⊕ E | φ(x) = f(y)}, K = Ker(φ), α : K → P, k 7→ (k, 0)
, h1(x, y) = x, h2(x, y) = y. Let β : P → E′, (x, y) 7→ x − g(y). Then φβ(x, y) =
φ(x) − φg(y) = φ(x) − f(y) = 0, so β(x, y) ∈ K , and hence β is a homomorphism from
P to K. Note that βα(k) = β(k, 0) = k − g(0) = k, we have that βα = 1K . Since N
and E′ are both C -injective, P is also C -injective, and so K is C -injective. Note that K
is C I-injective by [9, Corollary 7.2.3], we have that K is injective by conditions, so L is
C -injective, and hence R is a left strongly C -coherent ring by Theorem 3.1(3). �

Let F be a class of R-modules. According to [5], an F-cover ϕ : F → M is said to have
the unique mapping property if for any homomorphism f : F ′ → M with F ′ ∈ F, there is
a unique homomorphism g : F ′ → F such that f = ϕg.

Theorem 3.4. The following statements are equivalent for a ring R:
(1) Every left R-module is C -projective.
(2) Every nonzero left R-module has a nonzero C -projective submodule.
(3) R is left strongly C -coherent, and every (C -injective) left R-module has a C -

projective cover with the unique mapping property.

Proof. (1)⇒(2) and (1)⇒ (3) are obvious.
(2)⇒(1). Assume (2). To prove (1), we need only to prove that every C -injective

module E is injective by [28, Theorem 6(3)].
Let I be a left ideal of R , i : I → R be the inclusion map and f : I → E be any

homomorphism. It suffices to show that there is g : R → E that extends f . Let A consist
of all pair (I ′, g′), where I ⊆ I ′ ⊆ R and g′ : I ′ → E extends f . Since (I, f) ∈ A , A 6= ϕ.
A is a partially set by saying (I ′, g′) ≤ (I ′′, g′′) if I ′ ⊆ I ′′ and g′′ extends g′. By Zorn’s
Lemma, there is a maximal element (I0, g0) in A . If I0 6= R, then R/I0 6= 0. By (2), there
is a nonzero C -projective submodule K/I0 of R/I0. Note that Ext1

R(K/I0, E) = 0, we
have that g0 can be extended to K, this contradicts to the maximality of (I0, g0). Thus,
I0 = R and E is injective, as required.

(3)⇒(1). Assume (3). To prove (1), we need only to prove that every C -injective module
E is C -projective by [28, Theorem 6(4)]. By (3), E has a C -projective cover ϕ : P → E
with the unique mapping property. Let K = Ker(ϕ), i : K → P be the inclusion map and
φ : P ′ → K be a C -projective cover of K. Then ϕiφ = 0 = ϕ0, and so iφ = 0 by the
unique mapping property. Since every C -projective cover is epic, φ and ϕ are epic, so ϕ
is an isomorphism, and thus E is C -projective. This completes the proof. �

According to [28], the C -injective dimension of a module RM is defined by
C I-dim(RM) = inf{n : Extn+1

R (C,M) = 0 for every C ∈ C };
the C -injective global dimension of a ring R is defined by

C I-GLD(R)=sup{C I-dim(M): M is a left R-module};
the C -flat dimension of a module MR is defined by

CF-dim(MR) = inf{n : TorR
n+1(M,C) = 0 for every C ∈ C };

the C -weak global dimension of a ring R is defined by
C -WD(R)=sup{CF-dim(M): M is a right R-module}.

Theorem 3.5. Let R be a left strongly C -coherent ring, M a left R-module and n a
nonnegative integer. Then the following statements are equivalent:

(1) C I-dim(RM) ≤ n.
(2) Extn+k

R (P,M) = 0 for all C -projective module P and all positive integers k.
(3) Extn+1

R (P,M) = 0 for all C -projective module P.
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Proof. (1)⇒(2). Assume (1). Then since R is left strongly C -coherent, by [28, The-
orem 2], there exists an exact sequence of left R-modules 0 → M

ε→ E0
d0→ · · · →

En−1
dn−1→ En → 0 such that E0, · · · , En−1, En are C -injective. Thus, by [28, The-

orem 1(12)], we have Extn+1
R (P,M) ∼= Extn

R(P, im(d0)) ∼= Extn−1
R (P, im(d1)) ∼= · · · ∼=

Ext1
R(P, im(dn−1)) = Ext1

R(P,En) = 0 for any C -projective module P , and Extn+k
R (P,M) ∼=

Ext1
R(P, 0) = 0 for any k > 1. So (2) follows.

(2)⇒ (3) ⇒(1). It is trivial. �
Corollary 3.6. Let R be a left strongly C -coherent ring and 0 → A → B → C → 0 an
exact sequence of left R-modules. If two of C I-dim(A),C I-dim(B),C I-dim(C) are finite,
then so is the third. Moreover:

(1) C I-dim(B)≤ sup{ C I-dim(A), C I-dim(C)}.
(2) C I-dim(A)≤ sup{ C I-dim(B), C I-dim(C) + 1}.
(3) C I-dim(C)≤ sup{ C I-dim(B), C I-dim(A) − 1}.

In particular, C I-dim(A⊕ C)= sup{ C I-dim(A), C I-dim(C)}.

Let n be a positive integer. then according to [4], a left R-module M is said to be
n-presented in case there is an exact sequence of left R-modules Fn → Fn−1 → · · · →
F1 → F0 → M → 0 in which every Fi is finitely generated free. It is easy to see that
a left R-module M is n-presented if and only if there exists an exact sequence of left
R-modules 0 → Kn → Fn−1 → · · · → F1 → F0 → M → 0 such that F0, · · · , Fn−1 are
finitely generated free and Kn is finitely generated.
Lemma 3.7. Let R be a left strongly C -coherent ring. Then every C ∈ C is n-presented
for any positive integer n.
Proof. Use induction on n. If n = 1, then it is clear that the result holds. Assume that
every C ∈ C is n-presented. Then for any C ∈ C and any FP-injective module N , we
have Extn+1

R (C,N) = 0 by [28, Theorem 1(5)] because R is left strongly C -coherent. Let
0 → Kn → Fn−1 → · · · → F1 → F0 → C → 0 be an exact sequence of left R-modules
with F0, · · · , Fn−1 finitely generated free left R–modules and Kn finitely generated. Then
Ext1

R(Kn, N) ∼= Extn+1
R (C,N) = 0 , so Kn is finitely presented by [7], and hence C is

(n+ 1)-presented. �
Theorem 3.8. Let R be a left strongly C -coherent ring and M a left R-module. Then
C I-dim(M)=CF-dim(M+).
Proof. Let n be a positive integer, C ∈ C . Since R is left strongly C -coherent, by
Lemma 3.7, C is (n+ 2)-presented. So, by [2, Lemma 2.7(2)], we have TorR

n+1(M+, C) ∼=
Extn+1

R (C,M)+. Consequently, C I-dim(M) =CF-dim(M+) by [28, Theorem 2, Theorem
3]. �
Theorem 3.9. Let R be left strongly C -coherent and RR be C -injective. If RM is C -
projective with finite projective dimension, then RM is projective.
Proof. Suppose that RM is C -projective with pd(M) = n < ∞. Then by [28, Theorem
5], there exists an exact sequence of left R-modules

0 → Pn
dn→ Pn−1

dn−1→ · · · → P1
d1→ P0

d0→ M → 0
such that P0, · · · , Pn−1, Pn are projective. Since RR is C -injective and direct sums and
direct summands of C -injective modules are C -injective by [28, Proposition 2.5], each Pi

is C -injective for i = 0, 1, · · · , n. Clearly, im(dn) ∼= Pn is C -injective. Note that R is
left strongly C -coherent , by [28, Theorem 1(7)], im(dn−1) is C -injective. Continues in
this way, one can get that im(d1) is C -injective, so Ext1

R(M, im(d1)) = 0, and thus the
exact sequence 0 → im(d1) → P0 → M → 0 is split, this follows that RM is projective, as
required. �
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Recall that, by [28, Example 1], a left C -coherent ring need not be left strongly C -
coherent. As the end of this section, we give another example which shows that even if R
is a left artinian ring, it need not be left strongly C -coherent.

Example 3.10. Let K be a field and L be a proper subfield of K such that ρ : K → L
is an isomorphism. Let K[x; ρ] be the ring of twisted right polynomials over K where
kx = xρ(k) for all k ∈ K. Set R = K[x; ρ]/(x2), and C = {R/Ra : a ∈ R}. If b1, b2 is
a basis for K as a vector space over L, then R is left artinian and hence left C -coherent,
but it is not left strongly C -coherent.

Proof. Since K has finite vector space dimension over L, by [18, Example 1], R is left
artinian . Since the only proper right ideal of R is rR(x) = xR = xK, it is readily verified
that rRlR(a) = aR for any a ∈ R, so RR is P-injective by [16, Lemma 1.1]. Now, we define
f : Rxb1 + Rxb2 → R by f(r1xb1 + r2xb2) = r1x + r2x, then it is easy to see that f is
a left R-homomorphism. We claim that this homomorphism can not be extended to an
endomorphism of R. Otherwise, there exists a c = k0 +xk′

0 ∈ R such that f = ·c. Clearly,
k0 6= 0. Thus, f(xb1 −xb2) = (xb1 −xb2)(k0 +xk′

0), and so 0 = x−x = (xb1 −xb2)k0, this
follows that b1 = b2, a contradiction. Observing that lR(x) = xK = xR = Rxb1 + Rxb2,
we have Ext1

R(Rx,R) ∼= Ext1
R(R/(Rxb1 +Rxb2), R) 6= 0, and hence R is not left strongly

C -coherent. �

4. C -semihereditary rings
We begin with the following definition.

Definition 4.1. A ring R is called weakly C -semihereditary, if whenever 0 → K → P →
C → 0 is exact , where C ∈ C , P is finitely generated projective , then K is flat.

Recall that a ring R is called left weakly n-semihereditary [25] if every n-generated left
ideal is flat; a ring R is called a left p.f ring [11] if every principal left ideal of R is flat.
By [11, Theorem 2.2], a ring R is left p.f if and only if it is right p.f; a ring R is called a
left FS-ring [12, 22] if Soc(RR) is flat.

Example 4.2. (1). Let C = {R/I : I is an n-generated left ideal of R}. Then the ring R
is weakly C -semihereditary if and only if R is left weakly n-semihereditary.

(2). Let C = {R/Ra : a ∈ R}. Then the ring R is weakly C -semihereditary if and only
if R is left p.f.

(3). Let C = {R/Ra : Ra is a minimal left ideal of R}. Then the ring R is weakly
C -semihereditary if and only if every minimal left ideal of R is flat, if and only if R is a
left FS-ring .

Theorem 4.3. The following statements are equivalent for a ring R:
(1) R is a left weakly C -semihereditary ring.
(2) Every submodule of a C -flat right R-module is C -flat.
(3) Every submodule of a flat right R-module is C -flat.
(4) Every submodule of a projective right R-module is C -flat.
(5) Every submodule of a free right R-module is C -flat.
(6) Every finitely generated right ideal of R is C -flat.

Proof. (2)⇒(3)⇒ (4)⇒ (5)⇒ (6) is trivial.
(1)⇒(2). Assume (1). Let A be a submodule of a C -flat right R-module B and let

C ∈ C . Then there exists an exact sequence of left R-modules 0 → K → P → C →
0, where P is finitely generated projective. By (1), K is flat. Then the exactness of
0 = TorR

2 (B/A,P ) → TorR
2 (B/A,C) → TorR

1 (B/A,K) = 0 implies that TorR
2 (B/A,C) =

0. And thus from the exactness of the sequence 0 = TorR
2 (B/A,C) → TorR

1 (A,C) →
TorR

1 (B,C) = 0 we have TorR
1 (A,C) = 0. It shows that A is C -flat.
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(6)⇒(1). Let C ∈ C . There exists an exact sequence of left R-modules 0 → K →
P → C → 0, where P is finitely generated projective. For any finitely generated right
ideal I of R, we have an exact sequence 0 → TorR

2 (R/I,C) → TorR
1 (I, C) = 0 since I is

C -flat. So TorR
2 (R/I,C) = 0, and hence we obtain an exact sequence 0 = TorR

2 (R/I,C) →
TorR

1 (R/I,K) → 0. Thus, TorR
1 (R/I,K) = 0. And so K is flat. �

Proposition 4.4. If R is a left weakly C -semihereditary ring, then C -WD(R)≤ 1.

Proof. Let M be any right R-module and let C ∈ C . Then there exists an exact sequence
of left R-modules 0 → K → P → C → 0, where P is finitely generated projective. Since
R is left weakly C -semihereditary, K is flat. So TorR

2 (M,C) ∼= TorR
1 (M,K) = 0. It shows

that C -WD(R)≤ 1. �

Lemma 4.5. Let F be a class of some right R-modules. If N f1→ N1 and N
f2→ N2 are

F-preenvelopes , then N1 ⊕N2/f2(N) ∼= N2 ⊕N1/f1(N).

Proof. Let εi : Ni → N1 ⊕ N2 be the injections, i = 1, 2. We obtain a morphism
q∗ = ε1f1 + ε2f2 : N → N1 ⊕ N2. Let ε1 : N1 → Coker(q∗);n1 7→ (n1, 0) + im(q∗)
, ε2 : N2 → Coker(q∗);n2 7→ (0, n2) + im(q∗) and Q = Coker(q∗). Then we get the
following pushout diagram:

N
f2−−−−→ N2

f1

y ε2

y
N1

ε1−−−−→ Q

And so, by the proof of [21, 10.6(1)(i)], we have the following commutative diagram with
exact rows, where g : Q → N2/f2(N); (n1, n2) + im(q∗) 7→ n2 + f2(N):

N
f2−−−−→ N2 −−−−→ N2/f2(N) −−−−→ 0

f1

y ε2

y 1
y

N1
ε1−−−−→ Q

g−−−−→ N2/f2(N) −−−−→ 0

Since N f2→ N2 is an F-preenvelope and N1 ∈ F, there exists a homomorphism α : N2 → N1
such that f1 = αf2. If ε1(n1) = 0, then (n1, 0) = q∗(n) = (f1(n), f2(n)) for some n ∈ N ,
so f2(n) = 0, f1(n) = n1, and hence n1 = f1(n) = αf2(n) = 0. It shows that ε1 is monic.
Now, we define h : Q → N1 by (n1, n2) + im(q∗) 7→ n1 − α(n2). Then h is well-defined,
and hε1(n1) = h((n1, 0) + im(q∗)) = n1 − α(0) = n1 for each n1 ∈ N1, so hε1 = 1N1 , and
then ε1 is left split. Thus, we have Q ∼= N1 ⊕ N2/f2(N). Similarly, we have also that
Q ∼= N2 ⊕N1/f1(N) and so N1 ⊕N2/f2(N) ∼= N2 ⊕N1/f1(N). �

Next, we give some new characterizations of left C -semihereditary rings.

Theorem 4.6. The following statements are equivalent for a ring R:
(1) R is left C -semihereditary.
(2) R is left C -coherent and left weakly C -semihereditary.
(3) R is left strongly C -coherent and every C -projective left R-module has a monic

C -injective cover.
(4) Every C -projective left R-module has projective dimension at most 1.
(5) R is left C -coherent and every C I-injective module is injective.
(6) Every left R-module has a C -injective cover and every C I-injective module is injec-

tive.
(7) Every C -pure quotient of a C -injective left R-module has a C -injective cover and

every C I-injective module is injective.
(8) R is left strongly C -coherent and every C I-injective module is C -injective.
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(9) R is left strongly C -coherent and the kernel of any C -injective precover of a left
R-module is C -injective.

(10) R is left strongly C -coherent and the kernel of any C -injective cover of a left
R-module is C -injective.

(11) R is left strongly C -coherent and the cokernel of any C -injective preenvelope of a
left R-module is C -injective.

(12) R is left strongly C -coherent and the kernel of any C -flat precover of a right R-
module is C -flat.

(13) R is left strongly C -coherent and the kernel of any C -flat cover of a right R-module
is C -flat.

(14) R is left strongly C -coherent and the cokernel of any C -flat preenvelope of a right
R-module is C -flat.

Proof. (1)⇔ (2). It follows from [27, Theorem 4.3(2)] and Theorem 4.3(2).
(1)⇒(3). Suppose that R is left C -semihereditary. Then it is left strongly C -coherent

by [28, Theorem 4]. Moreover, by [27, Theorem 4.3(7)], every C -projective left R-module
has a monic C -injective cover.

(3)⇒(1). Let E be any injective left R-module and K any submodule of E. By [27,
Theorem 4.3(6)], we need only to prove that E/K is C -injective. In fact, since (CP,C I)
is a complete cotorsion pair by [27, Theorem 2.10(1)], there exists an exact sequences
0 → K → E1

f→ P → 0 with P C -projective and E1 C -injective. By (3), P has a monic
C -injective cover φ : E2 → P . So, there exists a homomorphism g : E1 → E2 such that
f = φg. Thus φ is epic, and hence φ is an isomorphism. This implies that P is C -injective.
For any C ∈ C , we have the exact sequence

0 = Ext1
R(C,P ) → Ext2

R(C,K) → Ext2
R(C,E1).

But R is left strongly C -coherent, by [28, Theorem 1(6)], Ext2
R(C,E1) = 0, and so

Ext2
R(C,K) = 0. On the other hand, the short exact sequence 0 → K → E → E/K → 0

induces the exact sequence
0 = Ext1

R(C,E) → Ext1
R(C,E/K) → Ext2

R(C,K) = 0.
so, we have Ext1

R(C,E/K) = 0, and hence E/K is C -injective. Consequently, R is left
C -semihereditary by [27, Theorem 4.3(6)].

(1)⇒(4). Let M be a C -projective module and N be any left R-module. Since R is left
C -semihereditary, by [27, Theorem 4.3(6)], E(N)/N is C -injective. So, by the exactness
of the sequence

0 = Ext1
R(M,E(N)/N) → Ext2

R(M,N) → Ext2
R(M,E(N)) = 0.

We have Ext2
R(M,N) = 0, and hence M has projective dimension at most 1.

(4)⇒(1). Let C ∈ C and 0 → K → P → C → 0 be exact, where P is finitely generated
projective. Note that C is C -projective, by (4), pd(C) ≤ 1, and so K is projective by
Schanuel’s Lemma.

(1)⇒(5). Since R is left C -semihereditary, by [27, Theorem 4.3], R is left C -coherent
and every quotient module of an injective left R-module is C -injective . Let M be a
C I-injective left R-module. Then E(M)/M is C -injective, so M is injective with respect
to the exact sequence 0 → M → E(M) → E(M)/M → 0 by Proposition 2.3, and hence
M = E(M) is injective.

(5)⇒(6). It follows from [27, Corollary 3.7].
(6) ⇒ (1). Let M be a quotient of an injective left R-module. By (6), M has a C -

injective cover. Suppose f : F → M is a C -injective cover of M . Then f is epic. By
Remark 2.4, Ker(f) is C I-injective, and so it is injective by (6). Thus, M is isomorphic
to a direct summand of F and hence it is C -injective. Hence, by [27, Theorem 4.3(6)], R
is left C -semihereditary.
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(6) ⇒ (7). It is obvious.
(7)⇒(8). It follows from Theorem 3.3(7).
(8) ⇒ (5). Assume (8). Then by [28, Theorem 1(10)], R is left C -coherent. Let M be a

C I-injective module. Then by (8), M is C -injective. But R is left strongly C -coherent, by
[28, Theorem 1(7)], E(M)/M is C -injective. Thus, by Proposition 2.3(4), M is injective .

(1) ⇒ (9). Clearly, R is left strongly C -coherent . Let f : F → M be a C -injective
precover and K = Ker(f) . Since R is left C -semihereditary, by [27, Theorem 4.3(7)],
there exists a monic C -injective cover φ : G → M . Thus, by [9, Lemma 8.6.3], we have
K ⊕G ∼= F , and so K is C -injective.

(9)⇒(10). It is obvious.
(10) ⇒ (1). Let M be a quotient of a C -injective left R-module. Since R is left C -

coherent, by [27, Corollary 3.7], M has a C -injective cover f : F → M . Clearly, f is epic.
So, by (10), we have that Ker(f) is C -injective , this implies that M is also C -injective by
[28, Theorem 1(7)] as R is left strongly C -coherent. Therefore, by [27, Theorem 4.3(5)],
R is left C -semihereditary.

(1) ⇒ (11). Clearly, R is left strongly C -coherent. And by [27, Theorem 4.3(5)], every
quotient module of a C -injective module is C -injective, so the cokernel of any C -injective
preenvelope of a left R-module is C -injective.

(11) ⇒ (1). LetM be any left R-module. Since the class of all C -injective left R-modules
is closed under pure submodules , isomorphisms and direct product, by [29, Theorem 2.6],
M has a C -injective preenvelope f : M → E. By (11), E/im(f) is C -injective . It is
easy to see that f is monic. Since R is left strongly C -coherent, by [28, Theorem 2(5)],
C I-dim(RM) ≤ 1. And so , C I-GLD(R)≤ 1. Therefore, by [28, Theorem 4(2)], R is left
C -semihereditary.

(1) ⇒ (12). Clearly, R is left strongly C -coherent. And by [27, Theorem 4.3(2)], the
kernel of any C -flat precover of a right R-module is C -flat.

(12)⇒(13). It is obvious.
(13) ⇒ (1). Let N be any right R-module. Then by [27, Theorem 2.10(2)], N has a C -

flat cover f : F → N . Clearly, f is epic. By (13), we have that Ker(f) is C -flat. But R is
left strongly C -coherent, by [28, Theorem 3(5)], CF-dim(NR) ≤ 1. Thus, C -WD(R)≤ 1.
Consequently, by [28, Theorem 4(3)], we have that R is left C -semihereditary.

(1) ⇒ (14). Clearly, R is left strongly C -coherent. Let φ : N → F be a C -flat preen-
velope of a right R-module N and L = coker(φ). Since R is left C -semihereditary, by
[27, Theorem 4.3(8)], N has an epic C -flat envelope ϕ : N → G. Hence, by Lemma 4.5,
we have F ∼= G⊕ L, and so L is C -flat.

(14) ⇒ (1). Let N be a submodule of a C -flat module. Since R is left C -coherent, by
[27, Theorem 3.3(12)], N has a C -flat preenvelope f : N → F . It is easy to see that f is
monic. By (14), F/im(f) is C -flat. Note that R is left strongly C -coherent, by Theorem
3.1(4), N is C -flat. Therefore, by [27, Theorem 4.3(2)], R is left C -semihereditary. �
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