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Abstract

Let R be a ring and % be a class of some finitely presented left R-modules. A left R-
module M is called €-injective if ExtL(C, M) = 0 for every C € ¢; a left R-module
M is called %-projective if Exth(M, E) = 0 for any %-injective module E. R is called
left @-coherent if every C' € ¥ is 2-presented; R is called left strongly %-coherent, if
whenever 0 - K — P — C — 0 is exact, where C € ¥ and P is finitely generated
projective, then K is €-projective; a ring R is called left ¥-semihereditary, if whenever
0— K —- P — C — 0is exact, where C' € ¥ , P is finitely generated projective, then
K is projective. In this paper, we give some new characterizations and properties of left
€ -coherent rings, left strongly %-coherent rings and left €-semihereditary rings.
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1. Introduction

Recall that a ring R is said to be left coherent [1,19] if every finitely generated left
ideal of R is finitely presented, a ring R is said to be left semihereditary if every finitely
generated left ideal of R is projective. Coherent rings, semihereditary rings and their
generalizations have been studied extensively by many authors (see, for example, [1,2,
4,6,11,13-15,19, 24, 26]). In [27], we introduced the concepts of left € -coherent rings
and left €-semihereditary rings, and in [28], we introduced the concept of left strongly
@ -coherent rings. Let € be a class of some finitely presented left R-modules. Following
[27], a ring R is called left €-coherent if every C' € € is 2-presented; a ring R is called
left € -semihereditary, if whenever 0 - K — P — C — 0 is exact , where C' € €, P is
finitely generated projective, then K is projective. To characterize left €-coherent rings
and left @-semihereditary rings , in [27], we also introduced the concepts of €-injective
modules and € -flat modules. According to [27], a left R-module M is called & -injective if
Exth(C, M) = 0 for every C € €, a right R-module M is called ¢ -flat if Torf(M,C) =0
for every C' € €. In [28], we introduced the concepts of € -projective modules and left
strongly € -coherent rings. Following [28], a left R-module M is called €-projective if
Exth(M, E) = 0 for any %-injective module E; a ring R is called left strongly %-coherent,
if whenever 0 - K — P — C' — 0 is exact, where C € ¥ and P is finitely generated
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projective, then K is @-projective. We shall denote the class of @-flat (resp., €-injective,
¢ -projective) modules by €F (resp., €I , €P).

In this article, we continues to study left %-coherent rings, left strongly %-coherent
rings and left %-semihereditary rings. Series characterizations and properties of these
rings will be given respectively.

Next, we recall some known notions and facts needed in the sequel.

Given a class .Z of R-modules, we shall denote by £+ = {M : Exth(L,M) =0,L € £}
the right orthogonal class of ., and by +.% = {M : Exty(M,L) = 0,L € £} the left
orthogonal class of .Z.

Let F be a class of R-modules and M an R-module. Following [9], we say that a
homomorphism ¢ : M — F where F' € F is an F-preenvelope of M if for any morphism
f: M — F' with F/ € F, there is a g : F — F’ such that go = f. An F-preenvelope
v : M — F is said to be an F-envelope if every endomorphism ¢ : F© — F such that
g =  is an isomorphism. Dually, we have the definitions of F-precovers and F-covers.
F-envelopes (F-covers) may not exist in general, but if they exist, they are unique up
to isomorphism. It is easy to see that every %-injective preenvelope is monic, and every
6 -projective precover is epic.

Following [9], a pair (&7, &) of classes of R-modules is called a cotorsion pair if o/+ = %
and +% = /. A cotorsion pair (7, %) is called hereditary [10, Definition 1.1] if whenever
0— A — A— A" — 01is exact with A, A” € & then A’ is also in 7. By [10, Proposition
1.2], a cotorsion pair (<7, %) is hereditary if and only if whenever 0 - B’ — B — B” — 0
is exact with B/, B € & then B” is also in #. A cotorsion pair (&7, %) is called perfect
[10] if every R-module has an «/-cover and a Z-envelope. A cotorsion pair (<, %) is
called complete (see [9, Definition 7.16] and [20, Lemma 1.13]) if for any R-module M,
there are exact sequences 0 - M — B — A — 0 with A € & and B € 4, and
0B —A - M —0with A’ € & and B € £.

Throughout this paper, R is an associative ring with identity and all modules considered
are unitary, % is a class of some finitely presented left R-modules. For any R-module M,
E(M) will denote the injective envelope of M, M = Hom(M, Q/Z) will be the character
module of M and M* = Hom(M, R) will be the dual module of M.

2. %-coherent rings

Theorem 2.1. The following statements are equivalent for a ring R:

(1) R is a left €-coherent ring.
(2) For any projective left R-module P, P* is € -flat.
(3) For any free left R-module F, F* is €-flat.

Proof. (1)=(2). For any projective left R-module P, there is an index set I and an
R-module Q such that P ® Q = R). So we have P* @ Q* = (R)* = R! and thus P*
is ¢-flat by [27, Theorem 3.3(4) and Proposition 2.6].

(2)=(3). It is clear.

(3)=(1). Let I be any index set. Then by (3), Rl = (R!))* is ¥-flat, and so R is
¢ -coherent by [27, Theorem 3.3(4)]. O

Recall that a left R-module M is said to be FP-injective [19] if Exth(A, M) = 0 for
every finitely presented left R-module A; a left R-module M is said to be P-injective
[16] if every homomorphism from a principal left ideal of R to M can be extended to a
homomorphism of R to M, it is easy to see that a left R-module M is P-injective if and
only if Exth(R/Ra, M) = 0 for any a € R. We recall also that a left R-module M is said
to be Fl-injective [13] (resp., D-injective [14], copure injective [8] ) if Exth(G, M) = 0
for every FP-injective (resp., P-injective, injective) left R-module G; a right R-module N
is said to be FI-flat [13] (resp., D-flat [14], copure flat [8]) if Torl*(N,G) = 0 for every
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FP-injective (resp., P-injective, injective) left R-module G. Inspired by these concepts,
we have the following concepts.

Definition 2.2. A left R-module M is said to be €I-injective if Exth(G, M) = 0 for every
%-injective left R-module G; a right R-module F is said to be €I-flat if Tor®(F,G) = 0
for every %-injective left R-module G.

Proposition 2.3. The following statements are equivalent for a left R-module M:
(1) M is € I-injective.
(2) For every exact sequence 0 — M — E — L — 0 with E € -injective, E — L is a
@ -injective precover of L.
(3) M is the kernel of a € -injective precover f : E — L with E injective.
(4) M is injective with respect to every ezact sequence 0 - A — B — C — 0 with C
@ -injective.

Proof. (1)=(2) and (1)=(4) are clear.

(2)=-(3). It follows from the exact sequence 0 - M — E(M) — E(M)/M — 0.

(3)=(1). Let M be the kernel of a ¢-injective precover f : E — L with E injective.
Then f : E— im(f) is a ¢-injective precover, so, for any %-injective module N, the map
Hom(N, E) — Hom(N,im(f)) is epic and hence the map Hom(N, E) — Hom (N, E/M)
is epic. Thus, by the exactness of the sequence 0 — Hom(N, EF) — Hom(N,E/M) —
Exth(N, M) — 0, we have ExthL(N, M) = 0.

(4) = (1). For any ¢-injective module N, there exists an exact sequence 0 — K —
P — N — 0, where P is projective. Hence we get an exact sequence Hom(P, M) —
Hom(K, M) — Exth(N,M) — Exth(P,M) = 0, and thus ExthL(N,M) = 0 by (4).
Therefore, M is € I-injective. g

Remark 2.4. Since the class of all #-injective modules is closed under extensions, by
Wakamutsu’s Lemma (see [23, Lemma 2.1.1]), any kernel of a %-injective cover is €I-
injective .

Recall that a left R-module M is called reduced [9] if M has no nonzero injective
submodules.

Proposition 2.5. Let R be a left €-coherent ring. Then the following statements are
equivalent for a left R-module M:

(1) M is a reduced € I-injective module.
(2) M is the kernel of a €-injective cover f: E — L with E injective.

Proof. (1)=(2). Since M is €l-injective, by proposition 2.3, the natural mapping = :
E(M) — E(M)/M is a €-injective precover. Since R is left €¢-coherent, by [27, Corollary
3.7], E(M)/M has a %-injective cover. Note that there is no nonzero summand K of
E(M) contained in M as M is reduced, by [23, Corollary 1.2.8], 7 : E(M) — E(M)/M is
a %-injective cover.

(2)=-(1). Let M be the kernel of a €-injective cover f : E — L with E injective. Then
by proposition 2.3(3), M is a €l-injective module. Now let K be an injective submodule
of M. Suppose E = K@ N,p: E — N is the projective and ¢ : N — F is the inclusion
for some submodule N of M. It is easy to see that f(ip) = f since f(K) = 0. So ip is an
isomorphism since f is a cover. Thus i is epic and hence E = N, K = 0. Therefore M is
reduced. ([l

Recall that a submodule A of left R-module B is said to be a pure submodule if for
all right R-module M, the induced map M ®r A — M ®p B is monic, or equivalently,
every finitely presented left R-module is projective with respect to the exact sequence
0 - A— B — B/A — 0. In this case, the exact sequence 0 - A - B — B/A — 0
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is called pure exact. An exact sequence 0 - A — B — L — 0 is called RD-exact [14]
if, for any a € R, R/Ra is projective with respect to this sequence. We call a short
exact sequence of left R-modules 0 - A — B — L — 0 %-pure exact if every C € € is
projective with respect to this sequence. Let A be a submodule of B, if the short exact
sequence of left R-modules 0 - A — B — B/A — 0 is %-pure exact, then we call A a
¢ -pure submodule of B and B/A a %-pure quotient module of B.

Next, we give some characterizations of @-injective modules.

Theorem 2.6. Let M be a left R-module, then the following statements are equivalent:

(1) M is € -injective.

(2) M is injective with respect to every exact sequence 0 - A — B — C — 0 of left
R-modules with C € €.

(3) M is injective with respect to every exact sequence 0 — K — P — C — 0 of left
R-modules with C € € and P finitely generated projective.

(4) Fvery exact sequence 0 — M — M' — M" — 0 is € -pure.

(5) There exists a € -pure exact sequence 0 — M — M’ — M" — 0 of left R-modules
with M’ injective.

(6) There exists a €-pure exact sequence 0 — M — M’ — M" — 0 of left R-modules
with M' FP-injective.

(7) There exists a € -pure exact sequence 0 — M — M’ — M" — 0 of left R-modules
with M’ € -injective.

Proof. (1) = (2). It follows from the exact sequence
Hom(B, M) — Hom(A, M) — ExtL(C, M) = 0.

(2) = (3). It is obvious.
(3) = (1). It follows from the exact sequence

Hom(P, M) — Hom(K, M) — Extk(C, M) — Exth(P, M) = 0.

(1) = (4). Assume (1). Then we have an exact sequence Hom(C, M') — Hom(C, M") —
Ext}h(C, M) = 0 for every C' € %, and so (4) follows.
(4) = (5) = (6) = (7) is obvious.

(7) = (1). By (7), we have a ¢-pure exact sequence 0 — M — M’ o M7 5 0 of left
R-modules where M’ is %-injective, and so, for each C' € ¥, we have an exact sequence
Hom(C, M") &3 Hom(C, M") — Ext(C, M) — ExtL(C,M') = 0 with f, epic. Which
implies that Exth(C, M) = 0, and (1) follows. O

Recall that a left R-module M is called pure injective [9, Definition 5.3.6] if it is injective
with respect to every pure exact sequence of left R-modules; a left R-module M is called
RD-injective [14] if it is injective with respect to every RD-exact sequence of left R-
modules. We call a left R-module M % -pure injective if it is injective with respect to
every %-pure exact sequence of left R-modules.

Proposition 2.7. Let R be a left €-coherent ring. Then every € -pure injective module
M has a €-injective cover f : N — M with N injective. Moreover, Ker(f) is a reduced
€ I-injective left R-module.

Proof. By [27, Corollary 3.7], M has a %-injective cover f : N — M. Since N is -

injective, by Theorem 2.6(4), the exact sequence 0 — N % E(N) — E(N)/N — 0 is
¢-pure exact, and so there exists g : E(N) — M such that gi = f. Note that f is a
cover, there exists h : E(N) — N such that fh = g. Thus fhi = f and hence hi is an
isormorphism. It follows that NV is isomorphic to a direct summand of F(N) and so N is
injective. By Proposition 2.5, Ker(f) is a reduced %I-injective left R-module. g
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Theorem 2.8. Let R be a left €-coherent ring. Then a left R-module M is € I-injective
if and only if M is a direct sum of an injective left R-module and a reduced € I-injective

left R-module.

Proof. “ < 7. 1t is clear.

“ = 7. Let M be a €l-injective left R-module . Then by Proposition 2.3, E(M) —
E(M)/M is a €-injective precover. Since R is left €-coherent, E(M)/M has a €-injective
cover L % E(M)/M by [27, Corollary 3.7], so we have the following commutative diagram
with exact rows:

0 v K —1 5 L 2 B(M)/M —— 0
o [ H

0 M —*— EM) —— EM)/M —— 0
& I H

0 v K L L 2 B(M)/M —— 0

where K is a reduced ¢ I-injective left R-module by Proposition 2.5. Note that g = g(87),
we have that fv is an isomorphism, so E(M) = Ker(f8) @ im(y), and thus Ker(S) is
injective. Since o¢ is an isomorphism by the Five Lemma, we have that M = Ker(o) @&
im(¢) and im(¢) = K. Moreover, by the Snake Lemma [17, Theorem 6.5], we have that
Ker(o) = Ker(f) is injective. This completes the proof. O

Proposition 2.9. Let M be a right R-module. Then M is € I-flat if and only if M™ is
€ I-injective.

Proof. Tt follows from the isomorphism Torf(M, G)* = Exth(G, M™T). O
Corollary 2.10. A pure submodule of a € I-flat module is € I-flat.

Proof. Let M be a €I-flat module and M; a pure submodule of M, then the pure exact
sequence 0 — M; — M — M/M; — 0 induces a split exact sequence 0 — (M /M)t —
M* — M;" — 0. By Proposition 2.9, M* is €I-injective, so M is €I-injective, and
hence M is €I-flat by Proposition 2.9 again. O

Proposition 2.11. Let R be a ring and € be a class of some finitely presented left R-
modules.

(1) If M is a finitely presented € I-flat module, then it is a cokernet of a € -flat preen-
velope.

(2) If R is left €-coherent and L is the cokernet of a € I-flat preenvelope f : M — F,
then L is € I-flat.

Proof. (1). Let M be a finitely presented €I-flat module. Then there exists an exact
sequence of right R-modules 0 - K — P — M — 0 with P finitely generated projective
and K finitely generated. We claim that K — P is a %-flat preenvelope. In fact, for any
%-flat module F, we have F'* is €-injective by [27, Theorem 2.7], and so Tor{*(M, FT) =0
since M is ¥ I-flat. Hence, we have the following commutative diagram with o monic:

«

Kort —/—» PFt

n l sz

Hom(K, F)* BN Hom(P, F)*

Since K is finitely generated and P is finitely presented, by [3, Lemma 2], 7; is epic and
To is an isomorphism, this follows that £ is monic, and hence Hom(P, F') — Hom(K, F') is
epic, as required.
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(2). There is an exact sequence 0 — im(f) = F — L — 0. We claim that i : im(f) —
F is a ¥-flat preenvelope. In fact, for any %-flat module F} and any homomorphism
¢ :im(f) — F1, ¢f is a homomorphism from M to Fy. Since f : M — F is a ¢-flat
preenvelope, there exists a ¢ : F — Fj such that of = ¥ f. Now, for any y € im(f),
write y = f(x). Then ¢f(x) = Yif(x), i.e., (y) = ¥i(y). It shows that ¢ = 1i, and so
i:im(f) — F is a €-flat preenvelope. Let N be any %-injective module. Since R is left
% -coherent, NT is ¢-flat by [27, Theorem 3.3(8)], and so, the mapping Hom(F, N*t) —
Hom(im(f), N1) is epic. Then, from the following commutative diagram :

Hom(F, Nt) —*— Hom(im(f), N*)

o | |2

(FeN)y* —2 & (im(f)e N)*

where o1 and o9 are isomorphisms, we have that the mapping (F®N)T — (im(f)®@N)™T is
epic. Thus, the mapping im(f)® N — F®N is monic. But the ¢’I-flatness of F' implies the
exactness of 0 — Tor®(L, N) — im(f) ® N — F ® N, and therefore Tor?(L, N) =0. O

3. Strongly %-coherent rings

Theorem 3.1. The following statements are equivalent for a ring R:

(1) R is a left strongly € -coherent ring.

(2) If0 - K - E — L — 0 is an exact sequence of left R-modules with K € -injective
and E FP-injective, then L is € -injective.

(3) If 0 » K - E — L — 0 is an exact sequence of left R-modules with K € -injective
and E injective, then L is € -injective.

(4) R is left €-coherent, and if 0 = N — M — @Q — 0 is an ezact sequence of right
R-modules with M and Q €-flat, then N is € -flat.

(5) R is left €-coherent, and if 0 - N — M — @Q — 0 is an exact sequence of right
R-modules with M flat and Q €-flat, then N is € -flat.

(6) R is left €-coherent, and if 0 - N — P — @Q — 0 is an exact sequence of right
R-modules with P projective and Q) €-flat, then N is € -flat.

Proof. (1)=(2). It follows from [28, Theorem 1(7)].

(2)=-(3); and (4)= (5) = (6) are trivial.

(3)=-(1). Let M be a €-injective left R-module. Then by (2), E(M)/M is €-injective.
And so R is left strongly €-coherent by [28, Theorem 1(8)].

(1)=-(4). It follows from [28, Theorem 1(9)] and [27, Proposition 3.11(2)].

(6)=(1). For any ¥-flat right R-module NN, there exists an exact sequence 0 —
K — P — N — 0 with P projective. So K is ¢-flat by (6), and thus Torf(N,C) =
Torf'(K,C) = 0 for any C € €. Therefore R is left strongly @-coherent by [28, Theorem
1(11)]. O

Proposition 3.2. Let R be a left strongly € -coherent ring. Then the following statements
are equivalent for a left R-module M:

(1) M is injective.

(2) M is both € -injective and € I-injective.

(3) There exists a € -injective cover f : M — N with N € I-injective.

Proof. (1)=(2). It is trivial.

(2)=-(3). It is clear because M — M is a €-injective cover of M.

(3)=(1). Consider the exact sequence 0 — M - E(M) — E(M)/M — 0. Since
R is a left strongly @-coherent ring, by [28, Theorem 1(7)], E(M)/M is €-injective, so
Exth(E(M)/M,N) = 0. Thus there exists a homomorphism g : F(M) — N such that
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f = gi. Since f is a cover, there exists a homomorphism h : E(M) — M such that g = fh.
Hence f(hi) = f, and so hi is an isomorphism, this follows that i is left split, and therefore
M = E(M) is injective. O

Theorem 3.3. The following statements are equivalent for a ring R:

(1) R is a left strongly € -coherent ring.

(2) R is left €-coherent, and every € -injective € I-injective left R-module is injective.

(3) Each left R-module has a € -injective cover, and every € -injective € I-injective left
R-module is injective.

(4) R is left €-coherent, and for every € I-injective left R-module L, there there exists
a € -injective cover E — L with E injective.

(5) Each left R-module has a €-injective cover, and for every € I-injective left R-
module L, there there exists a € -injective cover E — L with E injective.

(6) Every €-pure quotient of a € -injective left R-module has a € -injective cover, and
for every € I-injective left R-module L, there exists a € -injective cover E — L with
E injective.

(7) BEvery € -pure quotient of a € -injective left R-module has a € -injective cover, and
every 6 -injective € I-injective left R-module is injective.

Proof. (1)=(2). Since R is left strongly %-coherent, by [28, Theorem 1(10)], it is left
% -coherent. Moreover, by Proposition 3.2, every %-injective % I-injective left R-module is
injective.

(2)=-(3). It follows from [27, Corollary 3.7].

(1)=-(4). It is clear that R is left ¥-coherent. Let L be any ¢ I-injective left R-module.
Then by [27, Corollary 3.7], L has a %-injective cover f : F — L, and by Proposition 3.2,
FE is injective.

(4)=-(5). It follows from [27, Corollary 3.7].

(3)=(7), and (5)=(6) are trivial.

(6)=(7). Let M be a F-injective €l-injective left R-module. Then by (6), there exists
a %-injective cover f : E — M with E injective. Note that 1p; : M — M is also a

% -injective cover of M, we have that M = E, and hence M is injective.

(7)=(1). Let 0 = N 5 FE Iy L 5 0 be an exact sequence of left R-modules with N

¢-injective and E injective. Then by Theorem 2.6(4), this exact sequence is €-pure, and
so L has a %-injective cover ¢ : £/ — L. Thus there exists a homomorphism ¢g : £ — E’
such that f = pg. Since f is epic, ¢ is also epic. Now, forming a pullback we obtain the
following commutative diagram with exact rows and columns (see [21, 10.3(1)]).

0 0
K — K
o
0 N P E’ 0
ha
H b ¢
0 N ) 7 L 0
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where P = {(z,y) € EE® FE | p(z) = f(y)}, K = Ker(p), « : K — Pk — (k,0)
, hi(z,y) = z,ho(z,y) = y. Let B : P — E' (z,y) = = —g(y). Then pB(z,y) =
o(x) —pg(y) = ¢(z) — f(y) =0, so B(x,y) € K , and hence f is a homomorphism from
P to K. Note that fa(k) = f(k,0) = k — g(0) = k, we have that fa = 1x. Since N
and E’ are both %-injective, P is also €-injective, and so K is €-injective. Note that K
is ¢I-injective by [9, Corollary 7.2.3], we have that K is injective by conditions, so L is
¢ -injective, and hence R is a left strongly ¢-coherent ring by Theorem 3.1(3). O

Let F be a class of R-modules. According to [5], an F-cover ¢ : F' — M is said to have
the unique mapping property if for any homomorphism f : F/ — M with I’ € &, there is
a unique homomorphism ¢ : F/ — F such that f = ¢g.

Theorem 3.4. The following statements are equivalent for a ring R:

(1) Ewvery left R-module is € -projective.

(2) Ewvery nonzero left R-module has a nonzero € -projective submodule.

(3) R is left strongly €-coherent, and every (€ -injective) left R-module has a € -
projective cover with the unique mapping property.

Proof. (1)=(2) and (1)= (3) are obvious.

(2)=(1). Assume (2). To prove (1), we need only to prove that every %-injective
module E is injective by [28, Theorem 6(3)].

Let I be a left ideal of R , i : I — R be the inclusion map and f : I — E be any
homomorphism. It suffices to show that there is g : R — F that extends f. Let &/ consist
of all pair (I’,¢'), where I CI' C Rand ¢’ : I' — E extends f. Since (I, f) € &, o # ¢.
o/ is a partially set by saying (I',¢') < (I”,¢") if I' C I"” and ¢” extends ¢’. By Zorn’s
Lemma, there is a maximal element (ly, go) in <. If Iy # R, then R/Iy # 0. By (2), there
is a nonzero %-projective submodule K/Iy of R/Iy. Note that Exth(K/Iy, E) = 0, we
have that gy can be extended to K, this contradicts to the maximality of (1o, go). Thus,
Ip = R and F is injective, as required.

(3)=-(1). Assume (3). To prove (1), we need only to prove that every €-injective module
E is €-projective by [28, Theorem 6(4)]. By (3), E has a €-projective cover ¢ : P — E
with the unique mapping property. Let K = Ker(¢), i : K — P be the inclusion map and
o : P — K be a €-projective cover of K. Then ¢ip = 0 = ¢0, and so i = 0 by the
unique mapping property. Since every %-projective cover is epic, ¢ and ¢ are epic, so ¢
is an isomorphism, and thus F is €-projective. This completes the proof. ]

According to [28], the @-injective dimension of a module g M is defined by
€I-dim(rM) = inf{n : Ext's(C, M) = 0 for every C' € €};
the %-injective global dimension of a ring R is defined by
¢ J-GLD(R)=sup{¢J-dim(M): M is a left R-module};
the #-flat dimension of a module Mp is defined by
CF-dim(Mg) = inf{n : Torf, (M, C) = 0 for every C € €};
the ¥-weak global dimension of a ring R is defined by
¢-WD(R)=sup{€F-dim(M): M is a right R-module}.
Theorem 3.5. Let R be a left strongly € -coherent ring, M a left R-module and n a
nonnegative integer. Then the following statements are equivalent:
(1) €I-dim(rpM) < n.
(2) Ext?;k(P, M) =0 for all €-projective module P and all positive integers k.
(3) Ext}?’l(P, M) =0 for all €-projective module P.
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Proof. (1)=(2). Assume (1). Then since R is left strongly %-coherent, by [28, The-

orem 2|, there exists an exact sequence of left R-modules 0 — M 5 Ey d

D d"—7>1 E, — 0 such that Ey,---,E,_1, E, are %-injective. Thus, by [28, The-

orem 1(12)], we have Ext;t (P, M) = Ext}(P,im(dy)) = Extly '(Pim(dy)) =
Exth(P,im(d,_1)) = Exth(P, E,) = 0 for any €-projective module P, and Ext}éfk(P, M) =
Ext}h(P,0) = 0 for any k& > 1. So (2) follows.

(2)= (3) =(1). It is trivial. O
Corollary 3.6. Let R be a left strongly € -coherent ring and 0 - A - B — C — 0 an
exact sequence of left R-modules. If two of €I-dim(A),€I-dim(B),€I-dim(C) are finite,
then so is the third. Moreover:

(1) €I-dim(B)< sup{ €I-dim(A), €I-dim(C)}.
(2) €I-dim(A)< sup{ €I-dim(B), €I-dim(C) + 1}.
(3) €I-dim(C)< sup{ €I-dim(B), €I-dim(A) — 1}.

In particular, €3-dim(A & C)= sup{ €I-dim(A), €I-dim(C)}.

~

Let n be a positive integer. then according to [4], a left R-module M is said to be
n-presented in case there is an exact sequence of left R-modules F,, — F,_1 — -+ —
Fy — Fy - M — 0 in which every F; is finitely generated free. It is easy to see that
a left R-module M is n-presented if and only if there exists an exact sequence of left
R-modules 0 -+ K,, —+ F,,_1 — -+ — Fy —» Fy = M — 0 such that Fy,---,F,_1 are
finitely generated free and K, is finitely generated.

Lemma 3.7. Let R be a left strongly € -coherent ring. Then every C' € € is n-presented
for any positive integer n.

Proof. Use induction on n. If n = 1, then it is clear that the result holds. Assume that
every C € ¥ is n-presented. Then for any C' € ¥ and any FP-injective module N, we
have Ext’s(C, N) = 0 by [28, Theorem 1(5)] because R is left strongly %-coherent. Let
00— K, > F,1—-—F — Fy— C — 0 be an exact sequence of left R-modules
with Fp,-- -, Fj,—1 finitely generated free left R—modules and K, finitely generated. Then
Exth(K,, N) = Ext%™(C,N) = 0, so K, is finitely presented by [7], and hence C' is
(n + 1)-presented. O
Theorem 3.8. Let R be a left strongly % -coherent ring and M a left R-module. Then
CI-dim(M)=¢F-dim(M™).

Proof. Let n be a positive integer, C € ¥. Since R is left strongly %-coherent, by
Lemma 3.7, C is (n + 2)-presented. So, by [2, Lemma 2.7(2)], we have TorZ, | (M*,C) =
Ext;"1(C, M)*. Consequently, €J-dim(M) =€F-dim(M*) by 28, Theorem 2, Theorem
3. O
Theorem 3.9. Let R be left strongly € -coherent and rR be € -injective. If rRM is € -
projective with finite projective dimension, then rM is projective.

Proof. Suppose that gpM is €-projective with pd(M) = n < oo. Then by [28, Theorem
5], there exists an exact sequence of left R-modules

dp—
0P Bp 5 P8P8 Mo
such that Py,---, P,_1, P, are projective. Since pR is %-injective and direct sums and

direct summands of €-injective modules are €-injective by [28, Proposition 2.5|, each P;
is ¢-injective for i = 0,1,--- ,n. Clearly, im(d,) = P, is €-injective. Note that R is
left strongly %-coherent , by [28, Theorem 1(7)], im(d,—1) is €-injective. Continues in
this way, one can get that im(d;) is €-injective, so ExtL(M,im(d;)) = 0, and thus the
exact sequence 0 — im(dy) — Py — M — 0 is split, this follows that M is projective, as
required. ]
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Recall that, by [28, Example 1], a left %-coherent ring need not be left strongly %-
coherent. As the end of this section, we give another example which shows that even if R
is a left artinian ring, it need not be left strongly %-coherent.

Example 3.10. Let K be a field and L be a proper subfield of K such that p: K — L
is an isomorphism. Let K|[x;p] be the ring of twisted right polynomials over K where
kx = xzp(k) for all k € K. Set R = K[x;p]/(2?), and ¢ = {R/Ra : a € R}. If by, by is
a basis for K as a vector space over L, then R is left artinian and hence left %-coherent,
but it is not left strongly %-coherent.

Proof. Since K has finite vector space dimension over L, by [18, Example 1], R is left
artinian . Since the only proper right ideal of R is rg(x) = R = K, it is readily verified
that rrlr(a) = aR for any a € R, so rR is P-injective by [16, Lemma 1.1]. Now, we define
f : Rxby + Rxbs — R by f(rixby + roxbe) = rix + rox, then it is easy to see that f is
a left R-homomorphism. We claim that this homomorphism can not be extended to an
endomorphism of R. Otherwise, there exists a ¢ = ko + xk{, € R such that f = -c. Clearly,
ko # 0. Thus, f(zby —xbe) = (xb1 — xbe) (ko + zk(), and so 0 = z —xz = (xb; — xbs)ky, this
follows that by = ba, a contradiction. Observing that 1z(z) = K = xR = Rxb; + Rxba,
we have Exth(Rz, R) = Exth(R/(Rxby + Raby), R) # 0, and hence R is not left strongly
% -coherent. O

4. ¢-semihereditary rings
We begin with the following definition.

Definition 4.1. A ring R is called weakly %-semihereditary, if whenever 0 - K — P —
C — 0 is exact , where C € ¥ , P is finitely generated projective , then K is flat.

Recall that a ring R is called left weakly n-semihereditary [25] if every n-generated left
ideal is flat; a ring R is called a left p.f ring [11] if every principal left ideal of R is flat.
By [11, Theorem 2.2], a ring R is left p.f if and only if it is right p.f; a ring R is called a
left F'S-ring [12,22] if Soc(rR) is flat.

Example 4.2. (1). Let € = {R/I : I is an n-generated left ideal of R}. Then the ring R
is weakly %-semihereditary if and only if R is left weakly n-semihereditary.

(2). Let € = {R/Ra : a € R}. Then the ring R is weakly @-semihereditary if and only
if R is left p.f.

(3). Let ¥ = {R/Ra : Ra is a minimal left ideal of R}. Then the ring R is weakly
% -semihereditary if and only if every minimal left ideal of R is flat, if and only if R is a
left FS-ring .

Theorem 4.3. The following statements are equivalent for a ring R:
(1) R is a left weakly € -semihereditary ring.
(2) Ewvery submodule of a €-flat right R-module is € -flat.

(3) Ewvery submodule of a flat right R-module is € -flat.

(4) Every submodule of a projective right R-module is € -flat.

(5) Ewvery submodule of a free right R-module is € -flat.

(6) Ewvery finitely generated right ideal of R is € -flat.

Proof. (2)=(3)= (4)= (5)= (6) is trivial.

(1)=(2). Assume (1). Let A be a submodule of a %-flat right R-module B and let
C € ¥. Then there exists an exact sequence of left R-modules 0 - K — P — C —
0, where P is finitely generated projective. By (1), K is flat. Then the exactness of
0 = Tor®(B/A, P) — Tor¥(B/A,C) — Torf(B/A, K) = 0 implies that Tor¥(B/A, C) =
0. And thus from the exactness of the sequence 0 = Torf(B/A,C) — Torf(A,C) —
Torf'(B,C) = 0 we have Torf(A,C) = 0. Tt shows that A is €-flat.
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(6)=(1). Let C € ¥. There exists an exact sequence of left R-modules 0 — K —
P — C — 0, where P is finitely generated projective. For any finitely generated right
ideal I of R, we have an exact sequence 0 — TorkX(R/I,C) — Torf(I,C) = 0 since T is
¢-flat. So Tor¥(R/I,C) = 0, and hence we obtain an exact sequence 0 = Tor¥(R/I,C) —
Torf(R/I, K) — 0. Thus, Torf(R/I,K) = 0. And so K is flat. O

Proposition 4.4. If R is a left weakly € -semihereditary ring, then €-WD(R)< 1.

Proof. Let M be any right R-module and let C' € 4. Then there exists an exact sequence
of left R-modules 0 - K — P — C' — 0, where P is finitely generated projective. Since
R is left weakly €-semihereditary, K is flat. So TorZ(M, C) = Torf(M, K) = 0. Tt shows
that ¥-WD(R)< 1. O

Lemma 4.5. Let F be a class of some right R-modules. If N A N1 and N fi Na are
F-preenvelopes , then N1 @& Na/fo(N) = No @ N1/ f1(N).

Proof. Let ¢; : N; — N ® No be the injections, ¢ = 1,2. We obtain a morphism
¢ =eifi+eafa: N - Ny @ No. Let g1 : Ny — Coker(q*);ni — (n1,0) + im(q*)
, €2 : No — Coker(q*);na — (0,n2) + im(q*) and @ = Coker(¢*). Then we get the
following pushout diagram:

N " N,

il =

N — Q
And so, by the proof of [21, 10.6(1)(i)], we have the following commutative diagram with
exact rows, where g : Q@ — Na/fa(N); (n1,n2) + im(q*) — ng + fo(N):

N L N, No/fo(N) — 0

T

Ny —— Q@ —%— Ny/fs(N) —— 0

Since N E Ny is an F-preenvelope and N7 € F, there exists a homomorphism a : No — N}
such that f; = afs. If €1(n1) = 0, then (n1,0) = ¢*(n) = (fi(n), f2(n)) for some n € N,
so fa(n) =0, fi(n) = nq, and hence ny = f1(n) = afo(n) = 0. It shows that 7 is monic.
Now, we define h : Q — Ny by (n1,n2) + im(q¢*) — n1 — a(ng). Then h is well-defined,
and he1(n1) = h((n1,0) +im(q*)) = n1 — a(0) = ny for each n; € Ny, so hey = 1y,, and
then 27 is left split. Thus, we have @ = Ny @ N3/ f2(N). Similarly, we have also that
Q=N @Nl/fl(N) and so Ny EBNQ/fQ(N) = Ny @ Nl/fl(N) ]

Next, we give some new characterizations of left ¥-semihereditary rings.

Theorem 4.6. The following statements are equivalent for a ring R:

(1) R is left €-semihereditary.

(2) R is left €-coherent and left weakly € -semihereditary.

(3) R is left strongly €-coherent and every € -projective left R-module has a monic
@ -injective cover.

(4) Every € -projective left R-module has projective dimension at most 1.

(5) R is left €-coherent and every € I-injective module is injective.

(6) Every left R-module has a € -injective cover and every € I-injective module is injec-
tive.

(7) Every €-pure quotient of a € -injective left R-module has a € -injective cover and
every € I-injective module is injective.

(8) R is left strongly € -coherent and every € I-injective module is € -injective.
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(9) R is left strongly € -coherent and the kernel of any € -injective precover of a left
R-module is € -injective.

(10) R is left strongly €-coherent and the kernel of any € -injective cover of a left
R-module is € -injective.

(11) R is left strongly € -coherent and the cokernel of any € -injective preenvelope of a
left R-module is € -injective.

(12) R is left strongly € -coherent and the kernel of any €-flat precover of a right R-
module is € -flat.

(13) R is left strongly € -coherent and the kernel of any € -flat cover of a right R-module
s € -flat.

(14) R is left strongly € -coherent and the cokernel of any €-flat preenvelope of a right
R-module is € -flat.

Proof. (1)< (2). It follows from [27, Theorem 4.3(2)] and Theorem 4.3(2).

(1)=(3). Suppose that R is left @-semihereditary. Then it is left strongly %-coherent
by [28, Theorem 4]. Moreover, by [27, Theorem 4.3(7)], every €-projective left R-module
has a monic %-injective cover.

(3)=(1). Let E be any injective left R-module and K any submodule of E. By [27,
Theorem 4.3(6)], we need only to prove that E/K is €-injective. In fact, since (€, €J)
is a complete cotorsion pair by [27, Theorem 2.10(1)], there exists an exact sequences

0> K— E o p 0 with P ¢-projective and E; %-injective. By (3), P has a monic
€ -injective cover ¢ : Fy — P. So, there exists a homomorphism ¢ : £; — Fs such that
f = wg. Thus ¢ is epic, and hence ¢ is an isomorphism. This implies that P is ¥-injective.
For any C' € ¥, we have the exact sequence

0 = Exth(C, P) — Ext%(C, K) — Ext%(C, Ey).

But R is left strongly -coherent, by [28, Theorem 1(6)], Ext%(C,F;) = 0, and so
Ext%(C, K) = 0. On the other hand, the short exact sequence 0 -+ K — E — E/K — 0
induces the exact sequence

0 = Exth(C, E) — ExtL(C, E/K) — Ext%(C,K) = 0.

so, we have Exth(C, E/K) = 0, and hence E/K is €-injective. Consequently, R is left
¢ -semihereditary by [27, Theorem 4.3(6)].

(1)=(4). Let M be a €-projective module and N be any left R-module. Since R is left
¢-semihereditary, by [27, Theorem 4.3(6)], E(N)/N is €-injective. So, by the exactness
of the sequence

0 = Exth(M, E(N)/N) — Ext%(M,N) — Ext%(M, E(N)) = 0.

We have Ext% (M, N) = 0, and hence M has projective dimension at most 1.

(4)=(1). Let C € ¥ and 0 - K — P — C — 0 be exact, where P is finitely generated
projective. Note that C' is ¢-projective, by (4), pd(C) < 1, and so K is projective by
Schanuel’s Lemma.

(1)=-(5). Since R is left ¥-semihereditary, by [27, Theorem 4.3], R is left % -coherent
and every quotient module of an injective left R-module is %-injective . Let M be a
¢l-injective left R-module. Then E(M)/M is €-injective, so M is injective with respect
to the exact sequence 0 - M — E(M) — E(M)/M — 0 by Proposition 2.3, and hence
M = E(M) is injective.

(5)=(6). It follows from [27, Corollary 3.7].

(6) = (1). Let M be a quotient of an injective left R-module. By (6), M has a ¢-
injective cover. Suppose f : F' — M is a @-injective cover of M. Then f is epic. By
Remark 2.4, Ker(f) is €I-injective, and so it is injective by (6). Thus, M is isomorphic
to a direct summand of F' and hence it is @-injective. Hence, by [27, Theorem 4.3(6)], R
is left €-semihereditary.
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(6) = (7). It is obvious.

(7)=(8). It follows from Theorem 3.3(7).

(8) = (5). Assume (8). Then by [28, Theorem 1(10)], R is left ¢’-coherent. Let M be a
¢l-injective module. Then by (8), M is ¢-injective. But R is left strongly %-coherent, by
[28, Theorem 1(7)], E(M)/M is €-injective. Thus, by Proposition 2.3(4), M is injective .

(1) = (9). Clearly, R is left strongly %-coherent . Let f : FF — M be a %-injective
precover and K = Ker(f) . Since R is left ¢-semihereditary, by [27, Theorem 4.3(7)],
there exists a monic %-injective cover ¢ : G — M. Thus, by [9, Lemma 8.6.3], we have
K®G=F, and so K is %-injective.

(9)=-(10). It is obvious.

(10) = (1). Let M be a quotient of a €-injective left R-module. Since R is left €-
coherent, by [27, Corollary 3.7], M has a €-injective cover f : F' — M. Clearly, f is epic.
So, by (10), we have that Ker(f) is €-injective , this implies that M is also @-injective by
[28, Theorem 1(7)] as R is left strongly @-coherent. Therefore, by [27, Theorem 4.3(5)],
R is left €-semihereditary.

(1) = (11). Clearly, R is left strongly @-coherent. And by [27, Theorem 4.3(5)], every
quotient module of a €-injective module is €-injective, so the cokernel of any %-injective
preenvelope of a left R-module is €-injective.

(11) = (1). Let M be any left R-module. Since the class of all ¢-injective left R-modules
is closed under pure submodules , isomorphisms and direct product, by [29, Theorem 2.6],
M has a €-injective preenvelope f : M — E. By (11), E/im(f) is €-injective . It is
easy to see that f is monic. Since R is left strongly #-coherent, by [28, Theorem 2(5)],
€I-dim(rM) < 1. And so , €J-GLD(R)< 1. Therefore, by [28, Theorem 4(2)], R is left
¢ -semihereditary.

(1) = (12). Clearly, R is left strongly @-coherent. And by [27, Theorem 4.3(2)], the
kernel of any %-flat precover of a right R-module is %-flat.

(12)=-(13). It is obvious.

(13) = (1). Let N be any right R-module. Then by [27, Theorem 2.10(2)], N has a -
flat cover f: F'— N. Clearly, f is epic. By (13), we have that Ker(f) is ¥-flat. But R is
left strongly %-coherent, by [28, Theorem 3(5)], €F-dim(Ng) < 1. Thus, ¥-WD(R)< 1
Consequently, by [28, Theorem 4(3)], we have that R is left ¢-semihereditary.

(1) = (14). Clearly, R is left strongly %-coherent. Let ¢ : N — F be a ¢-flat preen-
velope of a right R-module N and L = coker(yp). Since R is left ¢-semihereditary, by
[27, Theorem 4.3(8)], N has an epic ¥-flat envelope ¢ : N — G. Hence, by Lemma 4.5,
we have F =2 G & L, and so L is €-flat.

(14) = (1). Let N be a submodule of a ¥-flat module. Since R is left €-coherent, by
[27, Theorem 3.3(12)], N has a ¢-flat preenvelope f: N — F. It is easy to see that f is
monic. By (14), F/im(f) is €-flat. Note that R is left strongly €-coherent, by Theorem
3.1(4), N is ¥-flat. Therefore, by [27, Theorem 4.3(2)|, R is left ¢-semihereditary. O
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