
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 49 (2) (2020), 854 – 868

DOI : 10.15672/hujms.624015

Research Article

Rings of frame maps from P(R) to frames which
vanish at infinity

Ali Akbar Estaji∗, Ahmad Mahmoudi Darghadam
Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Abstract
Let FP(L) be the set of all frame maps from P(R) to L, which is an f -ring. In this paper,
we introduce the subrings FP∞(L) of all frame maps from P(R) to L which vanish at
infinity and FPK

(L) of all frame maps from P(R) to L with compact support. We prove
FP∞(L) is a subring of FP(L) that may not be an ideal of FP(L) in general and we obtain
necessary and sufficient conditions for FP∞(L) to be an ideal of FP(L). Also, we show
that FPK

(L) is an ideal of FP(L) and it is a regular ring. For f ∈ FP(L), we obtain a
sufficient condition for f to be an element of FP∞(L) (FPK

(L)). Next, we give necessary
and sufficient conditions for a frame to be compact. We introduce FP-pseudocompact and
next we establish equivalent condition for an FP-pseudocompact frame to be a compact
frame. Finally, we study when for some frame L with FP∞(L) 6= (0), there is a locally
compact frame M such that FP∞(L) ∼= FP∞(M) and FPK

(L) ∼= FPK
(M).
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1. Introduction
Let C(X) denote the ring of all real-valued continuous functions on a topological space

X; and C∞(X) is the subring of all functions C(X) which vanish at infinity. Aliabad
et al. in [1] have shown that for every completely regular Hausdorff space X, whenever
C∞(X) 6= (0), then there exists a locally compact space Y such that C∞(X) ∼= C∞(Y ).

Let L be a completely regular frame and RL be the ring of real-valued continuous
functions on L and R∗L be the ring of bounded real-valued continuous functions on L (see
[2, 4]). R∞L, the family of all functions f ∈ RL for which ↑f(−1

n
,

1
n

) is compact for each
n ∈ N and RKL, the family of all functions f ∈ RL for which ↑ coz(f)∗ is compact, were
introduced by Dube in [5]. Estaji and Mahmoudi Darghadam in [8] studied when for a
frame L with R∞L 6= (0), there is a locally compact frame M such that R∞L ∼= R∞M
and RKL ∼= RKM (also, see [9]).

The f -ring FP(L) := Frm(P(R), L) was introduced by Karimi Feizabadi et al. in [11].
Estaji et al. in [7] showed that for every frame L, there is a zero-dimensional frame M such
that FP(L) ∼= FP(M). Hence, for study FP(L), we assume that L is a zero-dimensional
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frame. Let C(X,Rd) denote the set of continuous functions from a space X into the
discrete space of real-numbers Rd. It is known that C(X,Rd) ≤ C(X). If X is discrete,
then

C(X,Rd) = C(X) = RX ∼= FP(P(X)).
In this manner, FP(L) is the generalization of the f -ring C(X,Rd).

In [3] an element α ∈ RL is called locally constant if there exists a partition P of L,
meaning P is a cover of L and its elements are pairwise disjoint, such that α|a is constant
for each a ∈ P , where α|a : L(R) → ↓a given by α|a(v) = α(v) ∧ a for every v ∈ L(R).
The set of all locally constant elements of RL is denoted by SL. In [3], Banaschewski
showed that FPL ∼= SL as f -ring.

In this paper, we introduce the subring FP∞(L) of all frame maps from P(R) to L for
which vanish at infinity and FPK

(L) of all frame maps from P(R) to L with compact
support (see Definition 3.1 and Definition 3.2). We show that FP∞(L) is a subring of
FP(L) and is an ideal of F∗P(L) (see Proposition 3.6 and Proposition 3.8). We prove
that FP∞(L) may not be regular and an ideal of FP(L) in general (see Example 7.7).
Also, we give necessary and sufficient conditions for FP∞(L) to be an ideal of FP(L) (see
Proposition 4.14). We prove that FPK

(L) is an ideal of both FP(L) and F∗P(L) and also
it is a regular ring (see Lemma 3.5). We introduce an FP-pseudocompact frame and next
we establish equivalent condition for an FP-pseudocompact frame to be a compact frame
(see Definition 4.1 and Lemma 4.7). For every frame L with FP∞(L) 6= (0), there is a
locally compact frame M such that FP∞(L) and FPK

(L) are isomorphic with an f -subring
of FP∞(M) and an f -subring FPK

(M) respectively, see Lemma 7.3, and if c :=
∨

{a ∈ L :
↑a∗ is a compact frame} is complemented then ↓c is a locally compact frame such that
FP∞(L) ∼= FP∞(↓c) and FPK

(L) ∼= FPK
(↓c) (see Propositions 5.6, 7.5 and 7.8).

2. Preliminaries
In this section, we represent several concepts and definitions that are necessary in this

paper. Throughout this paper L denotes a zero-dimensional frame, that is, L generated
by their complemented elements. An element a of L is called compact if, for any subset
S of L, a =

∨
S implies a =

∨
T for some finite T ⊆ S. A frame L is called compact

whenever its the top element > of L is compact. For every a, b ∈ L, we recall from [5]
that if ↑a and ↑b are compact frames then ↑(a ∧ b) is a compact frame and also, if ↑a is a
compact frame and a ≤ b, then ↑b is a compact frame. For general background regarding
frames we refer to [12].

For each set X, we can form the set P(X) of all subsets of X (called the power set of
X). Also, (P(X), ⊆) is a complete Boolean algebra. Let FP(L) be the set of all frame
maps from P(R) to L. Details regarding FP(L) can be found in [7, 10, 11]. In [11] the
authors showed that, the set FPL by operation � : R × R → R is a sub-f -ring of RL in
which for all f, g ∈ FPL, f � g : P (R) → L by

(f � g)(X) =
∨

{f(Y ) ∧ g(Z) : Y � Z ⊂ X} =
∨

{f({y}) ∧ g({z}) : y � y ∈ X},

where � ∈ {+, −, ∧, ∨} and Y � Z := {y � z : y ∈ Y, z ∈ Z}. Also, for every r ∈ R, the
corresponding constant function r : P (R) → L such that r(X) = > if r ∈ X and r(X) = ⊥
otherwise. According to [11], for every f ∈ FPL, f({0}) (f(R \ {0})) is denoted by z(f)
(coz(f)) and is called a zero-element (cozero-element). We put Z(A) := {z(f) : f ∈ A}
and coz(A) := {coz(f) : f ∈ A}, for every A ⊆ FP(L). Also, for every f ∈ FPL, z(f) = ⊥
if and only if f is a unit element of FPL (see [10]). The bounded part, in the f -ring sense,
of FPL is denoted by F∗P(L) and is characterized by:

f ∈ F∗P(L) ⇔ f(p, q) = 1 for some p, q ∈ R,

where (p, q) = {r ∈ R : a < r < b}.
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We recall from [7] that for any set S, an S-trail on L is a function t : S −→ L such that∨
x∈R t(x) = > and t(x) ∧ t(y) = ⊥ for any x, y ∈ S with x 6= y and an R-trail is called

real-trail. Also, for any S-trail t on a frame L,
φt : P (S) −→ L

X 7−→
∨

x∈X t(x)
is a frame map. Throughout this paper, this notation will be used. Also, if f ∈ FPL, then
tf : R −→ L by tf (r) = f({r}) is a real-trail on a frame L. The correspondences between
real-trails on a frame L and the f -ring FPL are powerful tools in the study of FPL. If a
is a complemented element of L, then ta : R −→ L by

ta(x) =


a if x = 1
a′ if x = 0
⊥ if x 6∈ {0, 1}

is a real-trail on L, coz(φta) = a, φ2
ta

= φta and

fφta(X) =
{

a ∧ f(X) if 0 6∈ X

a′ ∨ f(X) if 0 ∈ X

for every f ∈ FPL and every X ⊆ R, throughout this notation will be used (see [10]). It
is clear that for S-trail t : S → L on L, φt is a monomorphism frame map if and only if
t(s) 6= ⊥ for any s ∈ S. Let B(L) denote the sublattice of complemented elements of a
frame L. Hence,

z(FPL) = B(L) = coz(FPL)
and also, for every x ∈ L, there exists a subset A of B(L) such that x =

∨
a∈A coz(φta).

3. The f-subrings FP∞(L) and FPK
(L) of FP(L)

In this section, we introduce FP∞(L) and FPK
(L) and prove that FP∞(L) is the f -

subrings of FP(L) that may not be both regular ring and an ideal of FP(L) in general but
is an ideal of F∗P(L). We prove that FPK

(L) is an ideal of both FP(L) and F∗P(L) and is
a regular f -subring of FP(L). Also, we establish several equivalent conditions for the set
FP∞(L) to be an ideal of FP(L).

We begin with the following basic definitions.

Definition 3.1. We say f ∈ FP(L) vanishes at infinity if ↑f(− 1
n , 1

n) is a compact frame
for any n ∈ N. We denote the family of all f ∈ FP(L) vanishing at infinity with FP∞(L).

Definition 3.2. We say f ∈ FP(L) has compact support if ↑z(f) is a compact frame, or
equivalently, coz(f) is a compact element of L. We denote the family of all f ∈ FP(L)
with compact support by FPK

(L).

It is obvious that FPK
(L) ⊆ FP∞(L).

Example 3.3. We recall a frame M is called connected, if B(M) = {⊥, >}. Let M be
a connected frame. Consider 0 6= f ∈ FP(M). Then coz(f) = > and z(f) = ⊥, which
implies that there exists an 0 6= r ∈ R such that f({r}) 6= ⊥ and so we clearly see that
f = r. Therefore, FP(M) = {r : r ∈ R} ∼= R ∼= FP(2). Since for every 0 6= r ∈ R, there
is an element n in N such that |r| > 1

n , we conclude that r ∈ FP∞(M) if and only if M
is a compact frame if and only if r ∈ FPK

(M). Hence for every connected frame M , the
following statements are equivalent.

(1) M is a compact frame
(2) FP∞(M) = FP(M).
(3) FPK

(M) = FP(M).
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Estaji et al. in [7] showed that FP(L) is a regular ring. In the following we prove that
FPK

(L) is a regular ring, too.

Lemma 3.4. For every f ∈ FPK
(L), {x ∈ R : f({x}) 6= ⊥} is a finite subset of R and

f ∈ F∗P(L).

Proof. Consider f ∈ FPK
(L). Since

∨
x∈R f({0, x}) = >, there are x1, x2, ..., xn ∈ R

such that f({0, x1, . . . , xn}) = >, and so f(R \ {0, x1, . . . , xn}) = ⊥, which implies that
{x ∈ R : f({x}) 6= ⊥} is a finite subset of R and f ∈ F∗P(L). �
Proposition 3.5. The following statements hold.

(1) The set FPK
(L) is an ideal of FP(L).

(2) The set FPK
(L) is an ideal of F∗P(L).

(3) The set FPK
(L) is a regular ring.

Proof. (1). Let f, g ∈ FPK
(L) and h ∈ FP(L). Since ↑(z(f) ∧ z(g)) is a compact frame

and z(f +g) ≥ z(f)∧z(g), we conclude that ↑(z(f +g)) is a compact frame, which implies
that f +g ∈ FPK

(L). Also, from ↑z(f) is a compact frame and z(fh) = z(f)∨z(h) ≥ z(f),
we infer that ↑z(fh) is a compact frame, which implies that fh ∈ FPK

(L).
(2). Since, by Lemma 3.4, FPK

(L) ⊆ F∗P(L), the proof is similar to the first statement.
(3). Consider f ∈ FPK

(L). We define the real-trail t : R → L on the frame L by

t(x) =
{

f({ 1
x}) if x 6= 0

f({0}) if x = 0.

Then

fφt({x}) =


z(f) if x = 0
coz(f) if x = 1
⊥ if x ∈ R \ {0, 1},

which implies that f2φt = f. Since ↑z(φt) = ↑z(f) is a compact frame, we conclude that
φt ∈ FPK

(L), which implies that FPK
(L) is a regular ring. �

Proposition 3.6. The set FP∞(L) is a subring of FP(L).

Proof. Consider f, g ∈ FP∞(L) and n ∈ N. Since

(f + g)
(
(− 1

n
,

1
n

)
)

≥ f(− 1
2n

,
1

2n
) ∧ g(− 1

2n
,

1
2n

)

and ↑
(
f(− 1

2n , 1
2n) ∧ g(− 1

2n , 1
2n)

)
is a compact frame, we conclude that ↑ (f + g)(− 1

n , 1
n) is

a compact frame, which implies that f + g ∈ FP∞(L).
Consider m ∈ N with m > [

√
n]. From ↑

(
f(− 1

m , 1
m) ∧ g(− 1

m , 1
m)

)
is a compact frame

and
(fg)

(
(− 1

n
,

1
n

)
)

≥ f(− 1
m

,
1
m

) ∧ g(− 1
m

,
1
m

),

we infer that ↑ (fg)(− 1
n , 1

n) is a compact frame, which implies that fg ∈ FP∞(L). �
Lemma 3.7. For every f ∈ FP∞(L), the following statements hold.

(1) The set {x ∈ R \ (− 1
n , 1

n) : f({x}) 6= ⊥} is finite for every n ∈ N.
(2) f ∈ F∗P(L).
(3) The set {x ∈ R : f({x}) 6= ⊥} is an at most countable set.

Proof. (1). Consider n ∈ N. Since
∨

x∈R\(− 1
n

, 1
n

) f((− 1
n , 1

n) ∪ {x}) = >, there are
x1, x2, ..., xm ∈ R \ (− 1

n , 1
n) such that f((− 1

n , 1
n) ∪ {x1, . . . xm}) = >, which implies that

f(R \ ({x1, x2, ..., xm} ∪ (− 1
n , 1

n))) = ⊥. Hence {x ∈ R \ (− 1
n , 1

n) : f({x}) 6= ⊥} is a finite
subset of R.

(2) and (3), by the first statement, are obvious. �



858 A.A. Estaji and A. Mahmoudi Darghadam

If L is not compact, then 1 6∈ FP∞(L), because 1(− 1
n , 1

n) = ⊥ and ↑⊥ is not compact.

Proposition 3.8. The set FP∞(L) is an ideal of F∗P(L).

Proof. By Proposition 3.6 and Lemma 3.7, FP∞(L) is a subring of F∗P(L). Now we assume
f ∈ F∗P(L) and g ∈ FP∞(L). Then f(−m, m) = > for some m ∈ N. Hence ↑fg(− 1

n , 1
n) is

a compact frame, because

fg(− 1
n

,
1
n

) ≥ f(−m, m) ∧ g(− 1
mn

,
1

mn
) = g(− 1

mn
,

1
mn

),

which follows that fg ∈ FP∞(L). �

The following example shows that FP∞(L) may not be an ideal of FP(L) in general and
also FP∞(L) my not be a regular ring in general.

Example 3.9. Consider L = P(N). We define the real-trail t : R → L on the frame L by

t(x) =
{

{ 1
x} if 1

x ∈ N
⊥ otherwise.

Then z(φt) = ⊥ and so φt is a unit element of FP(L). Since 1 6∈ FP∞(L) and φt ∈ FP∞(L),
we conclude that FP∞(L) is not an ideal of FP(L). Also, if there is an element f in FP∞(L)
such that φ2

t f = φt then φtf = 1 ∈ FP∞(L), which is contradiction. Therefore, FP∞(L) is
not a regular ring.

Definition 3.10. Let I be any ideal in FP(L). If
∨

f∈I coz(f) is the non-top element of
L, we call I a fixed ideal; if

∨
f∈I coz(f) = >, then I is a free ideal.

Lemma 3.11. If c is a compact element of L, then c ∈ coz(I) for every free ideal I of
FP(L) and every c ∈ B(L).

Proof. From c is a compact element of L and there exists a subset A of B(L) such
that c =

∨
a∈A coz(φta), we conclude that there a finite subset B of A such that c =

coz(Σa∈Bφ2
ta

) ∈ B(L). Let I be a free ideal of FP(L) and c = coz(f) for some f ∈ FP(L).

c = c ∧ > = coz(f) ∧
∨
g∈I

coz(g) =
∨
g∈I

coz(fg),

and so, there are g1, g2, . . . gn ∈ I such that c = coz(Σn
i=1(fgi)2) ∈ coz(I). �

Corollary 3.12. The set of all compact elements of L is a subset of∩{
coz(I) : I is a free ideal of FP(L)

}
.

Proof. By Lemma 3.11, it is clear. �

Definition 3.13. An element a of a frame M is called σ-compact if there exists a family
{an : n ∈ N} of compact elements of M such that a =

∨
n∈N an. A frame M is called

σ-compact whenever its the top element > of M is σ-compact.

By Lemma 3.11, if a ∈ L is a σ-compact element of L, then there exists an ascending
sequence {an}n∈N of B(L) such that a =

∨
n∈N an and ↑a′n is compact, for every n ∈ N.

Proposition 3.14. The following statements hold.
(1) Every element of coz(FP∞(L)) is a σ-compact element of L.
(2) If B(L) is a sub-σ-frame of L and a ∈ L is a σ-compact element of L then a ∈

coz(FP∞(L)).
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Proof. (1). Consider f ∈ FP∞(L) and a = coz(f). We put

an := f((−∞, − 1
n

] ∪ [ 1
n

, +∞)),

for every n ∈ N. Then ↑a′n = ↑f(− 1
n , 1

n) is a compact frame and a =
∨

n∈N an, which
implies that a is a σ-compact element of L.

(2). Let {an}n∈N be an ascending sequence of B(L) such that a =
∨

n∈N an and ↑a′n is
compact for every n ∈ N. We put b1 := a1 and bn := an ∧ a′n−1 for every 2 ≤ n ∈ N. Then
for every n ∈ N,

∨n
i=1 bi = an, which implies that a =

∨∞
i=1 bi and also bi ∧ bj = ⊥ for

every i 6= j. We define the real-trail t : R → L on the frame L by

t(x) =


bn if there exists an element n of N such that 1

x = n

a′ if x = 0
⊥ otherwise.

Since

↑φt(−
1
n

, − 1
n

) =↑ (a′ ∨
∞∨

i=n+1
bi) = ↑a′n

is a compact frame, we conclude that φt ∈ FP∞(L) and coz(φt) = a. �

4. Compact and FP-pseudocompact frames
In this section, we introduce FP-pseudocompact frame and give several equivalent con-

ditions for it.
For any element a of a frame M , we have the frame map M → ↓a taking x to x∧a, and

the associated θ : FP(M) → FP(↓a) will be denoted f 7→ f |a, where f |a(A) = f(A) ∧ a for
every A ⊆ R. Evidently, this is the counterpart of restricting functions of RX on a subset
of X. Throughout this paper, this notation will be used.

We begin with the following basic definition.

Definition 4.1. An element a of a frame M is called FP-pseudocompact if f |a is bounded,
for every f ∈ FP(M). If > is FP-pseudocompact we say L is an FP-pseudocompact frame,
in fact FP(M) = F∗P(M).

Proposition 4.2. L is a compact frame if and only if FP∞(L) = FP(L).

Proof. Necessity. Consider f ∈ FP(L) and n ∈ N. From ↑⊥ = L is compact and
⊥ ≤ f(− 1

n , 1
n), we infer that ↑f(− 1

n , 1
n) is a compact frame, which implies that f ∈ FP∞(L).

Also, we have, by Lemma 3.7, FP∞(L) ⊆ F∗P(L) = FP(L) and this completes the proof.
Sufficiency. It is clear that L = ↑⊥ = ↑1(−1, 1) is compact, since 1 ∈ FP∞(L). �

Lemma 4.3. Let L be a compact frame. If f ∈ FP(L), then there exists a finite subset X
of R such that f(R \ X) = ⊥.

Proof. Since
∨

x∈R f({x}) = >, we conclude that there are x1, x2, ..., xn ∈ R such that∨n
i=1 f({xi}) = >, which implies that f(R \ {x1, x2, ..., xn}) = ⊥. �

It is well known that t : R(βM) → R∗M given by t(f) = jM f is the ring isomorphism for
every completely regular frame M , where jM : βM → M given by I 7→

∨
I (see [6]). We

define tP : FP(βM) → F∗P(M) by tP(f) = jM f for every f ∈ FP(βM). Now, it is natural
to ask whether tP is a ring isomorphism. It is clear that tP is a ring monomorphism.

The following example shows that tP is a ring monomorphism, my not be a ring iso-
morphism.
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Example 4.4. Consider L = P(N). We define the real-trail t : R → L on the frame L by

t(x) =
{

{x} if 1
x ∈ N

⊥ if 1
x 6∈ N.

Since {x ∈ R : φt(x) 6= ⊥} is an infinite subset of R, we conclude from Lemma 4.3 that
φt 6∈ Im(tP), which implies that tP is not an isomorphism.

Now, we ask this question: When is tP a ring isomorphism?

Proposition 4.5. For tP : FP(βL) → F∗P(L) given by f 7→ jLf , the following statements
hold.

(1) If tP is a ring isomorphism then L is a compact frame.
(2) If L is a compact frame and B(L) is a sub-σ-frame of L then tP is a ring isomor-

phism.

Proof. (1). Consider f ∈ F∗P(L). Then there are x1, x2, ..., xn ∈ R, such that
∨n

i=1 f({xi}) =
>. We define the real-trail t̂ : R → βL on the frame βL by t̂(x) = ↓f({x}). Then
tP(φt̂) = f , which implies that tP is a ring isomorphism.

(2). Let L be not compact and S ⊆ L such that
∨

S = > and
∨

F 6= > for every
finite subset F of S. For every s ∈ S, there is a subset Cs of B(L) such that s =

∨
Cs.

Consider C =
∪

s∈S Cs. Therefore
∨

F 6= > for every finite subset F of C. Therefore
without losing generality we may assume that

∨
(C \ {c}) 6= > for every c ∈ C. Let

B := {cn+1 ∈ C : n ∈ N} be an infinite countable subset of C. Since B(L) is a σ-frame,
we conclude that a =

∨
B ∈ B(L) has a complement in L. We put bn =

∨n
i=2 ci, for every

n ∈ N \ {1} and define the real-trail t : R → L on L by

t(x) =


a′ if x = 1
b2 if x = 1

2
bn ∧ b′n−1 if there is an element n of N \ {1, 2} such that x = 1

n

⊥ otherwise.
It is clear that φt ∈ F∗P(L), and by Lemma 4.3, φt 6∈ Im(tP). Therefore tP is not an
isomorphism. �
Proposition 4.6. The following statements are equivalent.

(1) L is compact.
(2) Every proper ideal of FP(L) (F∗p(L)) is fixed.
(3) Every maximal ideal of FP(L) (F∗p(L)) is fixed.

Proof. (1) ⇒ (2). Let I be a free proper ideal of FP(L). Since, by Lemma 3.11, > ∈ coz(I),
we conclude that I = FP(L), which is a contradiction.

(2) ⇒ (3). It is clear.
(3) ⇒ (1). Let {aλ}λ∈Λ ⊆ L such that > =

∨
λ∈Λ aλ. It is clear that

I = {φ ∈ FP(L) : coz(φ) ≤
∨

λ∈Λ′ aλ, for a finite subset Λ′ of Λ}
is an ideal of FP(L). If I 6= FP(L), then there exists a maximal ideal M such that I ⊆ M
and so

> =
∨

λ∈Λ
aλ =

∨
coz(I) ≤

∨
coz(M),

which is a contradiction. Therefore I = FP(L) and there exists a finite subset Λ′ of Λ such
that > = coz(1) =

∨
λ∈Λ′ aλ. This completes the proof. �

Proposition 4.7. The following statements hold.
(1) If L is compact then FP(L) = F∗P(L).
(2) If B(L) is a sub-σ-frame of L and FP(L) = F∗P(L) then L is compact.
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Proof. (1). By Proposition 4.2, it is obvious.
(2). Let L be not compact and S ⊆ L such that

∨
S = > and

∨
F 6= > for every finite

subset F of S. For every a ∈ S, there is a subset Ca of B(L) such that a =
∨

Ca. Consider
C =

∪
a∈A Ca. Then

∨
F 6= > for every finite subset F of C. Therefore without losing

generality we may assume that
∨

(C \ {c}) 6= > for every c ∈ C. Let B := {cn+1 ∈ C :
n ∈ N} be an infinite countable subset of C. Since B(L) is a σ-frame, we conclude that∨

B ∈ B(L) has a complement in L, say c1. We put bn =
∨n

i=1 ci for every n ∈ N, and
define the real-trail t : R → L on L by

t(x) =


b1 if x = 1
bx ∧ b′x−1 if x ∈ N \ {1}
⊥ otherwise.

It is clear that φt ∈ FP(L) \ F∗P(L), which is a contradiction. �
Definition 4.8. A onto frame map h : L → M is called FP-quotient if for every f ∈
FP(M), there is an element f̂ in FP(L) such that hf̂ = f , i.e., the following diagram
commutes.

L
h // // M

P(R)
f̂

aa

f

<<yyyyyyyy

Also, an onto frame map h : L → M is called cozFP
-onto if for every c ∈ coz(FP(M)),

there is an element ĉ in coz(FP(L)) such that h(ĉ) = c.

Corollary 4.9. A frame map h : L → M is cozFP
-onto if and only if it is FP-quotient.

Proof. It is obvious. �
Any frame map h : M → N between frames gives rise to an f -ring homomorphism

FPh : FP(M) → FP(N)
f 7→ h ◦ f,

and this results in a variant functor FP from the category Frm of frames and frame maps
to AfR from archimedean f -rings, and morphisms which are f -ring homomorphisms, for
if � ∈ {+, ., ∨, ∧} and f, g ∈ FP(M), then

FPh(f � g)({a}) = h((f � g)({a}))

= h
(∨{

f{x} ∧ g({y}) : x � y = a
})

=
∨{

h(f{x}) ∧ h(g({y})) : x � y = a
}

, since h is the frame map

= FPh(f) � FPh(g)({a}),
for every a ∈ R, which implies that FPh(f � g) = FPh(f) � FPh(g). Hence we have

Proposition 4.10. If FP-quotient map h : M → N is codense then the f -ring homomor-
phism FPh : FP(M) → FP(N) given by f 7→ h ◦ f is an f -ring isomorphism. Also, h is
cozFP

-onto.

Proof. If f ∈ ker(FPh), then FPh(f) = 0, which implies that FPh(f)({0}) = h(f({0})) =
> and so z(f) = >, i.e., f = 0. It is clear that FPh is onto. �
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Lemma 4.11. Let L be σ-compact and not compact. Then L ∼= P(N) and there is an
f -ring isomorphism η : FP(P (N)) → FP(L) such that

(1) f ∈ F∗P(P(N)) if and only if η(f) ∈ F∗P(L).
(2) f ∈ FP∞(P(N)) if and only if η(f) ∈ FP∞(L).
(3) f ∈ FPK

(P(N)) if and only if η(f) ∈ FPK
(L).

Proof. Similar to the proof of Proposition 4.7, there exists an infinite countable subset
{cn : n ∈ N} of B(L) such that c′1 =

∨
n∈N
n6=1

cn and
∨

F 6= > for every finite subset F of

{cn : n ∈ N\{1}}. We put bn =
∨n

i=1 ci for every n ∈ N, and define the real-trail t : R → L
on L by

t(x) =


b1 if x = 1
bx ∧ b′x−1 if x ∈ N \ {1}
⊥ otherwise.

It is clear that φt ∈ FP(L) \ F∗P(L). We define the N-trail t : N → L on L by

t(x) =
{

φt((−∞, 1]) if x = 1
φt((x − 1, x]) if x ∈ N \ {1}

Hence φt : P(N) → L given by φt(X) =
∨

x∈X t(x) is an isomorphism FP-quotient map.
By Proposition 4.10, η = FPφt : FP(P(N)) → FP(L) given by f 7→ φt ◦ f is an f -ring
isomorphism. �
Proposition 4.12. For every c ∈ B(L), there exists an f -ring monomorphism θ :
FP(↓c) → FP(L) such that

(1) f ∈ FP∞(↓c) if and only if θ(f) ∈ FP∞(L).
(2) f ∈ FPK

(↓c) if and only if θ(f) ∈ FPK
(L).

Proof. We define θ : FP(↓c) → FP(L) by θ(f) = f , where f : P(R) → L give by

f(X) =
{

f(X) if 0 6∈ X

f(X) ∨ c′ if 0 ∈ X

is a frame map. Consider f, g ∈ FP(↓c) and � ∈ {+, ., ∨, ∧}. Then we have

θ(f) � θ(g)({0}) =
∨{

f({x}) ∧ g({y}) : x � y = 0, x 6= 0 or y 6= 0} ∨ c′

= (f � g)({0}) ∨ c′

= θ(f � g)({0}).
Consider 0 6= x ∈ R. Since for every r ∈ R,

f({r}) ∧
(
g({0}) ∨ c′

)
= f({r}) ∧ g({0})

and (
f({0}) ∨ c′

)
∧ g({r}) = f({0}) ∧ g({r}),

we conclude that
θ(f) � θ(g)({x}) = θ(f � g)({x}).

Therefore, θ is an f -ring homomorphism. Let f be an element of ker(θ). From f({0})∨c′ =
θ(f)({0}) = 0({0}) = > and f({0})∧c′ ≤ c∧c′ = ⊥, we infer that f({0}) = c and since for
every 0 6= x ∈ R, f({x}) = θ(f)({x}) = 0({x}) = ⊥, we conclude that f = 0. Therefore,
θ is an f -ring monomorphism. �

We recall from [7] that a proper ideal I in FPL is called a zFP
-ideal if z(f) = z(g) and

f ∈ I implies that g ∈ I. We will also need the following results which appear in [7], for
the proof of the following proposition.
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Proposition 4.13. Every proper ideal in FPL is a zFP
-ideal.

Proposition 4.14. Let B(L) be a sub-σ-frame of L. The following statements are equiv-
alent.

(1) FP∞(L) is an ideal of FP(L).
(2) Every σ-compact element a of L is FP-pseudocompact.
(3) Every σ-compact element of L is compact.
(4) If {an}n∈N is a family of compact elements of L such that

a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ · · · ,

then there exists an element k of N such that ak = ak+i for all i ∈ N.
(5) FP∞(L) = FPK

(L).
(6) FP∞(L) is a regular ring.

Proof. (1) ⇒ (2) and (1) ⇒ (3). Let a be a σ-compact element of L. Then, by Proposition
3.14, there is an element f of FP∞(L) such that coz(f) = a. Since coz(φta) = a = coz(f),
we conclude from Proposition 4.13 that φta ∈ FP∞(L), which implies that ↑φta(− 1

n , 1
n) =

↑a′ is compact for any n ∈ N and so a is compact. Therefore, by Lemma 4.7, ↓a is an
FP-pseudocompact frame.

(2) ⇔ (3). By Lemma 4.7, it is clear.
(3) ⇒ (4). It is clear.
(4) ⇒ (5). Consider f ∈ FP∞(L). Since for every n ∈ N, f((−∞, − 1

n ] ∨ [ 1
n , +∞)) is

compact, we conclude from the fourth statement that there exists an element m of N such
that

coz(f) =
∨

n∈N
f((−∞, − 1

n
] ∨ [ 1

n
, +∞)) = f((−∞, − 1

m
] ∨ [ 1

m
, +∞)),

which implies that coz(f) is compact and so f ∈ FPK
(L). Therefore, FP∞(L) = FPK

(L).
(5) ⇒ (1) and (5) ⇒ (6). By Proposition 3.5, it is clear.
(6) ⇒ (2). Let a be a σ-compact element of L and not a compact element of L. Let t

and φt be the same in Proposition 3.14. Because φt ∈ FP∞(L) and FP∞(L) is the regular
ring, there exists an element f of FP∞(L) such that φt = φ2

t f . Since for every x ∈ R\ {0},

φt({x}) = φt({x}) ∧ φ2
t f({x})

= φt({x}) ∧
∨

{φt{y} ∧ fφt({y′}) : yy′ = x}

=
∨

{φt({x}) ∧ φt({y}) ∧ fφt({y′}) : yy′ = x}
= φt({x}) ∧ fφt({1}),

we infer that coz(φt) ≤ fφt({1}) ≤ coz(fφt) ≤ coz(φt) and hence coz(f) ≥ coz(φt). Since
coz(φt|a) = a = >↓a, we conclude that φt|a is a unit element of FP(↓a) and φt|af |a = 1,
which implies that f |a({n}) = φt|a({ 1

n}) = bn 6= ⊥ for every n ∈ N. Therefore f |a 6∈
F∗P(↓a), which is a contradiction. �

It is clear that if I is an ideal of the f -ring FP(L), then coz(I) is an ideal of B(L).

Corollary 4.15. For every f, g ∈ FP(L), if coz(f) ≤ coz(g) then there exists an element
h of FP(L) such that f = gh.

Proof. Consider f, g ∈ FP(L) and I is the ideal generated by g. Since coz(I) is an ideal of
B(L) and coz(f) ≤ coz(g) ∈ coz(I), we conclude from Proposition 4.13 that f ∈ I, which
implies that there exists an element h of FP(L) such that f = gh. �

If A is an ideal of frame L then coz←(A) := {f ∈ FP(L) : coz(f) ∈ A} is an ideal of
FP(L).
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Proposition 4.16. If I is a free proper ideal in FP(L) then f(− 1
n , 1

n) 6∈ coz(I) for every
f ∈ FP∞(L) and every n ∈ N.

Proof. Consider f ∈ FP∞(L) and n ∈ N. From

> =
∨

coz(I) =
∨{

coz(g) ∨ f(− 1
n

,
1
n

) : g ∈ I
}

and ↑f(− 1
n , 1

n) is compact, we conclude that there exists an element g of I such that
> = coz(g) ∨ f(− 1

n , 1
n). If f(− 1

n , 1
n) ∈ coz(I), then > ∈ coz(I), i.e., I = L, which is a

contradiction. Hence f(− 1
n , 1

n) 6∈ coz(I). �

5. Locally compact frames
In this section, we consider C := {a ∈ L : ↑a∗ is a compact frame} and c :=

∨
C. We

show that if FP∞(L) 6= (0), then ↓c is a locally compact frame and∨
φ∈FP∞ (L)

coz(φ) = c =
∨

φ∈FPK
(L)

coz(φ).

Next, we prove that FP∞(L) ∼= FP∞(↓c) if c is complemented.

Proposition 5.1. The following statements hold.
(1) c =

∨
coz(FP∞(L)).

(2) If FP∞(L) 6= (0) then FPK
(L) 6= (0) and c =

∨
coz(FPK

(L)).

Proof. (1). Consider f ∈ FP∞(L). For every n ∈ N, we put vn = f(−∞,
−1
n

]∨φ[ 1
n

, +∞).

From f(−1
n

,
1
n

) = v′n and ↑f(−1
n

,
1
n

) is a compact frame, we conclude that vn ∈ C for every
n ∈ N. Then coz(f) =

∨
n∈N vn ≤ c, it implies that

∨
f∈FP∞ (L) coz(f) ≤ c. Now, assume

that a ∈ C and {fλ}λ∈Λ ⊆ FP(L) with a =
∨

λ∈Λ coz(fλ). From a∗ ≤ coz(fλ)∗ and
↑a∗ is a compact frame, we conclude that ↑z(fλ) is a compact frame for every λ ∈ Λ.
Hence, {fλ}λ∈Λ ⊆ FPK

(L) ⊆ FP∞(L) and a ≤
∨

coz(FP∞(L)), which implies that c ≤∨
f∈FP∞ (L) coz(f), and hence c =

∨
f∈FP∞ (L) coz(f).

(2). The proof is similar to the part (1). �
From the Proposition 5.1, we conclude the following corollary.

Corollary 5.2. FP∞(L) 6= (0) if and only if C 6= {⊥} if and only if FPK
(L) 6= (0).

Remark 5.3. Consider a ∈ C and f ∈ FP(L). Since ↑a∗ is a compact frame and

> =
∨

p,q∈Q
f(p, q) =

∨
p,q∈Q

f(p, q) ∨ a∗,

we conclude that there exist p, q ∈ Q such that f(p, q) ∨ a∗ = >, which follows that
a ≺ f(p, q). Therefore, for any a ∈ C and any f ∈ FP(L) there exist p, q ∈ Q such that
a ≺≺ f(p, q).

Remark 5.4. Let J be a free ideal of FP(L) and a ∈ C. Since ↑a∗ is a compact frame and

> =
∨

f∈J

coz(f) =
∨

f∈J

coz(f) ∨ a∗,

we conclude that there exists an element f of J such that coz(f) ∨ a∗ = >. Hence, if J is
a free ideal of FP(L) or F∗P(L), then for every a ∈ C, there exists an element f of J such
that a ≺≺ coz(f).
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Lemma 5.5. The following statements hold.
(1) C is an ideal of L.
(2) If x ≺ a then x << a for every (x, a) ∈ L × C.
(3) For any a ∈ C, a =

∨
x<<a x.

Proof. (1). Consider a, b ∈ L such that b ≤ a and a ∈ C. From ↑a∗ is a compact frame
and a∗ ≤ b∗, we conclude that ↑b∗ is a compact frame, which implies that b ∈ C. Hence
M is a down set in L. Also, for a, b ∈ C, ↑(a ∨ b)∗ = ↑a∗ ∧ b∗ is a compact frame, which
implies that a ∨ b ∈ C, that implies C is an up directed subset of L, Therefore, C is an
ideal of L.

(2). Consider (x, a) ∈ L × C with x ≺ a. If {aλ}λ∈Λ ⊆ L such that a ≤
∨

{aλ}λ∈Λ, then∨
λ∈Λ

(x∗ ∨ aλ) = x∗ ∨ (
∨

λ∈Λ
aλ) = x∗ ∨ a = >.

From the first statement we conclude x ∈ C, and hence ↑x∗ is a compact frame. Since
{(x∗∨ aλ}λ∈Λ ⊆ ↑x∗, we infer that there are λ1, λ2...λn ∈ Λ such that > = x∗∨ (

∨k
i=1 aλi

),
which implies that x ≤ (

∨k
i=1 aλi

). Hence x << a.
(3). Consider a ∈ C. Since L is a completely regular frame, we conclude from the

statement (2) that a =
∨

x≺a x =
∨

x<<a x and so, the proof is now complete. �
Proposition 5.6. If FP∞(L) 6= (0), then ↓ c is a locally compact frame.

Proof. Consider a ∈↓ c. Then a =
∨

m∈C(a ∧ m). By Lemma 5.5, a ∧ m ∈ C and
a ∧ m =

∨
x<<a∧m x ≤ a for every m ∈ C. Hence a =

∨
x<<a x. This completes the

proof. �
Consider S ⊆ C and a ∈ C is an upper bound of S. Since

∨
S ≤ a, we conclude that∨

S ∈ C. Therefore, if S ⊆ C is bounded in C, then
∨

S ∈ C.

6. The relation between the generated subframe by coz(FP∞(L)) and
coz(FPK

(L)) in L

In this section, we show that coz(FPK
(L)) and coz(FP∞(L)) are the bases of ↓c.

Lemma 6.1. If FP∞(L) 6= (0) then the following statements hold.
(1) For any f ∈ FP(L), if coz(f) ≤ c then there is a subset {fλ}λ∈Λ of FPK

(L) such
that coz(f) =

∨
λ∈Λ coz(fλ).

(2) For any f ∈ FP(L), if coz(f) ≤ c then there is a subset {fλ}λ∈Λ of FP∞(L) such
that coz(f) =

∨
λ∈Λ coz(fλ).

Proof. (1). Consider f ∈ FP(L) with coz(f) ≤ c. we have
coz(f) = coz(f) ∧ c

= coz(f) ∧
( ∨

g∈FPK
(L)

coz(g)
)
, by Proposition 5.1

=
∨

g∈FPK
(L)

(
coz(f) ∧ coz(g)

)
=

∨
g∈FPK

(L)
coz(fg).

Since, by Lemma 3.5, FPK
(L) is an ideal of FP(L), we conclude that fg ∈ FPK

(L) for
every g ∈ FPK

(L) and every f ∈ FP(L).
(2). By the first statement, it is clear. �
A base B of a frame L is a subset of L such that every element of L is a join of elements

of B.
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Proposition 6.2. If FP∞(L) 6= (0) then the following statements hold.
(1) coz(FPK

(L)) is a base of ↓c.
(2) coz(FP∞(L)) is a base of ↓c.

Proof. (1). Consider x ≤ c and {fλ}λ∈Λ ⊆ FP(L) with x =
∨

λ∈Λ coz(fλ). Since
coz(fλ) ≤ x ≤ c. Lemma 6.1 implies that there exists a subset Bλ of FPK

(L) such
that coz(fλ) =

∨
g∈Bλ

coz(g) for every λ ∈ Λ. We put B =
∪

λ∈Λ Bλ then B ⊆ FPK
(L)

and x =
∨

g∈B coz(g). The proof is now complete.
(2). By the first statement, it is clear. �

By Proposition 6.2, we have the following Corollary.

Corollary 6.3. The subframes produced by coz(FP∞(L)) and coz(FPK
(L)) in L are the

same.

7. The relationship between FP∞(L) and FP∞(↓ c)
In this section, we assume that FP∞(L) 6= (0) and c =

∨
C.

Lemma 7.1. The map θ : FP(L) → FP(↓c) given by θ(f) = f |c is an f -ring homomor-
phism.

Proof. Straightforward. �

Lemma 7.2. If f ∈ FP∞(L) then f(r, s) ∨ c = > for every r, s ∈ R with r < 0 < s.

Proof. Consider f ∈ FP∞(L) and r, s ∈ R with r < 0 < s. There exists an element
n of N such that (−1

n , 1
n) ≤ (r, s). Since ↑ f(−1

n , 1
n) is a compact frame, we infer that

f(−∞,
−1
n

] ∨ f [ 1
n

, +∞) ∈ C, which implies that

f(r, s) ∨ c ≥ f(−1
n

,
1
n

) ∨ c ≥ f(−1
n

,
1
n

) ∨ f(−∞,
−1
n

] ∨ f [ 1
n

, +∞) = >.

The proof is now completed. �

For every a, b ∈ L, we put [a, b] := {x ∈ L : a ≤ x ≤ b}. Consider 0 6= f ∈ FP∞(L),
r, s ∈ R with r < 0 < s and S ⊆ [f(r, s) ∧ c, c] with

∨
S = c. By the Lemma 7.2,

> = c ∨ f(r, s) =
∨

x∈S

(
x ∨ f(r, s)

)
.

Consider n ∈ N such that (−1
n , 1

n) ≤ (r, s). From ↑f(−1
n , 1

n) is a compact frame, we
conclude that ↑f(r, s) is a compact frame, it implies that there exist x1, x2, ..., xk ∈ S such
that > = f(r, s) ∨

∨k
i=1 xi. Since xi ∈ S ⊆ [f(r, s) ∧ c, c], we have

c =
(
c ∧ f(r, s)

)
∨

( k∨
i=1

(
c ∧ xi)

)
=

k∨
i=1

xi ≤
∨

S = c.

Therefore [f(r, s) ∧ c, c] is a compact frame. Hence f |c ∈ FP∞(↓c), which implies that

θ∞ = θ|FP∞ (L) : FP∞(L) → FP∞(↓c)

is an f -ring homomorphism. If f ∈ ker θ∞, then f |c(− 1
n , 1

n) = f(− 1
n , 1

n) ∧ c = c, therefore
f(− 1

n , 1
n) ≥ c for any n ∈ N. By Lemma 7.2, f(− 1

n , 1
n) = f(− 1

n , 1
n) ∨ c = > for any n ∈ N.

We show that f = 0. C 0 6= x ∈ R, there is an element m in N, such that x 6∈ (− 1
m , 1

m) ,
we infer that

f({x}) = f({x}) ∧ > = f({x}) ∧ f(− 1
m

,
1
m

) = ⊥.

We infer that f = 0. Hence, we have
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Proposition 7.3. The map

θ∞ := θ|FP∞ (L) : FP∞(L) → FP∞(↓c)

is an f -ring monomorphism.

In what follows, for every f ∈ FP(↓c), we define the real-trail t̂f : R −→ L on L by

t̂f (x) =
{

f({x}) ∨ c∗ if x = 0
f({x}) if x 6= 0.

Lemma 7.4. If c is complemented and f ∈ FP(↓c) then the following statements hold.
(1) coz(φt̂f

) = coz(f) and z(φt̂f
) = z(f) ∨ c′.

(2) φt̂f
|c = f .

(3) f ∈ FP∞(↓c) if and only if φt̂f
∈ FP∞(L).

Proof. (1) and (2) are clear.
(3). If f ∈ FP∞(↓c), then [f(− 1

n , 1
n), c] is compact, for every n ∈ N. Hence ↑ (f(− 1

n , 1
n)∨

c′) = ↑φt̂f
(− 1

n , 1
n) is compact for every n ∈ N, therefore φt̂f

∈ FP∞(L). Conversely, if
φt̂f

∈ FP∞(L) then, by the second statement and Proposition 7.3, φt̂f
|c = f ∈ FP∞(L). �

Proposition 7.5. If c is complemented, then

θ∞ := θ|FP∞ (L) : FP∞(L) → FP∞(↓c)

is an f -ring isomorphism.

Proof. By Proposition 7.3 and lemma 7.4, θ∞ is an f -ring isomorphism. �

Proposition 7.6. If c is complemented, then there is a locally compact frame L′ such that
FP∞(L) ∼= FP∞(L′).

Proof. We consider L′ = ↓c, by Propositions 5.6 and 7.5, it is obvious. �

Lemma 7.7. If c is complemented, then f ∈ FPK
(↓c) if and only if φt̂f

∈ FPK
(L).

Proof. f ∈ FPK
(↓c) if and only if [z(f), c] is compact if and only if ↑(z(f) ∨ c′) is compact

if and only if ↑z(φt̂f
) is compact, by Lemma 7.4, if and only if φt̂f

∈ FPK
(L). �

Proposition 7.8. If c is complemented, then

θK := θ|FPK
(L) : FPK

(L) → FPK
(↓c)

is an f -ring isomorphism.

Proof. By Proposition 7.5 and Lemma 7.7, θK is an f -ring isomorphism. �

Proposition 7.9. If c is complemented, then there is a locally compact frame L′ such that
FPK

(L) ∼= FPK
(L′).

Proof. Put L′ = ↓c. �
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