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Abstract

Let Fp(L) be the set of all frame maps from P(R) to L, which is an f-ring. In this paper,
we introduce the subrings Fp_ (L) of all frame maps from P(R) to L which vanish at
infinity and Fp, (L) of all frame maps from P(R) to L with compact support. We prove
Fp_ (L) is a subring of Fp(L) that may not be an ideal of Fp(L) in general and we obtain
necessary and sufficient conditions for Fp_ (L) to be an ideal of Fp(L). Also, we show
that Fp, (L) is an ideal of Fp(L) and it is a regular ring. For f € Fp(L), we obtain a
sufficient condition for f to be an element of Fyp_ (L) (Fp, (L)). Next, we give necessary
and sufficient conditions for a frame to be compact. We introduce Fp-pseudocompact and
next we establish equivalent condition for an Fp-pseudocompact frame to be a compact
frame. Finally, we study when for some frame L with Fp_ (L) # (0), there is a locally
compact frame M such that Fp_ (L) = Fp_ (M) and Fp, (L) = Fp, (M).
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1. Introduction

Let C(X) denote the ring of all real-valued continuous functions on a topological space
X; and Cuo(X) is the subring of all functions C(X) which vanish at infinity. Aliabad
et al. in [1] have shown that for every completely regular Hausdorff space X, whenever
Coo(X) # (0), then there exists a locally compact space Y such that Coo(X) = Co (V).

Let L be a completely regular frame and RL be the ring of real-valued continuous
functions on L and R*L be the ring of bounded real-valued continuous functions on L (see

-1 1
[2,4]). RooL, the family of all functions f € RL for which 1f (7, E) is compact for each

n € N and Rg L, the family of all functions f € RL for which 1 coz(f)* is compact, were
introduced by Dube in [5]. Estaji and Mahmoudi Darghadam in [8] studied when for a
frame L with RooL # (0), there is a locally compact frame M such that RooL = Roo M
and RgL = R M (also, see [9]).

The f-ring Fp(L) := Frm(P(R), L) was introduced by Karimi Feizabadi et al. in [11].
Estaji et al. in [7] showed that for every frame L, there is a zero-dimensional frame M such
that Fp(L) = Fp(M). Hence, for study Fp(L), we assume that L is a zero-dimensional
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frame. Let C(X,R;) denote the set of continuous functions from a space X into the
discrete space of real-numbers Ry. It is known that C(X,R,;) < C(X). If X is discrete,
then

C(X,Ry) = C(X) =R = Fp(P(X)).

In this manner, Fp(L) is the generalization of the f-ring C'(X,Ry).

In [3] an element a € RL is called locally constant if there exists a partition P of L,
meaning P is a cover of L and its elements are pairwise disjoint, such that a|a is constant
for each a € P, where ala : L(R) — la given by ala(v) = a(v) A a for every v € L(R).
The set of all locally constant elements of RL is denoted by &L. In [3], Banaschewski
showed that FpL = GL as f-ring.

In this paper, we introduce the subring Fp__ (L) of all frame maps from P(R) to L for
which vanish at infinity and JFp, (L) of all frame maps from P(R) to L with compact
support (see Definition 3.1 and Definition 3.2). We show that Fp_ (L) is a subring of
Fp(L) and is an ideal of F5(L) (see Proposition 3.6 and Proposition 3.8). We prove
that Fp_ (L) may not be regular and an ideal of Fp(L) in general (see Example 7.7).
Also, we give necessary and sufficient conditions for Fp_ (L) to be an ideal of Fp(L) (see
Proposition 4.14). We prove that JFp, (L) is an ideal of both Fp(L) and F}(L) and also
it is a regular ring (see Lemma 3.5). We introduce an Fp-pseudocompact frame and next
we establish equivalent condition for an Fp-pseudocompact frame to be a compact frame
(see Definition 4.1 and Lemma 4.7). For every frame L with Fp_ (L) # (0), there is a
locally compact frame M such that Fp_ (L) and Fp, (L) are isomorphic with an f-subring
of Fp_ (M) and an f-subring Fp, (M) respectively, see Lemma 7.3, and if ¢ := \/{a € L :
Ta* is a compact frame} is complemented then |c is a locally compact frame such that
Fp (L) = TFp_(Ic) and Fp, (L) = Fp,. (lc) (see Propositions 5.6, 7.5 and 7.8).

2. Preliminaries

In this section, we represent several concepts and definitions that are necessary in this
paper. Throughout this paper L denotes a zero-dimensional frame, that is, L generated
by their complemented elements. An element a of L is called compact if, for any subset
S of L,a =\ implies a = VT for some finite 7" C S. A frame L is called compact
whenever its the top element T of L is compact. For every a,b € L, we recall from [5]
that if Ta and 1b are compact frames then 1(a A b) is a compact frame and also, if Ta is a
compact frame and a < b, then 15 is a compact frame. For general background regarding
frames we refer to [12].

For each set X, we can form the set P(X) of all subsets of X (called the power set of
X). Also, (P(X),C) is a complete Boolean algebra. Let Fp(L) be the set of all frame
maps from P(R) to L. Details regarding Fp(L) can be found in [7,10,11]. In [11] the
authors showed that, the set FpL by operation ¢ : R x R — R is a sub-f-ring of RL in
which for all f,g € FpL, fog: P(R) — L by

(fog)(X)=V{f(¥)Ng(2):Y oz C X} =V{f{y}) Ag({z}) :yoy € X},
where 0 € {+,—,A\,V} and Yo Z :={yoz:y €Y, z € Z}. Also, for every r € R, the
corresponding constant function r : P(R) — Lsuch that r(X) =T ifr € X andr(X) = L
otherwise. According to [11], for every f € FpL, f({0}) (f(R\ {0})) is denoted by z(f)
(coz(f)) and is called a zero-element (cozero-element). We put Z(A) := {z(f) : f € A}
and coz(A) := {coz(f) : f € A}, for every A C Fp(L). Also, for every f € FpL, z(f) = L
if and only if f is a unit element of FpL (see [10]). The bounded part, in the f-ring sense,
of FpL is denoted by F5 (L) and is characterized by:

feFp(L) < f(p,q) =1 for some p,q € R,
where (p,q) ={r e R:a <r <b}.
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We recall from [7] that for any set S, an S-trail on L is a function ¢ : § — L such that
Veert(z) = T and t(x) At(y) = L for any z,y € S with  # y and an R-trail is called
real-trail. Also, for any S-trail ¢t on a frame L,

Yt . P(S) — L
X — VmGX t($)
is a frame map. Throughout this paper, this notation will be used. Also, if f € FpL, then
tr: R — L by tf(r) = f({r}) is a real-trail on a frame L. The correspondences between

real-trails on a frame L and the f-ring FpL are powerful tools in the study of FpL. If a
is a complemented element of L, then ¢, : R — L by

a ifzxz=1
to(x) =qd ifx=0
1 ifz¢{0,1}

is a real-trail on L, coz(yy,) = a, ¢}, = ¢4, and

fanf(X) fogx
Jua(X) = {a’\/f(X) if0e X

for every f € FpL and every X C R, throughout this notation will be used (see [10]). It
is clear that for S-trailt : S — L on L, ¢; is a monomorphism frame map if and only if
t(s) # L for any s € S. Let B(L) denote the sublattice of complemented elements of a
frame L. Hence,

z2(FpL) = B(L) = coz(FpL)
and also, for every x € L, there exists a subset A of B(L) such that x = \/,c 4 coz(py, ).

3. The f-subrings Fy_(L) and Fy, (L) of Fyp(L)

In this section, we introduce Fp_ (L) and Fp, (L) and prove that Fp_ (L) is the f-
subrings of Fp(L) that may not be both regular ring and an ideal of Fp(L) in general but
is an ideal of F3(L). We prove that Fp, (L) is an ideal of both Fp(L) and F;(L) and is
a regular f-subring of Fp(L). Also, we establish several equivalent conditions for the set
Fp_ (L) to be an ideal of Fp(L).

We begin with the following basic definitions.

Definition 3.1. We say f € Fp(L) vanishes at infinity if 1f(—<, 1) is a compact frame

for any n € N. We denote the family of all f € Fp(L) vanishing at ?nﬁnity with Fp_ (L).
Definition 3.2. We say f € Fp(L) has compact support if 1z(f) is a compact frame, or

equivalently, coz(f) is a compact element of L. We denote the family of all f € Fp(L)
with compact support by Fp, (L).

It is obvious that Fp, (L) C Fp__ (L).

Example 3.3. We recall a frame M is called connected, if B(M) = {1, T}. Let M be
a connected frame. Consider 0 # f € Fp(M). Then coz(f) = T and z(f) = L, which
implies that there exists an 0 # r € R such that f({r}) # L and so we clearly see that
f = r. Therefore, Fp(M) = {r : r € R} Z R = Fp(2). Since for every 0 # r € R, there
is an element n in N such that |r| > L, we conclude that r € Fp_ (M) if and only if M
is a compact frame if and only if r € Fp, (M). Hence for every connected frame M, the
following statements are equivalent.

(1) M is a compact frame

(2) Fpo (M) =TFp(M).

(3) Fpi (M) = Fp(M).
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Estaji et al. in [7] showed that Fp(L) is a regular ring. In the following we prove that
Fp, (L) is a regular ring, too.

Lemma 3.4. For every f € Fp, (L), {x € R: f({z}) # L} is a finite subset of R and
feFpL).

Proof. Consider f € Fp,(L). Since V,cr f({0,2}) = T, there are x1,x2,...,2, € R
such that f({0,z1,...,2,}) = T, and so f(R\{0,z1,...,2,}) = L, which implies that
{x e R: f({z}) # L} is a finite subset of R and f € F5(L). O

Proposition 3.5. The following statements hold.
(1) The set Fp, (L) is an ideal of Fp(L).
(2) The set Fp, (L) is an ideal of F5(L).
(3) The set Fp, (L) is a regular ring.

Proof. (1). Let f,g € Fp, (L) and h € Fp(L). Since 1(2(f) A 2(g)) is a compact frame
and z(f+g) > z(f) Nz(g), we conclude that 1(z(f +g¢)) is a compact frame, which implies
that f+g € Fp, (L). Also, from T2(f) is a compact frame and z(fh) = z(f)Vz(h) > 2(f),
we infer that 12(fh) is a compact frame, which implies that fh € Fp, (L).
(2). Since, by Lemma 3.4, Fp, (L) € F5(L), the proof is similar to the first statement.
(3). Consider f € Fp, (L). We define the real-trail ¢ : R — L on the frame L by

L[y ita o
t()_{f({()}) if 2 = 0.

Then
z(f) ife=0
for({z}) =S coz(f) ifx=1
1 if x € R\ {0, 1},
which implies that f2p; = f. Since 12(p;) = 12(f) is a compact frame, we conclude that
ot € Fp, (L), which implies that Fp, (L) is a regular ring. O

Proposition 3.6. The set Fp_ (L) is a subring of Fp(L).

Proof. Consider f,g € Fp__(L) and n € N. Since
1 1 1 1

11
—Z Y > f(— _
(f +9)(( n’ n)) =i 2n’ 2n) Ml 2n’ 2n)
and 1 (f(—35,35) Ag(—5=, 5=)) is a compact frame, we conclude that 1 (f + ¢)(—2,1) is

a compact frame, which implies that f + g € Fp_ (L).
Consider m € N with m > [y/n]. From 1t (f(=%,1)Ag(-=21, 1)) is a compact frame

and 11 1 1m . 1 T §
) > f(—— -
(Fo)(( n’n))_f( m7m)/\g( m’m)’
we infer that 1 (fg)(—%, %) is a compact frame, which implies that fg € Fp__(L). O

Lemma 3.7. For every f € Fp_ (L), the following statements hold.

(1) The set {z € R\ (=1, 1): f({z}) # L} is finite for every n € N.

(2) f eI5(L).

(3) The set {x e R: f({z}) # L} is an at most countable set.
Proof. (1). Consider n € N. Since V,cp\(_1 1, f(=2, Y)Y u {z}) = T, there are
T1, 2, oy Ty € R\ (=1, 1) such that f((—%,1)U{z1,...2m}) = T, which implies that
FR\ ({1,229, .oy} U (—%, %))) = 1. Hence {z € R\ (—%, %) : f({x}) # L} is a finite
subset of R.

(2) and (3), by the first statement, are obvious. O
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If L is not compact, then 1 & Fp_ (L), because 1(—%,1) = 1 and 1L is not compact.

n

Proposition 3.8. The set Fp_ (L) is an ideal of F}(L).

Proof. By Proposition 3.6 and Lemma 3.7, Fp__ (L) is a subring of F},(L). Now we assume
f€Fp(L)and g € Fp_(L). Then f(—m,m) = T for some m € N. Hence 1fg(—2,1) is
a compact frame, because

11 1 1 1 1
2 )y > f(— A gl(— — 4 —
Fo=2 ) = Femam) Agl—— —) =g, ),
which follows that fg € Fp__ (L). O

The following example shows that Fp_ (L) may not be an ideal of Fp(L) in general and
also Fp_ (L) my not be a regular ring in general.

Example 3.9. Consider L = P(N). We define the real-trail ¢ : R — L on the frame L by
) = {{;} if L eN

L otherwise.
Then z(¢;) = L and so ¢y is a unit element of Fp(L). Since 1 & Fp_ (L) and ¢; € Fp__ (L),
we conclude that Fp__ (L) is not an ideal of Fp(L). Also, if there is an element f in Fp__ (L)

such that p? f = ¢y then ¢y f =1 € Fp__ (L), which is contradiction. Therefore, Fp_ (L) is
not a regular ring.

Definition 3.10. Let I be any ideal in Fp(L). If Vs coz(f) is the non-top element of
L, we call I a fived ideal; if \/ pcycoz(f) = T, then I is a free ideal.

Lemma 3.11. If ¢ is a compact element of L, then ¢ € coz(I) for every free ideal I of
Fp(L) and every c € B(L).

Proof. From c is a compact element of L and there exists a subset A of B(L) such
that ¢ = V,c4coz(py,), we conclude that there a finite subset B of A such that ¢ =
coz(Xaeppi,) € B(L). Let I be a free ideal of Fp(L) and ¢ = coz(f) for some f € Fyp(L).

c=cAT =coz(f) A \/ coz(g) = \/ coz(fg),

gel gel
and so, there are g1, g2, ...gn € I such that ¢ = coz(X1(fgi)?) € coz(I). O

Corollary 3.12. The set of all compact elements of L is a subset of
ﬂ{coz([) : I is a free ideal of ??(L)}.
Proof. By Lemma 3.11, it is clear. g

Definition 3.13. An element a of a frame M is called o-compact if there exists a family
{an : n € N} of compact elements of M such that a = \/,cyan. A frame M is called
o-compact whenever its the top element T of M is o-compact.

By Lemma 3.11, if a € L is a o-compact element of L, then there exists an ascending
sequence {a, }nen of B(L) such that a = \/,,cyan, and Ta, is compact, for every n € N.

Proposition 3.14. The following statements hold.

(1) Every element of coz(Fp_ (L)) is a o-compact element of L.
(2) If B(L) is a sub-o-frame of L and a € L is a o-compact element of L then a €
con(Fs.. ().
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Proof. (1). Consider f € Fp_ (L) and a = coz(f). We put

Ap 1= f(<_007 _%] U [%7 +OO))7

for every n € N. Then ta), = 1f(—2%,1) is a compact frame and a = ¢y an, which
implies that a is a o-compact element of L.

(2). Let {an}nen be an ascending sequence of B(L) such that a = \/,,cy a, and tal, is
compact for every n € N. We put by := ay and b, := a, Aa),_; for every 2 < n € N. Then
for every n € N, \/;L; b; = a,, which implies that a = \/;2; b; and also b; A b; = L for

every i # j. We define the real-trail ¢t : R — L on the frame L by

b, if there exists an element n of N such that % =n
t(x)=<d ifx=0
1 otherwise.

Since
1 1 !/ v /!
T@t(_*v_*) =7 (a \ \/ bl) = Tan
n’ n .
i=n-+1
is a compact frame, we conclude that ¢; € Fp__ (L) and coz(yp;) = a. O

4. Compact and Fp-pseudocompact frames

In this section, we introduce Fp-pseudocompact frame and give several equivalent con-
ditions for it.

For any element a of a frame M, we have the frame map M — |a taking x to x Aa, and
the associated 60 : Fp(M) — Fp(la) will be denoted f — f|a, where fla(A) = f(A) Aa for
every A C R. Evidently, this is the counterpart of restricting functions of RX on a subset
of X. Throughout this paper, this notation will be used.

We begin with the following basic definition.

Definition 4.1. An element a of a frame M is called Fp-pseudocompact if f|a is bounded,
for every f € Fp(M). If T is Fp-pseudocompact we say L is an Fp-pseudocompact frame,
in fact Fp(M) = F5(M).

Proposition 4.2. L is a compact frame if and only if Fp_ (L) = Fp(L).

Proof. Necessity. Consider f € Fp(L) and n € N. From 1t1 = L is compact and

L < f(—1, 1), weinfer that 1f(—2, L) is a compact frame, which implies that f € Fp_(L).

Also, we have, by Lemma 3.7, Fp_ (L) C F}(L) = Fp(L) and this completes the proof.
Sufficiency. It is clear that L =11 = 11(—1,1) is compact, since 1 € Fp__(L). O

Lemma 4.3. Let L be a compact frame. If f € Fp(L), then there exists a finite subset X
of R such that f(R\ X) = L.

Proof. Since \/,cr f({z}) = T, we conclude that there are x1,x2,...,z, € R such that
» 1 f({z;}) = T, which implies that f(R\ {z1,z2,....,2,}) = L. O

It is well known that t : R(6M) — R*M given by t(f) = jarf is the ring isomorphism for
every completely regular frame M, where jpr : BM — M given by I +— \/ I (see [6]). We
define tp : Fp(BM) — T5(M) by tp(f) = ju f for every f € Fp(BM). Now, it is natural
to ask whether tp is a ring isomorphism. It is clear that tp is a ring monomorphism.

The following example shows that tp is a ring monomorphism, my not be a ring iso-
morphism.
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Example 4.4. Consider L = P(N). We define the real-trail ¢ : R — L on the frame L by

if Ll eN
Since {z € R : py(x) # L} is an infinite subset of R, we conclude from Lemma 4.3 that
ot & Im(tp), which implies that tp is not an isomorphism.

Now, we ask this question: When is tp a ring isomorphism?

Proposition 4.5. For tp : Fp(BL) — F5(L) given by f +— jrf, the following statements
hold.

(1) If tp is a ring isomorphism then L is a compact frame.
(2) If L is a compact frame and B(L) is a sub-o-frame of L then tp is a ring isomor-
phism.

Proof. (1). Consider f € F5(L). Then there are x1, 2, ..., x, € R, such that \/i'; f({z;}) =
T. We define the real-trail £ : R — BL on the frame SL by t(z) = |f({x}). Then
tp(p;) = f, which implies that tp is a ring isomorphism.

(2). Let L be not compact and S C L such that \/S = T and \/ F # T for every
finite subset F' of S. For every s € S, there is a subset Cs of B(L) such that s =\ Cs.
Consider C' = J,c5 Cs. Therefore \/ F' # T for every finite subset I’ of C'. Therefore
without losing generality we may assume that \/(C \ {c}) # T for every ¢ € C. Let
B :={cp4+1 € C : n € N} be an infinite countable subset of C. Since B(L) is a o-frame,
we conclude that a =\/ B € B(L) has a complement in L. We put b, = \/I_5 ¢;, for every
n € N\ {1} and define the real-trail t : R — L on L by

a ifx=1

Ha) = by if x = %
by Abl,_, if there is an element n of N \ {1,2} such that z = %
L otherwise.

It is clear that ¢; € F3(L), and by Lemma 4.3, ¢y € Im(tp). Therefore tp is not an
isomorphism. O

Proposition 4.6. The following statements are equivalent.

(1) L is compact.
(2) Every proper ideal of Fp(L) (F,(L)) is fized.
(3) Every maximal ideal of Fp(L) (F,(L)) is fived.

Proof. (1) = (2). Let I be a free proper ideal of Fp(L). Since, by Lemma 3.11, T € coz([),
we conclude that I = Fp(L), which is a contradiction.
(2) = (3). It is clear.
(3) = (1). Let {ax}rea € L such that T =\/ ¢, ax. It is clear that
I={peTFp(L):coz(p) < Vyen @y, for a finite subset A’ of A}

is an ideal of Fp(L). If I # Fp(L), then there exists a maximal ideal M such that I C M

and so
T= \/ ay = \/coz(I) < \/coz(M),
AEA
which is a contradiction. Therefore I = Fp(L) and there exists a finite subset A’ of A such
that T = coz(1) = V/yeas @x. This completes the proof. O

Proposition 4.7. The following statements hold.
(1) If L is compact then Fp(L) = F5(L).
(2) If B(L) is a sub-o-frame of L and Fp(L) = F5(L) then L is compact.
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Proof. (1). By Proposition 4.2, it is obvious.

(2). Let L be not compact and S C L such that \/ S =T and \/ F' # T for every finite
subset F' of S. For every a € S, there is a subset C,, of B(L) such that a = \/ C. Consider
C = Uaea Co- Then \V F # T for every finite subset F' of C. Therefore without losing
generality we may assume that \/(C \ {c}) # T for every ¢ € C. Let B := {¢p11 € C :
n € N} be an infinite countable subset of C'. Since B(L) is a o-frame, we conclude that
V B € B(L) has a complement in L, say ¢;. We put b, = \/j—; ¢; for every n € N, and
define the real-trail t : R — L on L by

b1 ifz=1
tx) =Sby AU,y ifze N\{1l}
1 otherwise.
It is clear that ¢; € Fp(L) \ F5(L), which is a contradiction. O

Definition 4.8. A onto frame map h : L — M is called Fp-quotient if for every f €
Fp(M), there is an element f in Fp(L) such that hf = f, i.e., the following diagram
commutes.

Also, an onto frame map h : L — M is called cozg,-onto if for every ¢ € coz(Fp(M)),
there is an element ¢ in coz(Fp(L)) such that h(é) =

Corollary 4.9. A frame map h : L — M is cozg,-onto if and only if it is Fp-quotient.
Proof. 1t is obvious. O
Any frame map h : M — N between frames gives rise to an f-ring homomorphism
Fph : Fp(M) — Fp(N)

fr=holf,

and this results in a variant functor Fyp from the category Frm of frames and frame maps
to AfR from archimedean f-rings, and morphisms which are f-ring homomorphisms, for
ifoe{+,.,V,A} and f,g € Fp(M), then

Foh(f o g)({a}) = h((f o g)({a}))
= n(\/{Haz} Ag({y}) swoy = af)
\/{ (f{z}) Ah(g({y})) xoy = a}, since h is the frame map

= Fph(f) o Fph(g)({a}),
for every a € R, which implies that Fph(f ¢ g) = Fph(f) o Fph(g). Hence we have
Proposition 4.10. If Fp-quotient map h : M — N is codense then the f-ring homomor-
phism Fph : Fp(M) — Fp(N) given by f — ho f is an f-ring isomorphism. Also, h is
cozg,-onto.

Proof. 1f f € ker(Fph), then Fph(f) = 0, which implies that Fph(f)({0}) = h(f({0}))
T and so z(f) = T, i.e., f = 0. It is clear that Fph is onto.

o
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Lemma 4.11. Let L be o-compact and not compact. Then L = P(N) and there is an
f-ring isomorphism n : Fp(P(N)) — Fp(L) such that

(1) f e FH(P(N)) if and only if n(f) € F5(L).

(2) f € Fp (P(N)) if and only if n(f) € Fp, (L).

(3) f € Fp (P(N)) if and only if n(f) € Fp, (L).

Proof. Similar to the proof of Proposition 4.7, there exists an infinite countable subset
{cn : n € N} of B(L) such that ¢} = VVpencn and V F # T for every finite subset F' of
#1

{cn : n € N\{1}}. We put b,, = Vi, ¢; for every n € N, and define the real-trail ¢t : R — L
on L by

b1 ifz=1
t(x) = b, ANV,_, ifzeN\{1l}
1 otherwise.

It is clear that ¢y € Fp(L) \ F5(L). We define the N-trail £ : N — L on L by

o fel(—oo 1)) e =1
Hz) = {got((:v 1,z]) if z e N\ {1}

Hence ¢; : P(N) — L given by got( ) = Vaex t(z) is an isomorphism Fp-quotient map.
By Proposition 4.10, n = Fppy : Fp(P(N)) — Fp(L) given by f — @zo f is an f-ring
isomorphism. ]

Proposition 4.12. For every ¢ € B(L), there exists an f-ring monomorphism 6 :
Fp(lc) = Fp(L) such that

(1) feFp_(lc) if and only if 0(f) € Fp__(L).
(2) feTFp.(c) if and only if 0(f) € 973>K( ).

Proof. We define 0 : Fp(lc) — Fp(L) by 6 f, where f : P(R) — L give by
f(X if0g X
f(X \/ d ifoeX

is a frame map. Consider f,g € Fp(lc) and ¢ € {+,.,V,A}. Then we have

0(f) < 0(9){0}) = \/{f({f}) Ng({y}) rzoy=0,z#00ry#0} v
= (fog)({0}) v
=0(f o9)({0}).

Consider 0 # x € R. Since for every r € R,

fArb A (g{o}) v) = f({r}) Ag({0})
and

(f{op) v ) ng({r}) = F{0}) A g({r}),
we conclude that

0(f) o 0(g){z}) = 0(f o g)({z}).

Therefore, 6 is an f-ring homomorphism. Let f be an element of ker(#). From f({0})Vvc =
0(f)({0}) =0({0}) = T and f({0}) A < cAd = L, we infer that f({0}) = ¢ and since for
every 0 #z € R, f({z}) = 0(f){z}) = 0({z}) = L, we conclude that f = 0. Therefore,

# is an f-ring monomorphism. O

We recall from [7] that a proper ideal I in FpL is called a zp,-ideal if 2(f) = 2z(g) and
f € I implies that g € I. We will also need the following results which appear in [7], for
the proof of the following proposition.



Rings of frame maps from P(R) to frames which vanish at infinity 863

Proposition 4.13. Every proper ideal in FpL is a zp,-ideal.

Proposition 4.14. Let B(L) be a sub-o-frame of L. The following statements are equiv-
alent.

(

1) Fp_ (L) is an ideal of Fp(L).
(2)
(3)
(4)

Fp
Every o-compact element a of L is Fp-pseudocompact.
Every o-compact element of L is compact.

If {an}nen is a family of compact elements of L such that

ap Saz << ap Sapgr Sy

then there exists an element k of N such that ay = apy; for all i € N.

(5) Fp. (L) = Fpg (L)
(6) Fp_ (L) is a regular ring.

Proof. (1) = (2) and (1) = (3). Let a be a o-compact element of L. Then, by Proposition
3.14, there is an element f of Fp_ (L) such that coz(f) = a. Since coz(y:,) = a = coz(f),
we conclude from Proposition 4.13 that ¢, € Fp__ (L), which implies that T, (—1,1) =
ta’ is compact for any n € N and so a is compact. Therefore, by Lemma 4.7, ia is an
Fp-pseudocompact frame.

(2) & (3). By Lemma 4.7, it is clear.

(3) = (4). It is clear.

(4) = (5). Consider f € Fp_(L). Since for every n € N, f((—oo,—1] v [1,+00)) is
compact, we conclude from the fourth statement that there exists an element m of N such
that 1 . ) .

COZ n\E/Nf [nv—i_oo))*f(( 00, m]\/[m7+oo)>7
which implies that coz(f) is compact and so f € Fp, (L). Therefore, Fp_ (L) = Fp, (L).

(5) = (1) and (5) = (6). By Proposition 3.5, it is clear.

(6) = (2). Let a be a o-compact element of L and not a compact element of L. Let ¢
and ¢; be the same in Proposition 3.14. Because ¢; € ?gaoo( ) and Fp__ (L) is the regular
ring, there exists an element f of Fp_ (L) such that ¢; = ¢? f. Since for every x € R\ {0},

pi({z}) = oi({z}) A} f({2})
= o({z}) A\Hedy A Fo{y'}) sy’ =z}
= \{e:({zh) Ao{y}) A For{y'Y) sy’ = 2}
= pt({z}) A fee({1}),

we infer that coz(p:) < foi({1}) < coz(fy:) < coz(p:) and hence coz(f) > coz(p:). Since
coz(yptla) = a = T ,, we conclude that ¢y, is a unit element of Fp(la) and ¢;lafla = 1,
which implies that f|,({n}) = ¢i|a({2}) = b, # L for every n € N. Therefore f|, ¢
F5(a), which is a contradiction. O

It is clear that if I is an ideal of the f-ring Fp(L), then coz(I) is an ideal of B(L).

Corollary 4.15. For every f,g € Fp(L), if coz(f) < coz(g) then there exists an element
h of Fp(L) such that f = gh.

Proof. Consider f,g € Fp(L) and [ is the ideal generated by g. Since coz([) is an ideal of
B(L) and coz(f) < coz(g) € coz(I), we conclude from Proposition 4.13 that f € I, which
implies that there exists an element h of Fp(L) such that f = gh. O

If A is an ideal of frame L then coz (A) := {f € Fp(L) : coz(f) € A} is an ideal of
Fp(L).
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Proposition 4.16. If I is a free proper ideal in Fp(L) then f(f%, %) & coz(I) for every
f € Fp_(L) and every n € N.

Proof. Consider f € Fp_ (L) and n € N. From
T= \/COZ(I) = \/{coz(g) v f(—%, ):g€ I}

and 1Tf (—%, %) is compact, we conclude that there exists an element g of I such that

T = coz(g) vV f(—1, 1), If f(—L, 1) € coz(I), then T € coz(I), i.e., I = L, which is a

n’n n’n

contradiction. Hence f(—,1) ¢ coz([). O

n’n

1
n

5. Locally compact frames

In this section, we consider € := {a € L : Ta* is a compact frame} and ¢ := \/ €. We
show that if Fp_ (L) # (0), then |c is a locally compact frame and

\/ coz(p) =c¢= \/ coz(p).
w€Fp (L) 0€Fp, (L)

Next, we prove that Fp_ (L) = Fp__ (J¢) if ¢ is complemented.

Proposition 5.1. The following statements hold.

(1) ¢ =V con(Fp._ ().
(2) If Fp_ (L) # (0) then Fp (L) # (0) and ¢ = \/ coz(Fy,, (L)).

-1 1
Proof. (1). Consider f € Fp_ (L). For every n € N, we put v, = f(—o00, —]V[—, +00).
n

n
~1 1 ~1 1

From f( ) =], and T f(—, —) is a compact frame, we conclude that v, € € for every

n € N. Then coz(f) = Vypenyvn < ¢, it implies that Vg, (1)coz(f) < ¢. Now, assume

that @ € € and {fa}xea € Fp(L) with a = Vycpcoz(fy). From a* < coz(fy)* and
ta* is a compact frame, we conclude that 1z(f)) is a compact frame for every A\ € A.
Hence, {fi}xen € Fp, (L) € Fp_(L) and a < V coz(Fp_ (L)), which implies that ¢ <
Vyeg,_(r)ycoz(f), and hence ¢ = Ve, (1) coz(f).

(2). The proof is similar to the part (1). O
From the Proposition 5.1, we conclude the following corollary.
Corollary 5.2. Fp_ (L) # (0) if and only if € # {L} if and only if Fp, (L) # (0).
Remark 5.3. Consider a € € and f € Fp(L). Since ta* is a compact frame and
T=\ fpo=V\ flpgVda,

p,q€Q p,g€Q

we conclude that there exist p,q € Q such that f(p,q) V a* = T, which follows that
a < f(p,q). Therefore, for any a € € and any f € Fp(L) there exist p,q € Q such that
a << f(p,q).

Remark 5.4. Let J be a free ideal of Fp(L) and a € €. Since Ta* is a compact frame and
T= \/ coz(f) = \/ coz(f)Va*,
feJ feJ

we conclude that there exists an element f of J such that coz(f) Va* = T. Hence, if J is
a free ideal of Fp(L) or F5(L), then for every a € €, there exists an element f of J such
that a << coz(f).
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Lemma 5.5. The following statements hold.
(1) € is an ideal of L.
(2) If x < a then © << a for every (z,a) € L x €.
(3) Foranya €€, a=\, pn.

Proof. (1). Consider a,b € L such that b < a and a € €. From fTa* is a compact frame
and a* < b*, we conclude that 1b* is a compact frame, which implies that b € €. Hence
M is a down set in L. Also, for a,b € €, T(a V b)* = Ta* A b* is a compact frame, which
implies that a V b € €, that implies € is an up directed subset of L, Therefore, € is an
ideal of L.
(2). Consider (z,a) € L x € with z < a. If {ay}axea C L such that a < \/{ax}xea, then
\/(a:*\/a,\):a;*\/(\/ ay)=z"Va=T.
AEA AEA
From the first statement we conclude z € €, and hence Tz* is a compact frame. Since
{(z* Vax}aen C to*, we infer that there are A1, Aa...\, € A such that T = z* Vv (V5 ay,),
which implies that z < (\/%_, ay,). Hence z << a.
(3). Consider a € €. Since L is a completely regular frame, we conclude from the

statement (2) that a =\/,_, = =\, and so, the proof is now complete. O

Proposition 5.6. If Fp_ (L) # (0), then | ¢ is a locally compact frame.
Proof. Consider a €| ¢. Then a = V,,c¢(a A m). By Lemma 5.5, a Am € € and

aAm =\, com? < a for every m € €. Hence a = \/,_,x. This completes the
proof. O

Consider S C € and a € € is an upper bound of S. Since \/ S < a, we conclude that
\V S € €. Therefore, if S C € is bounded in €, then \/ S € €.

6. The relation between the generated subframe by coz(Fy_ (L)) and
coz(Fp, (L)) in L

In this section, we show that coz(Fp, (L)) and coz(Fp_ (L)) are the bases of |c.

Lemma 6.1. If Fp_ (L) # (0) then the following statements hold.
(1) For any f € Fp(L), if coz(f) < ¢ then there is a subset {fx}ren of Fp, (L) such

that coz(f) = Vxea coz(f).
(2) For any f € Fp(L), if coz(f) < ¢ then there is a subset {fa}ren of Fp. (L) such

that coz(f) = \/xea coz(f)).
Proof. (1). Consider f € Fp(L) with coz(f) < c¢. we have
coz(f) =coz(f) N ¢
=coz(f)A( \/ coz(g)), by Proposition 5.1

9€Fp (L)

= \/ (coz(f) A coz(g))

9€Tp, (L)
= \/ coz(fg).
9€Fp, (L)

Since, by Lemma 3.5, Fp, (L) is an ideal of Fp(L), we conclude that fg € Fp, (L) for
every g € Fp, (L) and every f € Fp(L).
(2). By the first statement, it is clear. O

A base B of a frame L is a subset of L such that every element of L is a join of elements
of B.
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Proposition 6.2. If Fp_ (L) # (0) then the following statements hold.

(1) coz(Fp, (L)) is a base of |c.
(2) coz(Fp_ (L)) is a base of |c.

Proof. (1). Consider z < ¢ and {fa}aen € TFp(L) with z = V,cp coz(fy). Since

coz(fy) < < ¢. Lemma 6.1 implies that there exists a subset By of Fp, (L) such
that coz(fr) = Vyep, coz(g) for every A € A. We put B = Jycp Ba then B C Fp, (L)
and z =\ ¢ coz(g). The proof is now complete.

(2). By the first statement, it is clear. O

By Proposition 6.2, we have the following Corollary.

Corollary 6.3. The subframes produced by coz(Fp (L)) and coz(Fp, (L)) in L are the
same.

7. The relationship between F5_ (L) and Fp_ (| ¢)
In this section, we assume that Fp__ (L) # (0) and ¢ =/ €.

Lemma 7.1. The map 6 : Fp(L) — Fp(lc) given by O(f) = flc is an f-ring homomor-
phism.

Proof. Straightforward. O
Lemma 7.2. If f € Fp_ (L) then f(r,s)Ve=T for everyr,s € R withr <0 < s.

Proof. Consider f € Fp (L) and r,s € R w1th r < 0 < s. There exists an element

n of N such that (=£,1) < (r,s). Since 1 f(=%,2) is a compact frame, we infer that

—1 1
f(—o0, 7] Vv f[ﬁ’ +00) € €, which implies that

Flrs) Ve f(Tr ) Ve (T, )V f(o0, ]V S, +oo) = T.

The proof is now completed. O

For every a,b € L, we put [a,b] :== {x € L : a < x < b}. Consider 0 # f € Fp_ (L),
r,s € Rwithr <0< sand S C[f(r,s)Ac,c| with V.S = c. By the Lemma 7.2,

T=cVf(rs) = \/ (zV f(r,s)).
€S

Consider n € N such that (=1,1) < (r,s). From 1f(=},1) is a compact frame, we

conclude that 1 f(r, s) is a compact frame, it implies that there exist x1, x9, ...,z € S such
that T = f(r,s) V \/le x;. Since z; € S C [f(r,s) A ¢, ], we have

k k
= (cA f(r,s)) \/ /\a:i)):\/xig\/S:c.
i=1 i=1
Therefore [f(r, s) A ¢, c] is a compact frame. Hence f|c € Fp__(lc), which implies that
0o = 0l3, (1) T (L) = 3"? (o)
is an f-ring homomorphism. If f € ker 6, then f|.(—: Loy — (1 1y A ¢ =, therefore

n n’n
f(=%.%) = cfor any n € N. By Lemma 7.2, f(~4,1) = f(=1. 1) Ve =T forany n € .
We show that f = 0. C 0 # z € R, there is an element m in N, such that x ¢ (_57%) ,
we infer that
1 1
—,—) =1
m’m

f{zy) = f{e) AT = f({zh) A f(=

We infer that f = 0. Hence, we have
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Proposition 7.3. The map
900 = 9\%,00 (L) * grfpoo (L) — grfpoo (i,t)
is an f-ring monomorphism.

In what follows, for every f € Fp(lc), we define the real-trail f:R— L on L by

. f{zHver ifx=0
ty(x) = :
f{z) itz Ao
Lemma 7.4. If ¢ is complemented and f € Fp(lc) then the following statements hold.

(1) conlpr,) = cos(f) and =(p;,) = =(f) v <.
(2) Soff‘c =f.
(3) f € Fp_(lc) if and only if 0i; € Fro (L).

Proof. (1) and (2) are clear.
(3). If f € Fp__ (L), then [f(—2, 1), c] is compact, for every n € N. Hence 1 (f(—2,1)v

n’n
1 1

) = Tgoff(—f =) is compact for every n € N, therefore vi; € Fp__(L). Conversely, if

n’n

i, € Fp__ (L) then, by the second statement and Proposition 7.3, @i le=feTFp_(L). O
Proposition 7.5. If ¢ is complemented, then
0o = 0lg, (1) : Tpoo (L) = T (J0)
is an f-ring isomorphism.
Proof. By Proposition 7.3 and lemma 7.4,  is an f-ring isomorphism. g

Proposition 7.6. If ¢ is complemented, then there is a locally compact frame L' such that

Proof. We consider L' = |¢, by Propositions 5.6 and 7.5, it is obvious. g

Lemma 7.7. If ¢ is complemented, then f € Fp, (lc) if and only if P, € Iy (L).

Proof. [ € Fp, (l¢) if and only if [2(f), ¢] is compact if and only if 1(z(f) V) is compact
if and only if Tz(gpff) is compact, by Lemma 7.4, if and only if v, € Fp, (L). O

Proposition 7.8. If ¢ is complemented, then
O =015, (1) Fpi(L) = Fp,e(Jo)
is an f-ring isomorphism.
Proof. By Proposition 7.5 and Lemma 7.7, 6k is an f-ring isomorphism. g

Proposition 7.9. If ¢ is complemented, then there is a locally compact frame L' such that
Fpi (L) = T (L).

Proof. Put L' = |c. O
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