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ABSTRACT 
 

Interaction of microorganisms and building materials, particularly with concrete and stone, were a main topic of interest for 

many researchers. Initially, studies focused on degradation of concrete by organic acids, produced by microbial acidification 

such as microbial induced corrosion. This was followed by prevention of microorganisms fouling on building materials. 

However, the interaction of microorganisms with materials is not necessarily negative. Recent research in the field shows that 

microorganisms can have positive effects on concrete and stone, such as in biological cleaning and biocalcification, which 

resulted with stronger and more durable materials. Further, studies revealed that it was possible to develop smart-cement based 

materials that could self-heal microorganisms by leveraging metabolic activity of microorganisms. Through the development 

of this so-called smart bio-based mortar, it became possible to improve the fresh state performance of the mix. This study 

focusses on design of a cement-based mortar with improved rheological properties with use of Bacillus megaterium (B. 

megaterium) and Bacillus subtilis (B. subtilis) cells. The bacterial cells were directly incorporated to the mix water and 

influence of cells on viscosity and yield strength was evaluated by rheological tests. In addition, the influence of bacteria 

dosage, water to cement ratio (w/c), use of superplasticizers and fly ash on performance of biological VMA were investigated. 

Our results showed that the apparent viscosity and yield stress of the cement-paste mix were increased with the addition of the 

microorganisms. Moreover, B. megaterium cells were found to be compatible with both fly ash and superplasticizers however 

B. subtilis were only be able to increase the viscosity when they were incorporated with superplasticizers. 
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1. INTRODUCTION 
 

Recently, the use of high-performance concrete (HPC) mixes with improved workability, strength, and 

durability, became more popular in the field. Generally, HPC requires the use of admixtures such as 

superplasticizers and viscosity modifying agents (VMAs) to provide high strength without sacrificing 

from workability. While additives have a significant impact on most of the concrete’s properties, the 

majority of them are chemicals and their production processes have a consequential influence on the 

environment. Ozcelik et al.[7] showed that while producing a concrete mixture containing 350 kg/m3 of 

cement and 8.8 kg/m3 of superplasticizer, approximately 95% of the CO2 emissions come from cement 

production and 1.7% from superplasticizer production. In addition, 95% of fuel consumption was used 

for cement production, while 12% consumed during production of superplasticizers. Considering the 

impact of concrete production on CO2 emissions and fuel consumption, chemical additives could be 

listed right after cement production. 

 

Another chemical additive used in high flowable mixes is VMAs. VMAs are usually produced from 

polyvinyl alcohol and synthetic polymers; used to improve robustness and stability in fresh concrete 

[11]. Compared to superplasticizers VMAs have a similar effect on CO2 emissions and fuel 

consumption because they pass through the same production process. Due to these facts and concerns 

sustainability, increased the demand for bio-based admixtures. Research showed that usually more 

money spent on chemical additives in comparison with biological admixtures [14]. 
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Bio-based admixtures used in concrete production to improve workability, are generally produced from 

acrylic polymers and polysaccharide-based biopolymers [10, 12] These materials used as VMAs are 

mostly macromolecules containing monosaccharide side chains and anionic carboxylate groups linked 

to long polysaccharide chains[17]. Polysaccharide and cellulose-containing biological additives and 

bacterial fermentation products frequently used are welan gum [9, 14, 18], diutan gum [17] xanthan 

gum[14], which can increase the viscosity of fresh cement-paste by three different mechanisms [10]: 

 

Long polysaccharide chains may absorb water and the swollen polysaccharides can increase the 

viscosity of the mixture water, and thus the viscosity of the cement paste. Long-chain polysaccharides 

can block the motion of water molecules by attracting neighbor polysaccharides near them and can form 

a gel that increases the viscosity of the material.  When used in high doses, they may agglomerate and 

increase viscosity. According to these mechanisms, VMAs can reduce segregation and bleeding of fresh 

concrete, while providing the necessary flowability in pumping processes when used with 

superplasticizers [17]. Sonobi [18] studied the effect of diutan gum on the rheology of cement-based 

materials containing fly ash compared to welan gum and found that both additive materials could 

increase the viscosity and yield stress. As a result of this study, it was determined that diutan gum 

exhibited a higher viscosity at a low shear rate than mixtures containing welan gum, which was 

attributed to the molecular structure of diutan gum. In addition, when fly ash was used, a lower decrease 

in yield stress was observed compared to mixtures containing only diutan gum without fly ash [18]. 

 

However, both welan gum and diutan gum requires labor-intensive fermentation process that can 

increase the production rate and cost, which limits the use of these materials in the field [8, 14]. Another 

possible bio-based VMA could be bacterial cell walls. Pei et al. [13] showed that use of Bacillus subtilis 

cells walls could increase the viscosity of cement paste. However, extraction of cell walls again requires 

processing. In fact, bacteria are known to be VMAs not only their complicated cell wall structure, they 

can influence rheology as being microswimmers [16].   

 

This paper summarizes an extensive study undertaken to investigate the possible use of B. megateirum 

and B. subtilis cells to improve rheology of cement-paste. Results showed that the use of cells without 

any physical intervention could actually increase viscosity compared to control cement paste without 

microorganisms. Moreover, up to a certain dosage, these microorganisms could also decrease yield 

strength while increasing viscosity. 

 

2. MATERIALS and METHODS  

 

2.1. Microorganism Selection and Growth 
 

B. megaterium (American Typical Cell Cultures- ATCC 14581) and B. subtilis (ATCC 6051) were 

selected to be used as a VMA in cement paste. The cells were grown in a medium containing Nutrient 

Broth (8g) per 1liter DI water and pH was adjusted to 8. First, both B. megaterium and B. subtilis cells 

were inoculated in 600 mL of abovementioned nutrient medium and incubated aerobically with shaking 

conditions (180 rpm) at 30°C. The cells were kept under incubation until they reached to stationary 

phase to a cell concentration of 2 x 109 CFU/mL (~40 hours). Then, both cells were collected from the 

culture by centrifuging at 6300g for 15 min. Then the cells were washed twice by PBS (Phosphate 

buffered solution) and kept at 4°C until testing. 

 
2.2. Preparation of Cement Paste Samples  

 

Cement paste samples were prepared by Ordinary Portland Cement (OPC) CEM I 42.5 R. To evaluate 

the influence of w/c ratio on the efficiency of cells, the mixtures were prepared with 2 different w/c 

ratios: 0.36 and 0.50. In addition, to determine the effects of superplasticizers and fly ash on the 

performance of the biological VMA, a polycarboxylate superplasticizer (by 0.1 kg/kg cement) and F-



Azima and Başaran Bundur / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 20 (3) – 2019 
 

254 

type fly ash (by 20% of the cement weight) was added to samples. To investigate the effect of 

microorganisms on the rheology of the cement paste, the abovementioned collected B.megaterium and 

B. subtilis (see Section 2.1) cells were directly added to the mixing water. The number of cells were 

adjusted in terms of percent weight of cement, such as 0.05% and 0.10%, of the cement weight. The 

cement paste samples were prepared according ASTM C305-14 Standard Practice for Mechanical 

Mixing of Hydraulic Cement Pastes and Mortars [3]. The cells were added to mixing water prior to 

mixing, homogenized with hand-mixing for 30s, and then mixed with cement. In case of superplasticizer 

addition, the cells were added to initial 2/3rd of the mix water and the superplasticizer was added to the 

1/3rd of the mix water. The last 1/3rd protion of the mix water including superplasdticizer was added 

during the last 60s of the mixing. 

 

2.2. Rheological Measurements 

 

Upon mixing, the cement paste samples were first mixed for 60 seconds to ensure the homogeneity of 

the mixtures. Then, a pre-shear stage where the shear rate was kept constant at 100s-1 for another 60s.  

Following the pre-shear, the analysis was conducted by increasing the shear rate from 100s-1 to 1s-1 and 

the yield stresses and viscosity were recorded. The upcurve was chosen for evaluation of the rheological 

behavior of the samples. The rheological behavior of the cement paste was evaluated using the Bingham 

model (𝜏 = 𝜏𝑜 +  𝜇𝛾̇). Where τ0 is the yield stress (Pa), μ is the plastic viscosity (Pa.s ), and 𝛾̇ is the 

shear rate (𝑠−1).  

 

An alternative model also should be considered, since the shear-thinning or shear- thickening behavior 

of mixes were unknown. In case of a shear thickening behavior, the flow curve would not be simply 

explained by Bingham equation. Instead, a modified Bingham equation was used to analyze shear-

thickening cement paste samples (𝜏 =  𝜏 + 𝜇𝛾 + 𝑐̇ 𝛾̇𝑛), which could also explain the shear thinning 

behavior as well [6]. Where τ is the shear stress (Pa), τ0 is the yield stress (Pa), µ is plastic viscosity, 𝛾̇ 

is the shear rate (s-1) and c is second degree parameter (Pa.s2) [6]. When c/ µ > 0 the materials were 

classified as shear-thickening and when c/ µ < 0, the materials exhibited shear thinning behavior.  

 

To evaluate the time-dependent behavior of cement-paste, the samples were re-tested by increasing the 

shear rate from 100s-1 to 1s-1 without premixing after 10 minutes of waiting and the change in viscosity 

was recorded. This waiting period simply corresponding to 20 minutes upon mixing which is mainly 

initiation of induction period [4]. 

  

3. RESULTS and DISCUSSION 

 

This study was undertaken to evaluate the influence of B. megaterium and B. subtilis cells on rheological 

properties of cement paste. Figure 1 to Figure 3 show the yield stress and viscosity curves under 

increasing shear stress for cement paste samples including different bacteria content, fly ash (20% by 

weight of cement) and superplasticizer (1% of cement weight) at a w/ c of 0.36.  

 

All cement paste samples exhibited a shear-thinning behavior regardless of the bacteria dosage and could 

be modelled by Bingham equation (see Section 2.2). Incorporation of microorganisms did not change 

the material behavior such that the cement paste samples containing bacterial cells also exhibited a 

shear-thinning response. Addition of cells increased the viscosity of the cement paste regardless of the 

w/c. This might be directly related to increasing molecular weight of polysaccharides and 

peptidoglycans in the cells structure resulting in an increasing intertwining of chains and leading to a 

higher water retention at lower shear-rates [12]. However, with increasing shear rate the chains would 

break and releasing the water to the mix, leading to a more pronounced decrease in viscosity compared 

to low shear rates. In addition, these cells are negatively charged, thus they may also interact with 

calcium ions present in the environment and absorbed on the cement particles. This might improve the 

flocculation and agglomeration of the solids in the mix, reducing the flowability. However, with 
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increasing shear rate the chains (or bonds) would break and releasing the water to the mix, leading to a 

more pronounced decrease in viscosity compared to low shear rates. In particular, the B. subtilis cells 

were found to be more efficient in terms of increasing the viscosity. Previously, Pei et al.[13] observed 

an increase in apparent viscosity approximately 40% when only B. subtilis cell walls (0.34% by weight 

of cement) were incorporated in cement paste at a w/c of 0.50 at low shear rates (<40 s-1). Herein, the 

use of vegetative B. megaterium (at a dosage of 0.1% by cement weight) and B. subtilis (at a dosage of 

0.1% by cement weight) cells resulted with a 62% increase at corresponding shear rates. The difference 

of using active cells compared to the incorporation of only bacterial cells walls could be explained by 

the theory of pushing and pulling effect of bacteria cells. Rafaï et al. [15] showed that motile microalgae 

cells could increase the effective viscosity of a suspension. Moreover, the live cells showed a 

significantly higher efficiency than the dead cells, which suggested that the behavior was related to 

motility rather than cell structure [15].  Herein, the vegetative cells also showed a higher efficiency 

compared to what has been found in the literature, thus this might indicate that motility of these cells 

could actually impose a puller effect, also inducing additional resistance to flow. Moreover, the 

resistance of cells to higher shear rates. Further research has to be conducted to analyze the kinematics 

of vegetative gram-positive bacterial cells and how they actually influence the hydrodynamics of cement 

paste suspension. 

 

 
(a) 

 
(b) 

Figure 1. Rheological test results for cement paste samples at a w/c of 0.36 (a)shear stress response with increasing shear rate 

(b) change in viscosity with increasing shear rate. Cell dosages were used as 0.05% and 0.1% per weight of cement. 

Mega: Bacillus megaterium and Sub: Bacillus subtilis. 

 

Comparing the efficiencies of these 2 different strains, B. megaterium showed a better performance 

compared to B. subtilis considering their compatibility with fly ash and superplasticizers (see Figure 2 

and 3). B. megaterium is a gram-positive strain having a thick cell wall and long rod-shaped with chain-

like arrangement bacteria [2]. In particular, the “megaterium” name was given because there are one of 

the largest bacteria in the soil and it is classified in Bacillus sp. due to its ability for forming endospores 

and resistance to extreme conditions [19]. Yet, this strain was selected due to its size and thick cell wall, 

which presumably have a relatively high volume of polysaccharides and peptidoglycans. B. megaterium 

cells were used to improve strength of mortar [1, 2] but their influence on rheology is not known. As so, 

B. megaterium cells were able to increase the viscosity regardless of the w/c and bacteria dosage used 

in the mix.  

 

The interaction of cells with fly ash exhibited a rather different trend, especially at low w/c. Since fly ash 

is finer than cement particles, adding fly ash to the mixture reduces the inter-particle distances and 

increases the pressure between particles. While this pressure leads to the removal of the water from 

inter-particle spaces, it also provides a flowing effect on cement paste [5]. Thus, incorporation of fly ash 

generally improves workability and provides stability with increasing viscosity, and in some cases the 
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yield strength of the paste. Incorporation of fly ash by 20% for the weight of cement only influenced the 

viscosity and the yield stress of cement paste at a w/c of 0.36 such that both of these parameters were 

higher compared to its counter par near cement paste. In such a case, the fine fly ash particles acted as 

a filler material since there was not enough fluidity that would enable the spherical particles to flow and 

improve workability. However, at higher w/c, the interaction of cells with fly ash was similar to the 

samples without any fly ash. Yet, the exact reason is not known, the interaction of fly ash and cells might 

depend on (a) particle packing density (b) workability of the mix and (c) molecular weight of the cells.  

 

 
(a) 

 
(b) 

 

Figure 2. Rheological test results for cement paste samples including 20% fly ash (FA) by cement weight at a w/c of 0.36 (a) 

including Bacillus megaterium cells (b) including Bacillus subtilis cells. Cell dosages were used as 0.05% and 0.1% 

per weight of cement. 

 

The higher efficiency of B. megaterium compared to B. subtilis when they were incorporated with 

superplasticizers could be explained by its cell size and composition. Yet, this strain was selected due 

to its size and thick cell wall, which presumably have a relatively high volume of polysaccharides and 

peptidoglycans. Thus, it might lead to higher water retention leading to a higher increase in yield stress 

and viscosity. 

 

 
(a) 

 
(b) 

 
Figure 3. Rheological test results for cement paste samples including 1% superplasticizers (SP) by cement weight at a w/c of 

0.36 (a) including Bacillus megaterium cells (b) including Bacillus subtilis cells. Cell dosages were used as 0.05% 

and 0.1% per weight of cement. 
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The influence of microorganisms as a VMA was less pronounced at 0.50 (see Figure 4). Herein, both B. 

megaterium and B subtilis cells showed a similar behavior. This was directly related to increasing the 

fluidity of the mix. Even though the flowability of the mix increases, the bacterial cells were able to 

increase the viscosity of the material by 7% event with of 0.05% cells by weight of cement. It is simply 

the cells could not overcome the high fluidity of the mix. The increased amount of water content in the 

mix that might limit the attractive forces between the strains chain [14]. Even in this case, the viscosity 

of the mix was even the doubled when bacteria dosage was increased to 0.1% of cement weight. Similar 

to low w/c samples, B. megaterium exhibited a higher efficiency compared to B. subtilis in FA amended 

samples at a w/c of 0.50 (see Figure 5). In fact, in both cases increase in B. subtilis concentration resulted 

with lower viscosities even compared to neat paste. Further rheological studies should be conducted 

with different instrument geometries and measuring methods to actually define the exact influence of 

cells on rheology and their interaction with FA. 
 

 
(a) 

 
(b) 

Figure 4. Rheological test results for cement paste samples at a w/c of 0.50 (a)shear stress response with increasing shear rate 

(b) change in viscosity with increasing shear rate. Cell dosages were used as 0.05% and 0.1% per weight of cement. 

Mega: Bacillus megaterium and Sub: Bacillus subtilis. 

 

 
(a) 

 
(b) 

Figure 5. Rheological test results for cement paste samples including 20% fly ash (FA) by cement weight at a w/c of 0.50 (a) 

including Bacillus megaterium cells (b) including Bacillus subtilis cells. Cell dosages were used as 0.05% and 0.1% 

per weight of cement. 
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Incorporation of superplasticizers completely changed the rheological behavior of cement paste samples 

regardless of the w/c used (see Figure 6). The use of a very strong polycarboxylate superplasticizer 

resulted with a shear-thickening behavior rather than shear thinning behavior previously observed in 

rest of the samples. In this case, the shear-thickening cement paste behavior mix would not be simply 

explained by Bingham equation (see Section 2.3). Instead, a modified Bingham equation was used to 

analyze shear-thickening cement paste samples [6]. In addition, high flowability in these samples, 

particularly in neat control paste, lead excessive segregation which might interfere test results. This 

effect was also eliminated at low shears along with addition of cells. It should be noted that, the dosage 

of superplasticizer was kept constant (0.1% by cement weight) even at high w/c mixes (0.50), which 

yielded a very flowable mix. Moreover, incorporation of a very strong superplasticizer yielded negative 

viscosity values at very slow shear rates. High flowability of the mix resulted with inconsistencies in 

rheological parameters such that negative viscosity values were recorded at low shear rates. This might 

indicate possible segregation in the mix and leading to invalid test results. Thus, any increase in viscosity 

at low shear rates might also be an indication of reduced segregation. While use of superplasticizer the 

neat paste with a w/c of 0.50 lead to an instable rheological in the mix (see Figure 6), incorporation of 

cells rather increased the viscosity and reduced the instability, leading to a more homogenous behavior. 

 

 
(a) 

 
(b) 

Figure 6. Rheological test results for cement paste samples including 1% superplasticizers (SP) by cement weight at a w/c of 

0.50 (a) including Bacillus megaterium cells (b) including Bacillus subtilis cells. Cell dosages were used as 0.05% 

and 0.1% per weight of cement. 

 

4. CONCLUSIONS 

 

This study represented the results of an extensive study undertaken to evaluate the possible use of 

microorganism VMA, or more precisely as a rheology modifying agent. The flow behavior of cement 

paste samples including B. megaterium and B. subtilis cells were evaluated through rheological tests. 

Moreover, the compatibility of cells with the use of superplasticizer and fly ash, as well as the influence 

of w/c were investigated. Incorporation of cells increased the plastic viscosity regardless of the w/c used 

for the mixes. This influence was attributed to the interwinding of peptidoglycan chains leading to an 

increase in viscosity of mix water. Increasing w/c lead to a decrease in the performance of cells in terms 

of being a RMA. The influence of cells was much more pronounced at a w/c of 0.36 than it was at 0.50. 

B. megaterium showed a better performance compared to B. subtilis considering their compatibility with 

fly ash and superplasticizers. While B. megaterium cells were compatible with both additives B. subtilis 

cells were not be able to improve viscosity in mixtures prepared by superplasticizers, particularly at high 

w/c. This novel study could be considered as preliminary evaluation of a bio-based grout with improved 

rheology. Although, it might not be possible to drive a quantitative statement in terms of increase in 

viscosity, we could still conclude that the bacterial cells, particularly B. megaterium, could serve as 
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VMAs in cement-based materials. Further studies have to be conducted to understand the other possible 

parameters of cells influencing the rheology such as the effect of cells on drag forces and particle-to-

particle interaction. With explotion of these mechanisms will lead to possible use of this grout in 

practicle applications. 
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