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Abstract 

The structural optimization problem mostly deals with the weight minimization of the structural system. This issue can be 
assessed from the size, layout and topology aspects. No matter which aspect(s) is targeted, to solve the problem an 
optimization technique is required. In the last decades the metaheuristic techniques, as the non-gradient optimization 
algorithms, are widely applied on solving these classes of problems. In the structural optimization, the most time consuming 
part of the process is the objective function evaluation. Based on this fact, in the current work, metaheuristic techniques 
are divided into three main groups as single phase, double phase and multi-phase algorithms. Then based on the author 
knowledge, three representative methods are picked for each group and their search performance comparatively inspected 
on solving size, shape and topology optimization of truss structures. To meet this aim, Integrated Particle Swarm 
Optimization (iPSO), Teaching and Learning Based Optimization (TLBO) and Drosophila Food-Search Optimization (DSO) 
algorithms are selected, respectively. Different properties like accuracy, convergence rate and complexity of the algorithms 
are investigated. The outcomes are provided via illustrative diagrams and tables. Based on the achieved results, DSO shows 
the most complexity level among the other algorithm while the iPSO and TLBO can outperform it on both accuracy and 
convergence rate. Consequently, iPSO presents a higher accuracy level on finding optimal solutions and TLBO with the 
lowest standard deviation value through the process shows the highest level of stability on finding optimal solutions. 
Keywords: Structural Optimization, Metaheuristic Algorithms, Constrained Optimization, Performance Comparison 

ÜÇ SEZGİSEL YÖNTEMİN KAFES SİSTEMLERİN TOPOLOJİ, GEOMETRİ VE 
BOYUT OPTİMİZASYONU ÜZERİNDE PERFORMANS KARŞILAŞTIRMASI 

Özet 

Bir yapısal optimizasyonda elemanların topolojisi, geometrisi veya kesitlerin boyutları dikkate alınarak sistemin 
ağırlığının minimize edilmesi amaçlanmaktadır. Çözüm tekniği olarak bu alanda son yıllarda üzerinde oldukça sık çalışılan 
sezgisel (metaheuristic) yöntemler geliştirilmiş ve kullanılmıştır. Yapısal optimizasyonda, amaç fonksiyonunun 
değerlendirmesi her iterasiyonda bir (ya da birden fazla)  yapısal analiz gerektirmektedir ve dolaysıyla çözüm sürecinin 
en çok zaman alan kısmını oluşturmaktadır. Bu gerçeği dikkate alarak, mevcut çalışmada bu yöntemler, tek fazlı, çift fazlı 
ve çok fazlı algoritmalar olarak üç ana gruba ayrılmış ve her gruptan bir yöntem seçilmiştir. Daha sonra bu yöntemlerin 
arama performansları kafes yapıların boyut, geometri ve topoloji optimizasyonu üzerinde karşılaştırılmıştır. Entegre 
edilmiş Partikül Sürüsü Optimizasyon (EPSO), Öğretme ve Öğrenme esaslı Optimizasyon (ÖÖO) ve Derosofila Yiyecek arama 
Optimizasyon (DYO) sırasıyla seçilen algoritmalardır. Algoritmaların, yakınsama hızı, dikkati ve karmaşıklığı gibi farklı 
özellikleri değerlendirilmiştir. Elde edilen sonuçlara göre, DYO diğer algoritmalara kıyasen en yüksek karmaşıklık 
indeksine sahiptir, ayrıca EPSO ve ÖÖO dikkat ve yakınsama hızı açısından daha iyi performans göstermektedirler. Üstelik, 
EPSO, optimum çözümler bulma konusunda daha yüksek bir dikkat seviyesine sahiptir. Optimizasyon sürecinde ÖÖO en 
düşük standart sapma değerine sahiptir ve dolaysıyla optimum çözümler bulma konusunda en yüksek kararlılık seviyesini 
göstermektedir. 
Anahtar Kelimeler: Yapısal Optimizasyon, Sezgisel Algoritmalar, Kısıtlı Optimizasyon, Performans Karşılaştırması 
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1 Introduction 

The structural optimization generally deals with weight 
minimization of the structural systems. This aim can be 
met via considering different characteristics (e.g. size, 
shape and topology) of the desired structure. The size 
optimization tries to cover this aim via choosing the most 
proper cross-sectional areas for members of the system. 
The layout optimization deals with find the most proper 
nodal coordinates of the structural joints to reach on an 
optimal shape for the system. The topology optimization 
tries to find most proper configuration for the structural 
system via eliminating the unnecessary structural 
members. It is obvious that for the weight minimization 
problem, the objective function for all of them is the 
weight of the system. 

The size optimization as the plainest approach can 
include either discrete or continuous search domain. 
However, for more realistic conditions the decision 
variables in this type of optimization problems should be 
selected from the discrete sets [1]. Generally, the number 
of probable unstable mechanisms in this kind of 
approaches is considerably low. However, the additional 
criteria (e.g. buckling criterion) on solving this class of 
problems can rise the complexity level of them [2]. 
Several investigations made in this field are available in 
the literature [3-5]. In the layout optimization of the 
structure, the nodal coordinates of the system are 
considered as the problem’s decision variables [6-9]. 
Since the coordinate system is monolith, these cases 
generally deal with continuous search spaces. The 
difficulties in such approach can be emerge due to node 
proximities that causes to provide extreme low-length 
members with excessive rigidity that might negatively 
affect the analysis of the system. The topology 
optimization deals with finding most optimal 
configuration of the structural system via removing the 
unnecessary members from the system. One of the most 
complexities in handling such problems is to face 
excessive number of unstable mechanisms during the 
optimization process. Also, since the configuration of the 
structure is changed permanently the required coding 
system to handle existed varieties in the configuration is 
much more complex than two other approaches [10]. In 
comparison with other two approaches this class of 
optimization problems are less studied on the literature 
[10-13]. 

It is clear that for solving any optimization problem an 
optimization technique is required. The optimization 
techniques, generally, can be divided into two main 
groups: heuristic and non-heuristic approaches. The 
heuristic-based algorithms generally are rapid and 
accurate since they apply the continuous (or at least 
partially continuous) objective function and its gradients. 
But in several engineering optimization problem finding 
such objective function and/or the higher order 
gradients are very difficult or even impossible [14]. 
Subsequently, the metaheuristic algorithms can be 

employed as an alternative choice for such problems. 
These techniques mostly mathematically inspired from 
the natural events, physical rules or social behaviors. 
Metaheuristic algorithms are non-gradient based 
methods, so they don’t require any continuous objective 
function and/or its higher gradients. Metaheuristic 
methods have population-based and iterative strategy in 
which while colony numerically search the domain each 
agent in each iteration tries to gradually improve its 
location [15]. One can chronologically list some of these 
methods as Differential Evolution (DE) [16], Ant Colony 
Optimization (ACO) [17], Hunting Search Algorithm 
(HsA) [18], Drosophila Food-Search Optimization (DSO) 
[19], Search Group Algorithm (SGA) [20], The Runner-
Root Algorithm (RRA) [21] Quantum inspired Social 
Evolution (QSE) [22] and virus optimization algorithm 
(VOA) [23]. Each of cited algorithms has own affirmative 
and weak points in searching the different problem 
domains indeed their performance can be changed from 
case to case. These techniques as a global optimizer tools 
mostly are assessed on the non-constraint mathematical 
functions in their first emergence. In this type of 
problems objective function evaluation (OFEs) is just 
done by evaluating a certain function (e.g. polynomial or 
harmonic). So, the number of OFEs does not seriously 
affect the computational time. However, in the complex 
constrained engineering cases, like structural 
optimization problems, each objective function 
evaluation requires a structural analysis (e.g. finite 
element-based analysis) which is highly time consuming 
in comparison with calculation of fairly simple 
mathematical function. Thus, in this class of optimization 
problem the number of required OFE can be designated 
as the determinative factor on picking suitable method as 
the optimizer tool. So that, one method despite the 
presenting adequate performance on solving the simple 
mathematical cases can demonstrate unexpected search 
capability on the constrained structural problems. 
Accordingly, there are several comparative studies are 
performed on different techniques to assess them on the 
structural optimization field [24-27]. 

In the current study metaheuristic methods based on the 
number of objective function analyses (OFEs) performed 
in each iteration are divided into three main categories, 
those which perform single objective analysis (SOA) in 
each iteration, those which accomplish double objective 
analyses (DOA) in each iteration and those which make 
multiple objective analyses (MOA). Subsequently, three 
repetitive algorithms belong to SOA, DOA and MOA 
categories are selected (according to the author’s 
knowledge) and their performances are verified on size, 
layout and topology optimization of the structural 
optimization problems.  

2 Methods description 

To provide and initial insight about the selected 
metaheuristic techniques this section is devoted to 
briefly explain the applied and assessed methods.  
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2.1 Teaching and Learning Based Optimizer 
(TLBO) 

The teaching and learning based optimization introduced 
by Rao et al. [28] was inspired from the knowledge flow 
inside a classroom. The teacher educational influence on 
the students is considered as important factor in this 
method. Like the other natural-inspired algorithms, 
TLBO is a population based technique that begins with a 
set of arbitrary agents which are potential solution 
candidates. These random candidates are called learners. 
This algorithm is a two-phase technique included 
teaching and learning phases. The first phase 
concentrates on the transferring of knowledge from 
teacher to the learner(s) while second phase simulates 
the learning progression between the students through 
their pairwise communications. In the teaching phase all 
agents are assessed according to their objective function 
values then the best of them is chosen as the teacher. 
Afterward all agents adjust their positions considering 
the average knowledge grade of the classroom. If the 
updated situation is superior to prior location the new 
one is hold otherwise it is rejected. To perform leaning 
phase, an arbitrary pair of students is chosen and the 
agent (student) with lower knowledge level moves 
toward the more knowledgeable agent. Similarly, if the 
updated position is better than the prior one it is 
accepted and otherwise it is rejected. Connected with the 
given information TLBO algorithm is mathematically 
expressed as below: 

𝐗(𝑛𝑒𝑤,𝑖) = 𝐗𝑖 + 𝑟(𝐗𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹𝐗𝑚𝑒𝑎𝑛) 

if         𝑓(𝐗(𝑛𝑒𝑤,𝑖)) < 𝑓(𝐗𝑖)     𝐗𝑖 = 𝐗(𝑛𝑒𝑤,𝑖) 

if         𝑓(𝐗(𝑛𝑒𝑤,𝑖)) ≥ 𝑓(𝐗𝑖)     𝐗𝑖 = 𝐗𝑖 

(1) 

where, 𝐗(𝑛𝑒𝑤,𝑖) is the updated location of ith agent, 𝐗𝑖 is its 
current position, TF presents the teaching factor and can 

be either 1 or 2 also 𝑓(𝐗(𝑛𝑒𝑤,𝑖))  returns updated value of 

ith agent while 𝑓(𝐗𝑖) shows the current objective value of 
ith agent.  

Also, 𝐗𝑚𝑒𝑎𝑛is the mean of all agents and it is defined as 
below: 

𝐗𝑚𝑒𝑎𝑛 = [𝑚(∑𝑥𝑗
1

𝑛𝑝

𝑗=1

) ,𝑚(∑𝑥𝑗
2

𝑛𝑝

𝑗=1

) ,… ,𝑚(∑𝑥𝑗
𝑛𝑑

𝑛𝑝

𝑗=1

)] (2) 

in which, np and nd indicate the number of the students 
and the problem dimension, respectively. m(.) shows the 
mean value of any inputs. The learning phase 
mathematically is defined as below: 

𝐗(𝑛𝑒𝑤,𝑖) = 𝐗𝑖 + 𝑟. ( 𝐗𝑖 − 𝐗𝑗)      𝑖𝑓    𝑓( 𝐗𝑖) ≤ 𝑓( 𝐗𝑗) 

𝐗(𝑛𝑒𝑤,𝑖) = 𝐗𝑖 + 𝑟. ( 𝐗𝑗 − 𝐗𝑖)      𝑖𝑓    𝑓( 𝐗𝑖) > 𝑓( 𝐗𝑗) 
(3) 

Where, r is the random scalar and 𝐗𝑖 and 𝐗𝑗 are two 

independent members of the population. If 𝐗(𝑛𝑒𝑤,𝑖) 
improves the objective prior value, it is accepted 
otherwise it is rejected and 𝐗𝑖 is hold. For more 
clearness, the pseudo code for TLBO is demonstrated in 
Table 1: 

 

Table 1. The pseudo code for TLBO.   

Generating random agents (n agents) 

while (termination conditions are not met) 

  

Selected the best agent as the teacher 

   for (each agent) 

          update each its location based on the teacher 

position via Eq. (2) 

          evaluate updated(new) agent 𝑓( 𝐗𝑖) 

          if new location of the ith agent is improved 

               maintain its new location           

          else 

               hold its prior location 

          end 

 

T
ea

ch
in

g
 P

h
a

se
 

         select random jth agent while (i≠j) 

          if the of ith agent is better than jth agent  

               ith agent getting far from the jth agent using 

Eq. (3)     

          else 

              ith agent moves toward the jth agent based on 

Eq. (3)             

          end 

          evaluate updated(new) agent 𝑓( 𝐗𝑖) 

           if new location of ith agent is improved 

                preserve its new location           

           else 

                reset it to its previous location 

           end 

    end 

end 
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2.2 Drosophila food-search optimizer (DSO) 

The Drosophila food-Search optimizer (DSO) algorithm 
is the metaheuristic search method which mimics the 
food search treatment of the insect with the same name 
as Drosophila Melanogaster. This technique is population 
based method and it has been introduced for the first 
time by Das and Singh [19]. In this method two key 
paradigms are utilized to search the problem search 
space as Modified Quadratic Approximation (MQA) and 
neighborhood food searching. The neighborhood food 
searching pattern is formulated as follow: 

𝑈𝑖,𝑘 = 𝑉𝑖,𝑘 + |𝑉𝑟3,𝑘 − 𝑉𝑟4,𝑘| 

  

𝑊𝑖,𝑘 = 𝑉𝑖,𝑘 + |𝑉𝑟3,𝑘 − 𝑉𝑟4,𝑘| 𝑓𝑜𝑟 𝑘 = 𝑟1 and 𝑟2; 

  

for 𝑗 ≠  𝑟1 and 𝑗 ≠  𝑟2, 𝑈𝑖,𝑘 = 𝑉𝑖,𝑗 and 𝑊𝑖,𝑗 = 𝑉𝑖,𝑗  

 

𝑉𝑖,𝑗
′ =

Min{𝑓(𝑉𝑖,𝑗), 𝑓(𝑈𝑖,𝑗), 𝑓(𝑊𝑖,𝑗)} for {
𝑖 = 1, 2, . . . , 𝑃 
𝑗 = 1, 2, . . . , 𝐷

 

(4) 

where, i ∈ {1,2, … , 𝑃} which  P is the population size, also 
j ∈ {1,2, … , 𝐷} which D is the problem dimension. 
𝑟1,  𝑟2 ∈ [1, 𝐷] are tow random numbers. Also, 𝑉𝑖,𝑘 is the 
current agent’s location and 𝑉𝑖,𝑗

′  is the updated agent’s 
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position. The Modified Quadratic Approximation (MQA) 
search method is mathematically defined as below: 

 Child = 0.5
(𝑅2
2−𝑅3

2)𝑓(𝑅1)+(𝑅3
2−𝑅1

2)𝑓(𝑅2)+(𝑅1
2−𝑅2

2)𝑓(𝑅3)

(𝑅2
 −𝑅3

 )𝑓(𝑅1)+(𝑅3
 −𝑅1

 )𝑓(𝑅2)+(𝑅1
 −𝑅2

 )𝑓(𝑅3)
 (5) 

in which 𝑓(. ) returns the value of objective function for 
any desired agent and 𝑅1

 , 𝑅2
  and 𝑅3

  are selected 
arbitrarily from the colony so that 𝑅1 ≠ 𝑅2 ≠ 𝑅3. For 
more directness, the pseudo code for DSO is given in 
Table 2. 

Table 2. The pseudo code for DSO. 

Initialize algorithm’s internal parameters; 

Evaluate objective function of each individual 

while (not termination condition) 

Apply tournament selection 

   for (each particle i) 

         Update the current agent making the neighborhood 

search using Eq. (4); 

        Evaluate objective function for each agent f(Xi) using           

Eq. (4); 

        The best agent is saved; 

        If the fitness variation of any agent and its old position is 

within 1%, then providing MQA using Eq. (5); 

The new agent position will only maintain if it is better 

than its old position; 

  end 

end 

 

2.3 Integrated particle swarm optimizer (iPSO) 

The integrated particle swarm optimization (iPSO) 
algorithm is the PSO based algorithm which applies two 
new concepts as weighted particle to search the problem 
domain. To prevent from any misleading, it should be 
noted that iPSO  has been introduced in 2016 by the 
author of the current work [10] and it differs from other 
method with the similar name (iPSO with small i latter is 
different from IPSO with capital I)  in the literature. The 
proposed iPSO uses two different search patterns to 
navigate the particle toward the global optimum. One of 
these patterns is to move toward the global best found 
location (𝐗𝐺), previous best location stored in particles 
memory (𝐗𝑃) and weighted particle (𝐗𝑤). However, to 
meet the convergence criterion the algorithm performs 
another search pattern to navigate the particle by moving 
toward the gravity center of the colony which is 
determined by the weighted particle. This method 
mathematically is formulated as below: 

 if rand0𝑖 ≤ 𝛼  

𝐯𝑖 
𝑡+1 = 𝜑4𝑖( 𝐗

𝑤
 
𝑡 − 𝐗𝑖 

𝑡 )           

for                                          𝜑4𝑖 = 𝐶4 × rand4𝑖      

if rand0𝑖 > 𝛼 

𝐯𝑖 
𝑡+1 = 𝑤𝑖 × 𝐯𝑖 

𝑡 + (𝜑1𝑖 + 𝜑2𝑖 + 𝜑3𝑖)( 𝐗𝑗
𝑃

 
𝑡 − 𝐗𝑖 

𝑡 )

+ 𝜑2𝑖( 𝐗
𝐺

 
𝑡 − 𝐗𝑗

𝑃
 
𝑡 )

+ 𝜑3𝑖( 𝐗
𝑤

 
𝑡 − 𝐗𝑗

𝑃
 
𝑡 ) 

for                                       𝑗 ≤ 𝑀 

(6) 

𝜑1𝑖 = 𝐶1 × rand1𝑖 

𝜑2𝑖 = 𝐶2 × rand2𝑖 

𝜑3𝑖 = 𝐶3 × rand3𝑖 

and 

𝐗𝑖 
𝑡+1 = 𝐗𝑖 

𝑡 + 𝐯𝑖 
𝑡+1  

superscripts “t” and “t+1” indicate the current and 
updated values for a variable, respectively. 𝐯𝑖 

𝑡+1  is the 
updated velocity, 𝑤𝑖  is the inertia factor of prior 
movement of ith particle. Also, the acceleration factors are 
described with 𝐶1 = −(𝜑2𝑖 + 𝜑3𝑖) , 𝐶2 = 2, 𝐶3 = 1, and 
𝐶4 = 2, and rand𝑘𝑖 where 𝑘 ∈ {0,1,2,3,4}, is the random 
scalar designated from interval of [0, 1] [29]. This 
method applies the weighted particle (𝐗𝑤) is the gravity 
center of the colony and tries to collect the particles 
experiences according proportional with their fitness 
level. It mathematically is defined as follows: 

𝐗𝑤 =∑𝑐�̅�
𝑤𝐗𝑖

𝑃

𝑀

𝑖=1

 

𝑐�̅�
𝑤 = (�̂�𝑖

𝑤 ∑�̂�𝑖
𝑤

𝑀

𝑖=1

⁄ ) 

𝑐𝑖
𝑤 =

max⏟
1≤𝑓≤𝑀

(𝑓(𝐗𝑘𝑤
𝑃 )) − 𝑓(𝐗𝑖

𝑃) + 𝜀

max⏟
1≤𝑘𝑤≤𝑀

(𝑓(𝐗𝑘𝑤
𝑃 )) − min⏟

1≤𝑘𝑤≤𝑀

(𝑓(𝐗𝑘𝑤
𝑃 )) + 𝜀

     

, 𝑖 = 1,2, … ,𝑀 

(7) 

in which M denotes the number of population of the 
colony.  Proposed iPSO utilizes the Improved Fly-Back 
(IFB) technique to handle the problems’ constraints [1]. 
However, to provide a fair comparative condition in the 
current wok it also utilizes the same penalty approach 
which the other methods are employed. This penalty 
approach is illustrated in the next section. For more 
clarity the pseudo code for iPSO is given in Table 3: 

Table 3. The pseudo code for iPSO. 

Initialize random particles 

while (the termination criteria are not met) 

   Calculate the weighed particle 𝐗𝑤  using Eq.7 

      for (each particle in the colony) 

             if (rand0i ≤ α) 

                Calculate the velocity vector applying Eq.6 

             elseif (rand0i > α) 

                Calculate the velocity vector applying Eq.6 

             end 

            Update the current particle 

      end 

   verify weighted particle condition 

      if (𝑓(𝐗𝑤)) < (𝑓 (𝐗𝐺))  

            Set  𝐗𝐺 = 𝐗𝑤 ,     (whenever 𝐗𝑤 has the less objective 

function value replace with 𝐗𝐺) 

      end 

end 
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3 Handling the constraints  

As mentioned in prior section, although iPSO applies the 
IFB for handling the problems’ constraints, to provide 
more uniform comparative condition the penalty method 
is employed for all selected methods. Since the 
metaheuristic approaches generally are non-constrained 
methods, to handling the constraints of the problems in 
this investigation the penalty method is utilized. In this 
regard the penalty function is applied as below: 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐗) = (1 + 𝜀1𝑣)
𝜀2 × 𝑓(𝐗) 

𝑣 =∑max{0, 𝑔𝑖(𝑿)}

𝑞

𝑖=1

 
(8) 

in which, 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the penalized objective function of 

the problem and 𝑓(𝐗) is the regular  objective function 
value and 𝑔𝑖(𝑿) returns the ith problem constraint’s 
violation. To provide more adaptive scenario, 𝜀1 and 𝜀2 as 
the tuning terms of the penalty function are respectively 
taken as 1 and 1.5 at the commence while linearly 
increased up to 6 [30]. 

4 Numerical examples 

In this section the search performances of three different 
selected algorithms are comparatively assessed on three 
different classes of structural optimization problems. It 
should be noted that OFEs for structural analyses is 
reported more specific as number of structural analyses 
(NSAs) and they reflected the same concept. All 
computations are run on the computer equipped with the 
intel CORE i7@2.2 GHz CPU and 16 GB of RAM. 

4.1 Sizing optimization of a spatial 582-bar tower 

The first case is dedicated to the weight minimization of 
the spatial 582-bar tower shown in Figure 1 as a 
structural optimization example. In order to maintain the 
symmetry, the members of the structure are classified 
into 32 independent groups. There are three load 
conditions effective on the tower as: 

I. The vertical load as -6.75 kips on each node 

II. The horizontal load as 1.12 kips on each 
node in x-direction 

III. The horizontal load as 1.12 kips on each 
node in y-direction 

 
Figure 1. The 582-bar truss tower. 

The sizing variables for this problem are selected from 
the discrete set given in Table 4. The members of this set 
contain 140 W-shape profiles given in steel structural 
profiles of AISC-ASD. 
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Table 4. W-shape profiles list taken from AISC code. 

W27×178 W21×122 W18×50 W14×455 W14×74 W12×136 W10×77 
W27×161 W21×111 W18×46 W14×426 W14×68 W12×120 W10×68 
W27×146 W21×101 W18×40 W14×398 W14×61 W12×106 W10×60 
W27×114 W21×93 W18×35 W14×370 W14×53 W12×96 W10×54 
W27×102 W21×83 W16×100 W14×342 W14×48 W12×87 W10×49 
W27×94 W21×73 W16×89 W14×311 W14×43 W12×79 W10×45 
W27×84 W21×68 W16×77 W14×283 W14×38 W12×72 W10×39 
W24×162 W21×62 W16×67 W14×257 W14×34 W12×65 W10×33 
W24×146 W21×57 W16×57 W14×233 W14×30 W12×58 W10×30 
W24×131 W21×50 W16×50 W14×211 W14×26 W12×53 W10×26 
W24×117 W21×44 W16×45 W14×193 W14×22 W12×50 W10×22 
W24×104 W18×119 W16×40 W14×176 W12×336 W12×45 W8×67 
W24×94 W18×106 W16×36 W14×159 W12×305 W12×40 W8×58 
W24×84 W18×97 W16×31 W14×145 W12×279 W12×35 W8×48 
W24×76 W18×86 W16×26 W14×132 W12×252 W12×30 W8×40 
W24×68 W18×76 W14×730 W14×120 W12×230 W12×26 W8×35 
W24×62 W18×71 W14×665 W14×109 W12×210 W12×22 W8×31 
W24×55 W18×65 W14×605 W14×99 W12×190 W10×112 W8×28 
W21×147 W18×60 W14×550 W14×90 W12×170 W10×100 W8×24 
W21×132 W18×55 W14×500 W14×82 W12×152 W10×88 W8×21 

Their upper bound is limited to 6.16 in2 (39.74 cm2) and 
lower bound is limited to 215.00 in2 (1387.09 cm2). The 
nodal displacement for all main directions are limited up 
to 3.15 in. (8 cm). The stress limitation is calculated 
based on the buckling criterion of the AISD-ASD89 code 
as below [31]: 

{
𝜎𝑖
+ = 0.6 𝐹𝑦        𝜎𝑖 ≥ 0

𝜎𝑖
−                         𝜎𝑖 < 0

  (9) 

where 𝐹𝑦 is the yielding stress of the materials and 𝜎𝑖
− is 

compressive stress and 𝜎𝑖
+ is tensile stress. While, 𝜎𝑖

−  is 
a function of the slenderness ratio given as below: 

𝜎𝑖
−

=

{
 
 

 
 [(1 −

𝜆𝑖
2

2𝐶𝑐
2)𝐹𝑦 (

5

3
+
3𝜆𝑖
8𝐶𝑐

−
𝜆𝑖
3

8𝐶𝑐
3)⁄ ]          for    𝜆𝑖 < 𝐶𝑐

12𝜋2𝐸

23𝜆𝑖
2                                                               for    𝜆𝑖 ≥ 𝐶𝑐

 (10) 

in which 𝐶𝑐 is the slenderness ratio which is described as: 

𝐶𝑐 = √
2𝜋2𝐸

𝐹𝑦
 (11) 

According to the code, maximum slenderness ratio (i.e. 
allowable ratio) should be limited as up to 200 for 
compressive structural members and up to 300 for 
tensile structural members. The slenderness ratio is 
mathematically demonstrated as below: 

𝜆𝑖 =
𝑘𝑖𝑙𝑖
𝑟𝑖
≤ {

300 for tension members          
200 for compression members

 (12) 

where 𝜆𝑖 , 𝑟𝑖 are slenderness ratio and radius of gyration 
of the ith member, respectively. 𝑙𝑖 indicates the length of 
the ith member. If the required slenderness ratio is not be 
satisfied for compression elements, the allowable stress 

must not exceed the value of (
12𝜋2𝐸

23𝜆𝑖
2 ) ever [31]. This 

example as the complex sizing structural optimization is 
solved using selected methods and the achieved results 
are illustrated in Table 5. Standard deviation (Std.) and 
the number of objective function analyses (OFEs) for 
each algorithm are presented in this table. The 
convergence histories of the solution process for all 
approaches are comparatively plotted in Figure 2. As can 
be understood from these diagrams the algorithms can 
be sorted as iPSO, TLBO and DSO in terms of efficiency. 
The reached statistical data (i.e. shown via standard 
deviation) demonstrates that TLBO has the most stable 
condition on finding optimal solution among these three 
techniques. As the accuracy viewpoint iPSO outperforms 
the others by finding the lightest structure system. 

 
Figure 2. Convergence history for 582-bar tower size 

optimization. 
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Table 5. Comparison of the optimal results for the 
582-bar tower problem.  

Group 
Optimal cross-sectional areas 

TLBO DSO iPSO 

1 W8×21 W8×24 W8×21 
2 W24×84 W12×72 W24×76 
3 W8×21 W8×28 W8×21 
4 W24×62 W12×58 W12×65 
5 W8×21 W8×24 W8×21 
6 W8×21 W8×24 W8×21 
7 W16×57 W10×49 W10×54 
8 W8×21 W8×24 W8×21 
9 W8×21 W8×24 W8×21 
10 W12×53 W12×40 W12×50 
11 W8×21 W12×30 W8×21 
12 W10×77 W12×72 W10×68 
13 W21×83 W18×76 W24×76 
14 W21×57 W10×49 W14×53 
15 W18×76 W14×82 W12×79 
16 W8×21 W8×31 W8×21 
17 W10×22 W14×61 W12×65 
18 W18×55 W8×24 W8×21 
19 W8×21 W8×21 W8×21 
20 W8×21 W12×40 W12×45 
21 W14×30 W8×24 W8×21 
22 W8×21 W14×22 W8×21 
23 W8×21 W8×31 W16×26 
24 W8×21 W8×28 W8×21 
25 W8×21 W8×21 W8×21 
26 W8×21 W8×21 W8×21 
27 W10×22 W8×24 W8×21 
28 W8×21 W8×28 W8×21 
29 W8×21 W16×36 W8×21 
30 W8×31 W8×24 W8×21 
31 W8×21 W8×21 W8×21 
32 W12×22 W8×24 W8×21 

Volume (m3) 20.322 22.069 20.07 
OFEs 16050 17670 12480 
Std. (m3) 0.22 0.51 0.24 

As can be understood from attained results, iPSO can 
found the lightest structure. Also, considering the 
number of required objective function analyses the iPSO 
displays higher convergence rate. As the stability 
viewpoint TLBO by catching the lowest standard 
deviation exhibits the most stable behavior among all 
other techniques. 

4.2 Size and layout optimization of a 52-bar dome 
under multiple frequencies constraint 

The current example is devoted to optimizing the 52-bar 
dome structure shown in  

Figure 3. In this example both size and shape properties 
of the structure are considered as the decision variables 
of the optimization process. Material density and 
modulus of elasticity are and 210 GPa 7800 kg/m3, 
respectively. To hold symmetry of the system all 
members of the structure are put into 8 independent 
groups. Also free nodes (i.e. those are not restrained) are 
allowed to move ±2 m for their initial position shown in  

Figure 3 in all principal directions, but again symmetry of 
system should be maintained. All free nodes are 

subjected to 50 kg non-structural mass. The first two 
natural frequencies are limited as ω1 ≥ 15.916 Hz and ω2 
≥ 28.649 Hz. Sizing variables should be selected between 
1 and 10 cm2 values. The achieved optimal results 
comparatively are tabulated in Table 6. Based on given 
outcomes iPSO can find most optimal solution, and TLBO 
and DSO stands fined nearest solution, respectively. 
Attained first four natural frequencies for this structure 
is presented in Table 7. For more clarity the found 
optimal layout for the structure is shown in Figure 4. 
Also, Figure 5 represents the convergence histories of 
selected three methods for the optimization process. As 
can be seen from this figure, iPSO, shows highest 
convergence rate among all other algorithms.  

 

 
 

Figure 3. The 52-bar dome structure. 
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Table 6. Comparison of optimized designs 
obtained for the 52-bar dome truss structure. 

Design Variables 
Z, X (m); A(cm2) 

TLBO DSO iPSO 

Z1 5.9362 6.0188 6.0448 
X2 2.2416 2.2976 2.4276 
Z2 3.7309 3.7417 3.7076 
X6 3.963 3.9996 4.0391 
Z6 2.500 2.5001 2.5000 
A1- A4 1.0001 1.0000 1.0000 
A5- A8 1.1654 1.0852 1.0000 
A9- A16 1.2323 1.1968 1.1840 
A17- A20 1.4323 1.4503 1.4239 
A21- A28 1.3901 1.4216 1.4339 
A29- A36 1.0001 1.0001 1.0015 
A37- A44 1.6024 1.5614 1.5665 
A45- A52 1.4131 1.3878 1.3931 

Best Weight (kg) 194.86 193.21 193.71 
Mean Weight (kg) 196.95 199.42 200.8 
Std. 2.38 3.99 6.98 
NSA 12810 18210 8640 

 

Table 7.  Attained first four natural frequencies 
(Hz) of the 52-bar dome structure. 

f (Hz) TLBO DSO iPSO 

1 12.8100 12.7510 11.4339 
2 28.6500 28.6490 28.6480 
3 28.6500 28.6490 28.6480 
4 29.5400 28.8030 28.6482 

 

 
Figure 4. Optimal layout found for 52-bar dome. 

 

 
 

Figure 5. Convergence history for 52-bar dome size and 
layout optimization. 

 

4.3 Size, layout and topology optimization of 47-
bar transmission tower 

As the final example size, layout and topology 
optimization of 47-bar transmission tower presented in 
Figure 6 is considered. Required boundary conditions 
and constraints of the problem are given in Table 8. Also, 
Table 9 addresses the load conditions adopted to 
structure system. To maintain structural symmetry, the 
members are categorized into 27 independent groups. 
The coordinates of nodes of 15, 16, 17 and 18 are fixed 
while just x-coordinate of nodes number 1 and 2 are 
permitted to be variable. Considering the number of 
design variables (17 shape and 27 size and topology 
variables) and kinds of them (size, layout and topology) 
this problem is the complex case. The achieved optimal 
structure is schematically represented in Figure 7. Also, 
obtained numeric results for all methods comparatively 
are tabulated in Table 10.  

As can be seen from this table iPSO found lightest 
structural system while TLBO with the lowest standard 
deviation (Std.) shown the most stable behavior on 
finding the final solution. The convergence histories for 
all methods plotted in Figure 8. Based on these diagrams 
DSO has highest convergence rate among the tested 
methods. 
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Figure 6. The ground structure for 47-bar transmission 

tower. 
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Table 8. Design variables constraints and constraints for 47-bar transmission tower. 

Design variables 

Size and topology variables Shape variables 

Am=Am-1  for  m=2,4,6 , . . . , 40; 
A41, A42, A43, A44, A45, A46, A47 

x2 =-x1 ; x4=-x3 ; y4=y3 ; x6=-x5 ; y6=y5 ; x8=-x7 ;  
y8=y7 ;x10=-x9 ; y10=y9 ; x12=-x11 ; y12=y11 ; x14=-x13 ; 
y14=y13 ; x20=-x19 ; y20=y19 ; x22=-x21 ;  y22=y21 

Shape variables  

0 ≤ x2, x4, x6, x8 ≤ 381.0 cm (150 in.) 
0 ≤ x10, x12, x14 ≤ 228.6 cm (90 in.) 
0 ≤ x20 ≤ 381.0 cm (150 in.)  
0 ≤ x22 ≤ 228.6 cm (90 in.) 
0 ≤ y4 ≤ 609.6 cm (240 in.) 
304.8 cm (120 in.) ≤ y6 ≤ 914.4 cm (360 in.) 
609.6 cm (240 in.) ≤ y8 ≤ 1066.8 cm (420 in.) 
914.4 cm (360 in.) ≤ y10 ≤ 1219.2 cm (480 in.) 
1066.8 cm (420 in.) ≤ y12 ≤ 1371.6 cm (540 in.) 
1219.2 cm (480 in.) ≤ y14 ≤ 1524.0 cm (600 in.) 
1371.6 cm (540 in.) ≤ y20, y22 ≤ 1676.4 cm (660 in.) 

 

Size variable set 

Ai Є [0.1,0.2,0.3,...,4.9,5.0],  i = 1 , . . . , 47 

Constraint data 

Stress constraints 
 
Euler buckling constraints 

(σi)ten  ≤ 137.8951 MPa (20 ksi),  i = 1 , . . . , 47 
(σi)com ≤ 103.4213 MPa (15 ksi),  i = 1 , . . . , 47 
(σi)com ≤ -BEAi /Li2  i = 1 , . . . , 47 

Material properties 

Modulus of elasticity, E 
Buckling coefficient, B 
Density, ρ 

206842.7184 MPa (30000 ksi) 
3.96 
81.4341 kN/m3 (0.3 lb/in3) 

  

Table 9. Load conditions for 47-bar transmission tower. 

Loading condition Joint Px(lbf) Py(lbf) 

1 
2 
3 

17, 18 
17 
18 

26.6893 kN (6000) 
26.6893 kN (6000) 
26.6893 kN (6000) 

-62.2751 kN (-14000) 
-62.2751 kN (-14000) 
-62.2751 kN (-14000) 
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Table 10. Optimum result for 47-bar transmission tower. 

Design variables TLBO DSO iPSO 

A1 3.2 3.3 3.3 
A3 1 0.3 0.3 
A5 3.0 2.9 2.9 
A7 1.1 1.4 1.3 
A9 3.0 3.0 3.1 
A11 0.5 0.6 0.5 
A13 2.7 2.6 2.6 
A15 1 1.1 1.2 
A17 2.6 2.9 2.8 
A19 0.8 0.5 0.5 
A21 2.4 2.4 2.3 
A23 1.1 1.7 1.7 
A25 0.6 0.5 0.5 
A27 1.7 1.6 1.5 
A29 1 0.8 0.8 
A31 1.1 1.1 1.2 
A33 0.5 0.8 0.7 
A35 1 1 1.1 
A37 1.4 1.3 1.4 
A39 1 0.9 0.9 
A41 0.8 0.5 0.4 
A42 Removed Removed Removed 
A43 Removed Removed Removed 
A44 Removed Removed Removed 
A45 Removed Removed Removed 
A46 Removed Removed Removed 
A47 Removed Removed Removed 
X2 103.111 112.0010 112.0 
X4 93.0012 88.1220 86.4461 
Y4 116.0015 140.1210 149.7223 
X6 72.0031 68.0009 68.3442 
Y6 222.3325 241.0001 241.5726 
X8 65.0087 61.0201 59.9921 
Y8 301.9981 326.0091 325.0389 
X10 50.0001 47.0011 47.8354 
Y10 390.1236 410.1009 407.9877 
X12 46.0112 44.0212 44.5377 
Y12 458.1122 450.1021 449.3806 
X14 51.0987 65.1229 63.3270 
Y14 507.0542 502.0091 500.6626 
X20 90.1009 58.0021 63.5867 
Y20 626.0092 635.0912 632.4550 
X22 19.9002 1.212 2.9293 
Y22 595.2134 598.0 599.1655 

Weight, lb. 1782.17 1786.03 1780.99 
Mean 1850.43 1890.01 1867.09 
Std. 50.87 76.99 62.13 
NSA 28480 36600 25600 
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Figure 7. Obtained optimal structure for 47-bar 

transmission tower. 

 

 
Figure 8. Convergence history for 47-bar dome size, 

layout and shape optimization. 

5 Complexity analysis  

This section is devoted to measuring the complexity level 
of the selected methods. To achieve this purpose, the 
suggested formulation in [32] is implemented. According 

to this formulation to determine an algorithm’s 
complexity level three different times as T0, T1 and �̂�2 
should be evaluated as below [32]:  

- T0 should be calculated via 1000000 times calculating 
run time for following loop: 

for i=1:1000000 

     x= 5.55 (x is double); 

     x=x + x; x=x./2; x=x*x; x=sqrt(x); x=ln(x); x=exp(x); 
y=x/x; 

end 

- T1 is computed via 200000 times assessment of a 
designated function, where Griewank function is selected 
in current study. For specific dimensions as D=30 and 
D=50. 

- T2 is calculated via considering required time for the 
complete run of the proposed method over the same 
selected function and �̂�2 is the mean(average) value for 
five computation of T2 times. 

The complexity level for all methods are computed for 
Griewank function. To give more insight about this 
function it is schematically plotted in 3 dimensional form 
in Figure 9. All computations are executed on the same 
device and the results are presented in Table 11 and 
Table 12 for two different dimensions as D=30 and D=50 
[32], respectively. As can be understood from provided 
data in these tables, TLBO algorithm is the most complex 
method while iPSO is the least complex technique among 
all methods. It is notable that in these tables the methods 
are ranked for complexity (e.g.  the least complex method 
is ranked as 1). Also, The normalized complexity (i.e. 
normalized required time) for three structural 
optimizations is also represented in Table 13. As can be 
understood from the given data, DSO demands 
drastically higher computational time than two other 
methods, so it can be announced as the most complex 
algorithm among the selected approaches. 

 
Figure 9. Griewank function. 
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Table 11. Complexity computation result for selected 
algorithms for D=30 

Algorithm T0 T1 �̂�2 (�̂�2-T1)/T0 Rank 

TLBO 1.4E-01 1.9E-01 6.00E+02 4.28E+03 2 
DSO 1.4E-01 1.9E-01 6.67E+02 4.76E+03 3 
iPSO 1.4E-01 1.9E-01 4.60E+02 3.28E+03 1 

 

Table 12. Complexity computation result for selected 
algorithms for D=50. 

Algorithm T0 T1 �̂�2 (�̂�2-T1)/T0 Rank 

TLBO 1.40E-01 3.05E-01 5.59E+02 3.99E+03 2 
DSO 1.40E-01 3.05E-01 7.94E+02 5.67E+03 3 
iPSO 1.40E-01 3.05E-01 2.79E+02 1.99E+03 1 

 

Table 13. Normalized complexity for selected 
structural problems. 

Algorithm 1SO 
(582-bar) 

2SLO 

(52-bar dome) 

3SLTO 
(47-bar tower) 

TLBO 2.3 2.8 2.9 
DSO 3.5 3.6 4.1 
iPSO 1 1 1 
1 SO: Size Optimization 
2 SLO: Size and Layout Optimization 
3 SLTO: Size, Layout and Topology Optimization 

6 Conclusion 

The current investigation deals with comparative 

assessments of three different optimization algorithms on 

different classes of the structural optimization problems. 

They are Teaching and Learning Based Optimization 

(TLBO), Drosophila Food-Search Optimization (DSO) and 

Integrated Particle Swarm Optimizer (iPSO) algorithms in 

the chronological order. From aspect of number of objective 

function evaluation (OFEs) these algorithms categorized as 

a single-phase, double-phase, and multi-phase algorithms.  

Indeed, in each iteration iPSO performs one OFE, TLBO 

makes two OFEs and DSO accomplishes more than two 

OFEs per each agent. The search capability of these methods 

are tested on three classes of structural optimization 

problems namely size optimization, simultaneously size and 

layout optimization and simultaneously size, layout and 

topology optimization of truss structures. Comparing 

achieved standard deviations reveals that TLBO with the 

lowest standard deviation value shows the most stable 

behavior on finding the optimal solution. Associating the 

convergence diagrams indicates that, except last benchmark 

structural problem iPSO has more rapid convergence rate 

compared with the other cited techniques. So that, in the last 

example nevertheless both TLBO and DSO converged fast, 

they stuck into local minima. Considering the point that in 

the structural optimization problems the number of NSAs 

plays prompted role on the efficiency and admissibility of 

the algorithm, the method with the lower number of required 

NSAs is highly more preferred. In this regard, iPSO by 

requiring the lower number of NSAs outperforms the other 

cited algorithms in the term of computational time. Also, 

performed complexity analyses reveals that single-phase 

iPSO is the least complex algorithm among all other 

addressed algorithms. Consequently, taking into account the 

achieved complexity index, accuracy level and required 

computational time, iPSO as the single-phase algorithm by 

establishing more proper performance is superior to the other 

examined algorithms on solving the structural optimization 

problems. 
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