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This paper is concerned with the stability analysis of nonlinear mixed fractional delay differential equations
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1. Introduction

Fractional differential equations have become an important field of applied mathematics and modeling
of many physical phenomena associated to very rapid and very short changes, for more details we refer
to the books ([7, 11, 15, 16, 20, 21]) and the references therein. In particular, initial value problems and
boundary value problems related to the qualitative theory of the existence, uniqueness and stability of
solutions for fractional differential equations have been mainly discussed by a lot of authors especially in
last three decades or so. Beside, several methods have been employed to prove the existence, uniqueness
and stability of solutions for fractional boundary value problems among the spectra theory, the critical point
theory, method of upper and lower solutions and the fixed point theorems [1, 2, 3, 4, 5, 6, 9, 12, 13, 14],
among others.
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Agarwal et al. [4], investigated an existence result for the following Caputo fractional order functional
differential equations with delay using the Krasnoselskii’s fixed point theorem

CDα[u(t)− g(t, u (t− r))] = f(t, u (t− r)), t ≥ t0,

u (t) = Φ (t) , t ∈ [t0 − r, t0] , 0 < α ≤ 1.

In [5], Bashir et al. studied the qualitative theory of the following boundary value problem with delay
Dα
(
Dβu(t)− g (t, u (t− r))

)
= f(t, u (t− r)), t ∈ [1, b],

u(t) = φ(t), t ∈ [1− r, 1],

Dβu(1) = η ∈ R,

where Dα and Dβ are the Caputo-Hadamard fractional derivatives, 0 < α, β < 1.
Ge and Kou [9], by utilizing the Krasnoselskii’s fixed point theorem, discussed the stability and asymptotic

stability of the zero solution to the following Caputo type fractional differential equation
CDαu(t) = f(t, u (t)), t ≥ 0, 1 < α ≤ 2,

u (0) = u0, u
′ (0) = u1.

Furthermore, in [6], Boulares et al. discussed the stability and asymptotic stability of the zero solution of
the following boundary value problem with delay

CDαu(t) = f(t, u (t) , (t− r (t))) +C Dα−1g(t, u (t− r (t))), t ≥ 0,

u(t) = φ(t), t ∈ [m0, 0], u′ (0) = u1, 1 < α < 2.

where m0 = inft≥0 {t− r (t)}. Motivated by the works mentioned above and the papers [1, 2, 3, 8, 10, 12,
13, 14, 17, 18, 19, 23, 24] and the references therein, We aim to enrich the field of differential equations by
talking about the analysis of qualitative theory of the subjects of the stability and asymptotic stability of the
zero solution to the following initial value problem of mixed Riemann-Liouville-Caputo fractional differential
equations with delay on unbounded interval

RLDα[CDβu(t)− g(t, u (t− r))] = f(t, u (t− r)), t ≥ 0,

u (t) = Φ (t) , t ∈ [−r, 0] ,

lim
t→0

t1−α CDβu(t) = 0, u′(0) = u0 ∈ R,
(1)

where RLDα and CDβ are the left Riemann Liouville and left Caputo fractional derivatives respectively,
0 < α ≤ 1, 1 < β ≤ 2, r > 0, f, g : R+ × R → R are continuous functions with f(t, 0) = g(t, 0) = 0 and we
denote the solution of (1) by u (t,Φ, u0).

To this aim, we start by transformation (1) into fixed point problem using some mathematical skills of
fractional integral and derivative, then we use Krasnoselskii’s fixed point theorem in appropriate weighted
Banach space.

2. preliminaries

In this section, we introduce some notations, definitions, and preliminary concepts that which we need
in later and can be found in [16, 17, 21, 22] as well as we present the equivalent integral equation of (1).

Let Cλ be the class of all continuous functions defined on [−r,+∞) with the norm

‖u‖λ = sup
t≥−r

{
e−λt |u (t)|

}
,
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for all positive real number λ > 1. Also Cr = C ([−r, 0]) is endowed with norm

‖Φ‖C := sup{|Φ(t)| : t ∈ [−r, 0]}.

We present in the following some basic concepts of fractional calculus.

Definition 2.1 ([16, 21]). The Riemann-Liouville fractional integral of the function u of order α > 0 is
defined by

Iαu (t) =
1

Γ (α)

∫ t

0
(t− s)α−1 u (s) ds,

where Γ is the Euler gamma function defined by Γ (α) =
∫∞

0 e−ttα−1dt.

Definition 2.2 ([16, 21]). The Riemann-Liouville fractional derivative of the function u of order α ∈
(n− 1, n] is defined by

RLDαu (t) =
1

Γ (n− α)

dn

dtn

∫ t

0
(t− s)n−α−1 u (s) ds.

Definition 2.3 ([16, 21]). The Caputo fractional derivative of the function u of order α ∈ (n− 1, n] is
defined by

CDαu (t) =
1

Γ (n− α)

∫ t

0
(t− s)n−α−1 u(n) (s) ds.

Let α > 0 be a real number, we have two following lemmas.

Lemma 2.4. The unique solution of linear fractional differential equation

RLDαu(t) = 0,

is given by
u(t) = c1t

α−1 + c2t
α−2 + c3t

α−3 + ...+ cnt
α−n, ci ∈ R, i = 1, 2, ..., n,

where n = [α] + 1, [α] denotes the integer part of α.

Lemma 2.5. The unique solution of linear fractional differential equation

CDαu(t) = 0,

is given by
u(t) = c1 + c2t+ ...+ cnt

n−1, ci ∈ R, i = 1, 2, ..., n,

where n = [α] + 1.

Lemma 2.6. Problem (1) is equivalent to the following Caputo type fractional differential equation with
delay 

CDβu(t) = Iαf(t, u (t− r)) + g(t, u (t− r)), t ≥ 0,

u (t) = Φ (t) , t ∈ [−r, 0] ,

u′ (0) = u0.

(2)

Proof. Using Lemma 2.4, equation one of (1) can be written as

CDβu(t) = Iαf(t, u (t− r)) + g(t, u (t− r)) + c0t
α−1,

using condition lim
t→0

t1−α CDβu(t) = 0, we get c0 = 0. Then we obtain the desired result.
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Lemma 2.7. Let f and g are continuous functions. Then u ∈ C ([−r,+∞)) is a solution of the problem (2)
if and only if u is a solution of the delay Cauchy type problemu

′(t) = Iα+β−1f(t, u (t− r)) + Iβ−1g(t, u (t− r)) + u0, t ≥ 0,

u (t) = Φ (t) , t ∈ [−r, 0] .
(3)

Proof. Let u ∈ C ([−r,+∞)) be a solution of the problem (2), for any t ≥ 0, we have

CDβu(t) =
(
CDβ−1D1u

)
(t) = Iαf(t, u (t− r)) + g(t, u (t− r)).

According to Lemma 2.5 and the condition u′ (0) = u0, one gets

u′(t) = Iβ−1 [Iαf(t, u (t− r)) + g(t, u (t− r))] + u0,

which means that u is a solution of the problem (3).
Conversely, let u be a solution of the problem (3). Then, for any t ≥ 0, it is easy to see that

CDβu(t)

=C Dβ−1u′(t)

=C Dβ−1
(
Iα+β−1f(t, u (t− r)) + Iβ−1g(t, u (t− r))

)
+C Dβ−1u0

= Iαf(t, u (t− r)) + g(t, u (t− r)).

Besides, we have u′(0) = u0.

Lemma 2.8. Let k ∈ R∗ satisfies that |k| ≤ λ−1
2 , clearly λ+ k > 0. Then (3) is equivalent to the following

Volterra type integral equation
u (t) = Φ (0) e−kt + 1−e−kt

k u0 + k
∫ t

0 e
−k(t−s)u(s)ds

+ 1
Γ(α+β−1)

∫ t
0

∫ t
τ e
−k(t−s) (s− τ)α+β−2 dsf(τ, u(τ − r))dτ

+ 1
Γ(β−1)

∫ t
0

∫ t
τ e
−k(t−s) (s− τ)β−2 dsg(τ, u(τ − r))dτ, t ≥ 0,

u (t) = Φ (t) , t ∈ [−r, 0] .

(4)

Proof. Let k defined above. It is clear that (3) can be written as follow
u′(t) + ku(t) = ku(t) + 1

Γ(α+β−1)

∫ t
0 (t− s)α+β−2f(s, u(s− r))ds

+ 1
Γ(β−1)

∫ t
0 (t− s)β−2g(s, u(s− r))ds+ u0,

u (t) = Φ (t) , t ∈ [−r, 0] .

By the variation of constants formula, we obtain (4).
Conversely, it is clear that (

ektu(t)
)′

=
(
u′(t) + ku(t)

)
ekt,
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using this fact, we get(
u′(t) + ku(t)

)
ekt

=

[
Φ (0) + k

∫ t

0
eksu(s)ds

+
1

Γ(α+ β − 1)

∫ t

0

∫ t

τ
eks(s− τ)α−2dsf(τ, u(τ − r))dτ

+
1

Γ(β − 1)

∫ t

0

∫ t

τ
eks(s− τ)β−2dsg(τ, u(τ − r))dτ +

ekt − 1

k
u0

]′
= ektu0 + kektu(t) +

[∫ t

0
ekτIα+β−1f(τ, u(τ − r))dτ

+

∫ t

0
ekτIβ−1g(τ, u(τ))dτ

]′
= ekt

(
u0 + Iα+β−1f(t, u(t− r)) + Iβ−1g(t, u(t− r)) + ku(t)

)
.

This means that
u′(t) = Iα+β−1f(t, u(t− r)) + Iβ−1g(t, u(t− r)) + u0.

On the other hand, if (4) holds we have u(0) = Φ (0).
From the argument above, we get that the system (3) can be equivalently written as (4).

Definition 2.9. The trivial solution u = 0 of (1) is said to be
(i) stable in Banach space Cλ, if for every ε > 0, there exists a δ = δ(ε) > 0 such that |Φ(t)| + |u0| ≤ δ

implies that the solution u(t) = u(t,Φ, u0) exists for all t ∈ [−r,+∞) and satisfies ‖x‖λ ≤ ε.
(ii) asymptotically stable, if it is stable in Cλ and there exists a number σ > 0 such that |Φ(t)|+ |u0| ≤ σ

implies lim
t→∞
‖u (t)‖λ = 0.

Our main results based on the Krasnoselskii fixed point theorem.

Lemma 2.10 (Krasnoselskii fixed point theorem [22]). If M is a nonempty bounded, closed and convex
subset of a Banach space E, A and B two operators defined onM with values in E such as

(i) Au+ Bv ∈M , for all u, v ∈M,
(ii) A is continuous and compact,
(iii) B is a contraction.

Then there exists w ∈M such as: w = Aw + Bw.

In order to prove (ii), we need to the following modified compactness criterion.

Lemma 2.11 ([17]). LetM be a subset of the Banach space Cλ. ThenM is relatively compact in Cλ if the
following conditions are satisfied

i)
{
e−λtu(t) : u ∈M

}
is uniformly bounded,

ii)
{
e−λtu(t) : u ∈M

}
is equicontinuous on any compact interval of R,

iii)
{
e−λtu(t) : u ∈M

}
is equiconvergent at infinity, i.e. for any given ε > 0, there exists a T0 > 0 such

that for all u ∈M and t1, t2 > T0, it holds∣∣∣e−λt2u(t2)− e−λt1u(t1)
∣∣∣ < ε.
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3. Main results

This section devoted to presenting and proving our main results. Before this end, we introduce the
following hypotheses.

(H1) f, g : I × Cr → R are continuous functions.
(H2) There exists a constant l > 0 and a bounded continuous function η > 0 so that if |u| , |v| ≤ l then

|g(t, u)− g(t, v)| ≤ η (t) |u− v| , for all t ∈ R+.

(H3) There exist a constant γ > 0 and two continuous functions ζ : R+ → R+, Ψ : (0, γ]→ R+ such that∣∣∣f(t, eλ(t−r)u)
∣∣∣ ≤ eλtζ (t) Ψ (|u|) ,

holds for all t ≥ 0, 0 < |u| ≤ γ, where Ψ is nondecreasing function and ζ ∈ L1 ([0,∞)) .

Theorem 3.1. Assume that (H1) − (H3) hold. Then the trivial solution u = 0 of (1) is stable in Cλ,
provided that there exist constants M1,M2 > 0 such that

Ψ (z) sup
t≥0

∫ t

0
e−λ(t−τ)K (t− τ) ζ (τ) dτ ≤ zM2, (5)

for all z ∈ (0, γ], and

sup
t≥0

∫ t

0
e−λ(t−τ)H (t− τ) η (τ) dτ ≤M1 < 1− |k|

λ+ k
−M2 < 1, (6)

where

K (t− τ) =
1

Γ(α+ β − 1)

∫ t

τ
e−k(t−s)(s− τ)α+β−2ds, if t− τ ≥ 0,

and

H (t− τ) =
1

Γ(β − 1)

∫ t

τ
e−k(t−s)(s− τ)β−2ds, if t− τ ≥ 0.

Proof. In the proof of this theorem, we use the fact that e−λt = e−λ(t−τ)e−λτ for all t ≥ τ . For any given
ε > 0, we first prove the existence of δ > 0 such that

|φ(t)|+ |u0| < δ implies ‖u‖ ≤ ε.

Let 0 < δ ≤ |k|
|k|+2

[(
1−M1 −M2 − |k|

λ+k

)
ε
]
. Consider the nonempty closed convex subset Bε = {u ∈

Cλ([−r,+∞),R) : e−λt |u (t)| ≤ ε for t ≥ 0 and u (t) = φ(t) if t ∈ [−r, 0]} for any ε > 0. We define two
mapping A,B : Bε → Cλ([−r,+∞],R) by

(Au) (t) =

{
0 if t ∈ [−r, 0],

k
∫ t

0 e
−k(t−s)u(s)ds+

∫ t
0 K (t− τ) f(τ, u(τ − r))dτ if t ∈ I, (7)

and

(Bu) (t) =

{
Φ(t) if t ∈ [−r, 0],

Φ (0) e−kt + 1−e−kt

k u0 +
∫ t

0 H (t− τ) g(τ, u(τ − r))dτ if t ∈ I.
(8)
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Clearly, for u ∈ Bε, both Au and Bu are continuous functions on [−r,+∞). Also, for u ∈ Bε, for any t ≥ 0,
we have

e−λt |(Au) (t)|

≤ |k| e−λt
∫ t

0
e−k(t−s) |u(s)| ds+

∫ t

0
e−λtK (t− τ) |f(τ, u(τ − r))| dτ

≤ |k|
∫ t

0
e−λ(t−s)e−k(t−s)

∣∣∣e−λsu(s)
∣∣∣ ds

+

∫ t

0
e−λtK (t− τ) ζ (τ) Ψ (|u(τ − r)|) dτ

≤ |k| ‖u‖λ
∫ ∞

0
e−(k+λ)sds

+

∫ t

0
e−λ(t−τ)K (t− τ) ζ (τ) Ψ

(
e−λ(τ−r) |u(τ − r)|

)
dτ

≤
(

2 |k|
λ+ k

+M2

)
ε <∞, (9)

and

e−λt |(Bu) (t)|

≤ |Φ (0)| e−(λ+k)t +
e−λt + e−(λ+k)t

|k|
|u0|

+

∫ t

0
e−λtH (t− τ) g(τ, u(τ − r))dτ

≤ |Φ (0)|+ 2
|u0|
|k|

+

∫ t

0
e−λ(t−τ)H (t− τ) e−λτg(τ, u(τ − r))dτ

≤ |Φ (0)|+ 2
|u0|
|k|

+

∫ t

0
e−λ(t−τ)H (t− τ) η (τ)

∣∣∣e−λτu (τ)
∣∣∣ dτ

≤ |Φ (0)|+ 2
|u0|
|k|

+

{∫ t

0
e−λ(t−τ)H (t− τ) η (τ) dτ

}
‖u‖λ

≤ |Φ (0)|+ 2
|u0|
|k|

+M1ε <∞. (10)

Then ABε ⊂ Cλ and BBε ⊂ Cλ. Now we shall to prove that there exists at least one fixed point of the
operator A+ B. To this end, we divide the proof into three claims.

Claim 1. We show that Au+ Bv ∈ Bε for all u, v ∈ Bε, we combine (9) and (10) to get

‖Au+ Bv‖λ ≤
|k|+ 2

|k|
δ +

(
M1 +M2 +

2 |k|
λ+ k

)
ε ≤ ε, (11)

this means that Au+ Bv ∈ Bε, for all u, v ∈ Bε.
Claim 2. Obviously, A is continuous operator, it remains to prove that ABε is relatively compact in

Cλ. In fact, from (11), we get that
{
e−λtu(t) : u ∈ Bε

}
is uniformly bounded in Cλ. Moreover, a classical

theorem states the fact that the convolution of an L1-function with a function tending to zero, does also
tend to zero. Then we conclude that for t ≥ τ , we have

lim
t→∞

e−λ(t−τ)K (t− τ)

= lim
t→∞

1

Γ(α+ β − 1)

∫ t

τ

[
e−λ(t−s)e−k(t−s)

] [
e−λ(s−τ)(s− τ)α+β−2

]
ds

= lim
t→∞

1

Γ(α+ β − 1)

∫ t−τ

0

[
e−(λ+k)(t−τ−s)

] [
e−λssα+β−2

]
ds = 0. (12)
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Together with the continuity of functions K and t 7−→ e−λt, we get that there exists a constant M3 > 0 such
that

e−λ(t−τ)K (t− τ) ≤M3.

Also, for any fixed T0 ≥ 0 and any t1, t2 ∈ [0, T0] , t1 < t2, we have∣∣∣e−λt2 (Au) (t2)− e−λt1 (Au) (t1)
∣∣∣

=

∣∣∣∣k ∫ t2

0
e−λt2e−k(t2−s)u(s)ds− k

∫ t1

0
e−λt1e−k(t1−s)u(s)ds

+

∫ t2

0
e−λt2K (t2 − τ) f (τ, u(τ − r)) dτ

−
∫ t1

0
e−λt1K (t1 − τ) f (τ, u(τ − r)) dτ

∣∣∣∣
≤ |k|

∫ t1

0

∣∣∣e−λt2e−k(t2−s) − e−λt1e−k(t1−s)
∣∣∣ |u(s)| ds

+

∫ t1

0

∣∣∣e−λt2K (t2 − τ)− e−λt1K (t1 − τ)
∣∣∣ |f (τ, u(τ − r))| dτ

+ |k|
∫ t2

t1

e−λt2e−k(t2−s) |u(s)| ds+

∫ t2

t1

e−λt2K (t2 − τ) |f (τ, u(τ − r))| dτ.

Thus ∣∣∣e−λt2 (Au) (t2)− e−λt1 (Au) (t1)
∣∣∣

≤ |k|
∫ t1

0

∣∣∣e−(λ+k)(t2−s) − e−(λ+k)(t1−s)
∣∣∣ ∣∣∣e−λsu(s)

∣∣∣ ds
+

∫ t1

0

∣∣∣e−λt2K (t2 − τ)− e−λt1K (t1 − τ)
∣∣∣ ζ (τ) Ψ (|u(τ − r)|) dτ

+

∫ t2

t1

e−λ(t2−τ)K (t2 − τ) ζ (τ) e−λτΨ (|u(τ − r)|) dτ

+ |k|
∫ t2

t1

e−(λ+k)(t2−s)
∣∣∣e−λsu(s)

∣∣∣ ds
≤
{
|k|
∫ t1

0

∣∣∣e−(λ+k)(t2−s) − e−(λ+k)(t1−s)
∣∣∣ ds+ |k|

∫ t2

t1

e−(λ+k)(t2−s)ds

}
ε

+

{∫ t1

0

∣∣∣e−λt2K (t2 − τ)− e−λt1K (t1 − τ)
∣∣∣ ζ (τ) dτ

+ ‖ζ‖∞M3 (t2 − t1)}Ψ (ε)

→ 0 as t2 → t1,

this means that
{
e−λtu(t) : u ∈ Bε

}
is equicontinuous on any compact interval of R+, it remains to show

that the set
{
e−λtu(t) : u ∈ Bε

}
is equiconvergent at infinity. In fact, for any ε1 > 0 such that ε ≤ λ+k

6|k| ε1,
there exists a L > 0 satisfies

M3

∫ ∞
L

ζ (τ) dτ ≤ ε1
6
.

According to (12), we get that

lim
t→∞

sup
τ∈[0,L]

e−λ(t−τ)K (t− τ)

≤ max
{

lim
t→∞

e−λ(t−L)K (t− L) , lim
t→∞

e−λtK (t)
}

= 0.
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Then, there exists T > L such that for t1, t2 ≥ T , we obtain

sup
τ∈[0,L]

∣∣∣e−λt2K (t2 − τ) eλτ − e−λt1K (t1 − τ) eλτ
∣∣∣

≤ sup
τ∈[0,L]

∣∣∣e−λ(t2−τ)K (t2 − τ)
∣∣∣+ sup

τ∈[0,L]

∣∣∣e−λ(t1−τ)K (t1 − τ)
∣∣∣

≤ ε1
6

(
Ψ (ε)

∫ ∞
0

ζ (τ) dτ

)−1

.

Furthermore, for t ≥ s, we have
lim
t→∞

e−(λ+k)(t−s) = 0,

then for t1, t2 ≥ T , on gets

sup
s∈[0,L]

∣∣∣e−(λ+k)(t2−s) − e−(λ+k)(t1−s)
∣∣∣

≤ sup
s∈[0,L]

∣∣∣e−(λ+k)(t2−s)
∣∣∣+ sup

s∈[0,L]

∣∣∣e−(λ+k)(t1−s)
∣∣∣ ≤ ε1

6
(ε |k|)−1 .

Therefore, for t1, t2 ≥ T , we have∣∣∣e−λt2 (Au) (t2)− e−λt1 (Au) (t1)
∣∣∣

=

∣∣∣∣k ∫ t2

0
e−λt2e−k(t2−s)u(s)ds− k

∫ t1

0
e−λt1e−k(t1−s)u(s)ds

+

∫ t2

0
e−λt2K (t2 − τ) f (τ, u(τ − r)) dτ

−
∫ t1

0
e−λt1K (t1 − τ) f (τ, u(τ − r)) dτ

∣∣∣∣
≤ ε |k|

∫ L

0

∣∣∣e−(λ+k)(t2−s) − e−(λ+k)(t1−s)
∣∣∣ ds+ 2ε |k|

∫ ∞
0

e−(λ+k)sds

+ Ψ (ε)M3

∫ t2

L
ζ (τ) dτ + Ψ (ε)M3

∫ t1

L
ζ (τ) dτ

+ Ψ (ε)

∫ L

0

∣∣∣e−λt2K (t2 − τ) eλτ − e−λt1K (t1 − τ) eλτ
∣∣∣ ζ (τ) dτ

≤ ε1
6

+
2ε |k|
λ+ k

+ 2Ψ (ε)M3

∫ ∞
L

ζ (τ) dτ +
ε1
6
≤ ε1,

this achieves the proof.
Claim 3. We show that B : Bε → Cλ is a contraction mapping. In fact, for any u, v ∈ Bε, from (H2) ,

we have

sup
t≥0

e−λt |(Bu) (t)− (Bv) (t)|

= sup
t≥0

{∫ t

0
e−λtH (t− τ) |g(τ, u(τ − r))− g (τ, v(τ − r))| dτ

}
≤ sup

t≥0

{∫ t

0
e−λtH (t− τ) η (τ) |u (τ)− v (τ)| dτ

}
≤ sup

t≥0

{∫ t

0
e−λ(t−τ)H (t− τ) η (τ)

[
e−λτ |u(τ)− v (τ)|

]
dτ

}
≤
{

sup
t≥0

∫ t

0
e−λ(t−τ)H (t− τ) η (τ) dτ

}
‖u− v‖λ ≤M1 ‖u− v‖λ ,
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from (7) A is a contraction mapping.
By 2.10, there exists at least one fixed point of the operator A+ B.
Finally, for any ε2 > 0, if 0 < δ1 ≤ |k|

|k|+2

[(
1−M1 −M2 − |k|

λ+k

)
ε2

]
, then |φ(t)|+ |u0| < δ1 implies that

e−λt |u (t)|

≤ |k| e−λt
∫ t

0
e−k(t−s) |u(s)| ds+

∫ t

0
e−λtK (t− τ) |f(τ, u(τ − r))| dτ

+ |Φ (0)| e−(λ+k)t +
e−λt + e−(λ+k)t

|k|
|u0|

+

∫ t

0
e−λtH (t− τ) g(τ, u(τ − r))dτ

≤ |k|
∫ t

0
e−λ(t−s)e−k(t−s)

∣∣∣e−λsu(s)
∣∣∣ ds

+

∫ t

0
e−λtK (t− τ) ζ (τ) Ψ (|u(τ − r)|) dτ

+ |Φ (0)|+ 2
|u0|
|k|

+

∫ t

0
e−λ(t−τ)H (t− τ) η (τ)

∣∣∣e−λτu (τ)
∣∣∣ dτ

≤
(
M1 +M2 +

|k|
λ+ k

)
‖u‖λ +

|k|+ 2

|k|
δ1,

this means that
‖u‖λ

(
1−

(
M1 +M2 +

|k|
λ+ k

))
≤ |k|+ 2

|k|
δ1,

so,

‖u‖λ ≤
|k|+ 2

|k|
(

1−M1 −M2 − |k|
λ+k

)δ1 ≤ ε2.

Thus, we know that the trivial solution of (1) is stable in Banach space Cλ.

Theorem 3.2. Suppose that all conditions of Theorem 3.1 are satisfied, and for any R > 0, there exist
functions ϕR, ψR ∈ L1 ([0,+∞)), ϕR(t), ψR (t) > 0 such that |u| ≤ R implies

e−λt |f(t, u)| ≤ ϕR(t), e−λt |g(t, u)| ≤ ψR(t) a.e. t ∈ [0,+∞) . (13)

Then the trivial solution of (1) is asymptotically stable.

Proof. First, according to the Theorem 3.1, the trivial solution of (1) is stable in the Banach space Cλ. Next,
we shall prove that the trivial solution u = 0 of (1) is attractive. To this purpose, we define the subset of BR

B∗R =
{
u ∈ BR, lim

t→∞
e−λtu(t) = 0

}
, for any R > 0.

It is a nought to prove that Au+ Bv ∈ B∗R for any u, v ∈ B∗R, i.e.

e−λt [(Au) (t) + (Bv) (t)]→ 0 as t→∞,

where

(Au) (t) + (Bv) (t)

= k

∫ t

0
e−k(t−s)u(s)ds+

∫ t

0
K (t− τ) f(τ, u(τ − r))dτ

+ Φ (0) e−kt +
1− e−kt

k
u0 +

∫ t

0
H (t− τ) g(τ, v(τ − r))dτ.
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In fact, for u, v ∈ B∗r , based on the fact that used in the proof of Theorem 3.1 (Claim 2), it follows that

e−λtk

∫ t

0
e−k(t−s)u(s)ds = k

∫ t

0
e−(λ+k)(t−s)

(
e−λsu(s)

)
ds→ 0,

and
e−λ(t−τ)K(t− τ)→ 0,

as t→∞. Together with the hypothesis ϕR, ψR ∈ L1 ([0,+∞)) and using same way of (12) on the function
H, we obtain

e−λt
∫ t

0
K(t− τ) |f(τ, u(τ − r))| dτ

≤
∫ t

0

[
e−λ(t−τ)K(t− τ)

]
ϕR(τ)dτ → 0,

and

e−λt
∫ t

0
H(t− τ) |g(τ, u(τ − r))| dτ

≤
∫ t

0

[
e−λ(t−τ)H(t− τ)

]
ψR(τ)dτ → 0,

as t→∞. Furthermore, it is easy to see that

Φ (0) e−kt +
1− e−kt

k
u0 ∈ B∗R.

Thus, the trivial solution of (1) is asymptotically stable.

Example 3.3. Let us consider the following initial value problem of mixed Riemann-Liouville-Caputo frac-
tional differential equations with delay on unbounded interval

RLD1/2[CD3/2u(t)− 1
4e
−4t sin (u (t− 2))] = 1

5e
−4tu2 (t− 2) , t ≥ 0,

u (t) = sin (t) , t ∈ [−2, 0] ,

lim
t→0

t1−α CD3/2u(t) = 0, u′(0) = 1.

(14)

Then α = 1/2, β = 3/2, r = 2, u0 = 1, Φ (t) = sin (t), g (t, u (t− 2)) = 1
4e
−4t sin (u (t− 2)), f (t, u (t− 2)) =

1
5e
−4tu2 (t− 2), λ = 3, K = 2, γ = 1. Doing straightforward computations, we obtain η (t) = 1

4e
−4t,

ζ (t) = 1
5e
−t, Ψ (|u|) = u2, M2 =

√
3

5 , M1 = 3
16 . Then the trivial solution of (14) is stable in C3 follows from

Theorem 3.1.
Moreover, let ϕR(t) = 1

5e
−tR2 and ψR(t) = 1

4e
−t |sin (R)|, then ϕR, ψR ∈ L1 ([0,+∞)). Hence, by

Theorem 3.2, we get that the trivial solution of (14) is asymptotically stable.

4. Conclusion

In this paper, by utilizing the Krasnoselskii fixed point theorem in a weighted Banach space, we investigate
the stability and asymptotic stability of the trivial solution for nonlinear fractional differential equations
with the left Riemann Liouville and left Caputo fractional derivatives of orders α ∈ (0, 1] and β ∈ (1, 2]
respectively. We establish the equivalence between the fractional differential equation and the integral
equation on an infinite interval. Two main theorems are obtained. We also put an example to illustrate our
results. However, we still have works to improve our constraint conditions for they are a little complicated
in reality.
Acknowledgement. The authors wish to thank deeply the anonymous referee for useful remarks and careful
reading of the proofs presented in this paper.
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