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ABSTRACT 

 
Metaheuristic algorithms belong to the non-gradient based optimization methods. Accomplished studies 

in this area reveal that each of these methods mostly has its own affirmative and inconvenient aspects. So 
that, one might provide a high level of exploration while the other can perform a great level of exploitation. 

Thus, selecting the proper and efficient algorithm for a problem can highly affect both the convergence 

rate and the accuracy level. There are several different metaheuristic algorithms have been announced in 
the technical literature in the last decade. Therefore, performing an objective comparative assessment over 

some of these methods can provide a fundamental and fair attitude for researchers either to select an 

algorithm which is more fitted with their target(s) or to develop even more efficient methods. So, the 
current investigation deals with evaluating and comparing of five different metaheuristic techniques 

emerged from ten years ago up to now. The selected methods can be sorted chronologically as Firefly 

Algorithm (FA), Teaching and Learning Based Algorithm (TLBO), Drosophila Food Search (DSO) 
method, Ions Motion Optimization (IMO) and Butterfly Optimization Algorithm (BOA). Different 

properties of these algorithms as convergence rate, diversity variation, complexity and accuracy level of 

the final solutions are compared on both constrained and non-constrained optimization problems include 
mathematical functions, mechanical and structural problems. The results show that the cited methods show 

different performance depending on the type of the optimization problem but overally BOA and TLBO 

outperform the other algorithms on non-constrained and constrained problems, respectively. 
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Introduction 

In several science and engineering fields the main 
purpose of designing process is to establish the 
system with maximum efficiency and minimum 
cost [17-19]. Thus, the design problems somehow 
are convertible to an optimization problem and 
consequently optimization techniques play vital 
role on solving these problems. Optimization 
techniques can be divided into two main 
categories as deterministic and non-deterministic 
algorithms. Deterministic approaches indicate 
those methods that are based on mathematical 
modeling and programming techniques [7]. 
These approaches while initiate the search 
process from an initial design point by computing 
the gradient of the objective function explore the 
search space toward the optimum point. Despite 
the fact that such approaches have a fast 
convergence rate and high accuracy, they are 
highly dependent to the starting point and also 
they require a continues (or partial continues) 
objective function and its gradient(s). However, 
for many of engineering problems finding such an 
objective function is very difficult or even 
impossible [19]. 

So, to overcome these shortcomings another class 
of methods seems to be required. In this regard 
the non-deterministic approaches as an 
alternative optimization approach are emerged 
[10,24,25,30]. These class of optimization 
approaches do not entail gradient information of 
the problem’s objective function and/or its 
constraints, if any [16,17,21]. They typically use 
probabilistic rules of transition rather than 
deterministic ones. They employ a number of 
randomly generated agents, and gradually 
improve them until the convergence/termination 
condition is met. Metaheuristic approaches, as 
main the techniques belong to this group, 
generally are inspired from natural phenomena. 
The basic clue behind these methods is to model 
natural concepts, like survival behavior of the 
animal colonies, physical rules and etc. [20]. 
Since these methods are numeric based, along 
with developments of the computers usage of 
these algorithm on different class of optimization 
problems are highly gained interest among the 
researchers [15,19]. 

It should be taken into account that there is no any 
unique manner or a standardized algorithm to 

implement of different metaheuristic approaches 
to solve different problems. Two important 
search behaviors which highly affect the search 
performance of the algorithm are exploration and 
exploitation of the algorithm. To spot the level of 
these behaviors and the ability of an algorithm to 
provide a suitable balance between these two 
different behaviors, the algorithm should be 
verified on different problems with various 
specifications. To meet this aim in the current 
study five well-stablished metaheuristic 
algorithms (based on the author’s knowledge) are 
taken into consideration. It should be noted that, 
the investigated methods on this study are chosen 
to cover a recent decade innovations and 
achievements (from 2009 up to 2019) in the field 
of metaheuristic optimization techniques. These 
algorithms hierarchically can be sorted as Firefly 
Algorithm (FA) presented in 2009 by Yang [29], 
Teaching and Learning Based Optimization 
(TLBO) introduced in 2011 by Rao et al. [22], 
Drosophila Food Search (DSO) present in 2014 
by Das and Singh [4], Ion Motion Algorithm 
(IMO) presented in 2015 by Javidy et al [8] and 
Butterfly Optimization Algorithm (BOA) 
presented in 2019 by Arora and Singh. 

FA method imitating the firefly’s mating 
behavior to search the domain and it used in 
several research works [11,14]. TLBO is modeled 
the educational relation between students and 
teacher in the classroom, this method and its 
modified versions also is utilizes as the optimizer 
tool in many different works [3,5,13,23,27,28]. 
DSO method models the food search strategies of 
the insect with the same name to search the 
problem domain [4]. This method uses two 
different patterns to globally and locally search 
the domain.  IMO mathematically models the 
interactions between ions of the material in the 
liquefied and solid phases [6], and finally BOA 
method as the most recent method imitating the 
mating behavior of butterflies to provide a search 
algorithm. 

Cited five algorithms’ search capability are tested 
on variety of problems belonged to the 
mathematical, mechanical and structural fields. 
They are included both constrained and non-
constrained search spaces with continuous and 
discrete variables. The methods different aspects 
like convergence rate and diversity index, 
complexity level and accuracy of the solution are 
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verified on cited various classes of optimization 
problems and the results are provided via 
illustrative tables and comparative diagrams. The 
achieved results show that TLBO approach 
overlay shows a steady performance on searching 
the domain of different problems, while BOA 
demonstrates significant converging ability on 
non-constrained problem. 

 

Optimization algorithms 

This section is devoted to describe the methods 
that their search performances are investigated. 
All of these methods are metaheuristic 
algorithms. They are all population based 
algorithms which are started from an initial 
random agent while each agent is the candidate 
solution. These agents are gradually improved 
based problem according to the predefined 
pattern of the considered optimization algorithm. 
Assessment of the agented are done iteratively via 
evaluating the given objective function of the 
problem. Consequently, the applied methods in 
this study are briefly explained in the following. 

 
Firefly Algorithm (FA) 

The firefly algorithm (FA) is originally 
introduced by Yang [29], this method drives its 
search patterns form the behavior of the fireflies 
in the real world. It is inspired from the flashing 
behavior of fireflies and its absorbing effect on 
their own species. Although the real behavior of 
fireflies might be complex, to get a mathematical 
model the idealizations are made as follows: 

 All fireflies are considered as unisex 
species; it means that all of them 
regardless to their sexuality they can 
be attracted to each other. 

 The attractiveness factor directly 
proportional to their brightness. 
Therefore, for any pair of fireflies the 
brighter is more attractive and 
consequently the less bright firefly will 
move toward it. Also, this 
attractiveness depends on the distance 
between them, so it is decreased when 
the distance of two fireflies is 
increased and vice versa. On the other 
words if a firefly stands so far from 

others, it is not attracted by any of them 
and so it performs a random 
movement. 

 The landscape of the objective 
function of the optimization highly 
affects the brightness of the fireflies 
(e.g. in the foggy weather even close 
fireflies may not realize each other). 

Based on this information the two important 
terms in the firefly algorithm are light intensity of 
the agents and proper formulation to devote the 
attraction level of the agents. Since attraction of 
other fireflies to the light intensity of current 
firefly is depended to their distance, it can be 
defined via exponential function as below: 

𝛽(𝑟𝑖𝑗) = 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

 ( 1 ) 

where, rij indicate the distance between a pair of 
fireflies and can be defined as Euclidean distance 

as 𝑟𝑖𝑗 = ‖𝑿𝑖 − 𝑿𝒋‖ and β0 and  indicate the 

attractiveness level for the rij=0 state and light 
absorption coefficient, respectively. 
Consequently, based on the given information the 
movement of the fireflies is mathematically 
formulated as follow: 

∆𝐱𝑖 = 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑖 − 𝑥𝑗) + 𝛼 (𝑟𝑎𝑛𝑑 −
1

2
) 

𝐱𝑖
𝑡+1 = 𝐱𝑖

𝑡 + ∆𝐱𝑖 

( 2 ) 

where, superscript t+1 and t show the updated 
location of the firefly, respectively. Also, α is 
random number uniformly generated from [0,1] 
interval and ‘rand’ provides a vector of random 
number selected from [0,1] interval and β0=1 is 
set [29]. Finally, to provide more clarity the 
pseudo code for FA is given as below:  
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Table 1. The pseudo code for FA 
Initialize internal algorithm parameters; 

Generate n random firefly; 

Light intensity Ii at Xi is determined by f(Xi) 

while (not termination condition) 

   for (each agent i) 

      for (each agent j) 

     if (Ij > Ii), firefly i should move towards firefly j  

end 
         Adjust attractiveness according to distance r via 

exp[-γr] 

Evaluate new solutions and update light intensity  

       end 

    end 

end 

 

Teaching and learning based optimization 
algorithm (TLBO) 

The teaching and learning based optimization 
inspired from the knowledge flow inside a 
classroom was presented by Rao et al. [22]. This 
method considers the teacher educational 
influence on the students. Similar to other 
natural-inspired algorithms TLBO is a 
population based method that starts with a 
random class which contains possible solution 
candidates. These random candidates are called 
learners. This algorithm is two phase method 
which includes teaching phase and learning 
phase. The first phase focuses on the knowledge 
transferring from teacher to the learners while 
second phase models the learning process among 
the student through their individual interactions.  

In the teaching phase all agents are evaluated 
based on their objective function values and the 
best agent is selected as the teacher. Then all 
agents are modified their locations based on 
mean knowledge level of the classroom. If the 
updated solution is better than prior one the new 
one is accepted and otherwise it is rejected. 
Subsequently, in the learning phase a random 
pair of students is selected and the student (agent) 
with lower level of knowledge moves toward the 
other with higher level of knowledge. Again if 
updated location is better than the previous one it 
is accepted and else it is rejected. Based the given 
information TLBO method is mathematically 
formulated as follow: 

𝐗(𝑛𝑒𝑤,𝑖) = 𝐗𝑖 + 𝑟(𝐗𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹𝐗𝑚𝑒𝑎𝑛) 

if         f(𝐗(new,i)) < f(𝐗i)     𝐗i = 𝐗(new,i) 
( 3 ) 

if         𝑓(𝐗(𝑛𝑒𝑤,𝑖)) ≥ 𝑓(𝐗𝑖)     𝐗𝑖 = 𝐗𝑖 

where, 𝐗(𝑛𝑒𝑤,𝑖) is the updated position of ith agent, 
𝐗𝑖is its current location, the teaching factor is 
shown with TF and can be either 1 or 2 also 
𝑓(𝐗(𝑛𝑒𝑤,𝑖)) and 𝑓(𝐗𝑖) show updated and the current 
objective values of ith agent, respectively. 

Also, 𝐗𝑚𝑒𝑎𝑛is the mean of all agents and it is 
formulated as follow: 

𝐗𝑚𝑒𝑎𝑛 = [𝑚(∑𝑥𝑗
1

𝑛𝑝

𝑗=1

) ,𝑚(∑𝑥𝑗
2

𝑛𝑝

𝑗=1

) ,… ,𝑚(∑𝑥𝑗
𝑛𝑑

𝑛𝑝

𝑗=1

)] ( 4 ) 

in which, np shows the number of the students, 
m(.) returns the mean value of any inputs and nd 
indicates the problem dimension. The learning 
phase mathematically is formulated as follow: 

𝐗(𝑛𝑒𝑤,𝑖) = 𝐗𝑖 + 𝑟. ( 𝐗𝑖 − 𝐗𝑗)      𝑖𝑓    𝑓( 𝐗𝑖) ≤ 𝑓( 𝐗𝑗) 

𝐗(𝑛𝑒𝑤,𝑖) = 𝐗𝑖 + 𝑟. ( 𝐗𝑗 − 𝐗𝑖)      𝑖𝑓    𝑓( 𝐗𝑖) > 𝑓( 𝐗𝑗) 
( 5 ) 

Where, r is the random value and Xi and Xj are 
two different member of the population. If 𝐗(𝑛𝑒𝑤,𝑖) 
improves the objective value, it is accepted 
otherwise it is rejected and Xi is maintained. For 
more clarity, the pseudo code for TLBO is 
provided as follow: 
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Table 2. The pseudo code for TLBO   

Generating n random agents 

while (not termination condition) 

  

Sort the colony and selected the best agent as 

teacher 

   for (each agent i) 

          update each agents location considering 

teacher position via Eq. ( 4 ) 

          evaluate updated agent (f(Xi)) 

          if new location of agent i is improved 

               maintain new location           

          else 

               reset it to its prior best location 

          end  

T
ea

ch
in

g
 P

h
a

se
 

         select random jth agent which (i≠j) 

          if new location of agent i is better than 

agent j location 

               agent i getting away from the agent j 

based on Eq.( 5 )      

          else 

               agent i going toward from agent j 

based on Eq.( 5 )             

          end 

          evaluate updated agent (f(Xi)) 

           if new location of agent i is improved 

                maintain new location           

           else 

                reset it to its prior best location 

           end 

    end 

end  

L
ea

rn
in

g
 P

h
a

se
 

 

Drosophila search algorithm (DSO) 

The Drosophila Search Algorithm (DSO) is the 
metaheuristic search approach which imitates the 
food search behavior of the insect with the same 
name as Drosophila Melanogaster. The method 
is population based approach and it was released 
for the first time by Das and Singh [4]. In this 
approach two main strategies are applied to 
search the problem domain as neighborhood food 
searching and Modified Quadratic 
Approximation (MQA). The neighborhood food 
searching is formulated as below: 

𝑈𝑖,𝑘 = 𝑉𝑖,𝑘 + |𝑉𝑟3,𝑘 − 𝑉𝑟4,𝑘| 

  

𝑊𝑖,𝑘 = 𝑉𝑖,𝑘 + |𝑉𝑟3,𝑘 − 𝑉𝑟4,𝑘| 𝑓𝑜𝑟 𝑘 = 𝑟1 𝑎𝑛𝑑 𝑟2; 

  
for 𝑗 ≠  𝑟1 and 𝑗 ≠  𝑟2, 𝑈𝑖,𝑘 = 𝑉𝑖,𝑗 and 𝑊𝑖,𝑗 = 𝑉𝑖,𝑗  

 

𝑉𝑖,𝑗
′ = 𝑀𝑖𝑛{𝑓(𝑉𝑖,𝑗), 𝑓(𝑈𝑖,𝑗), 𝑓(𝑊𝑖,𝑗)} for {

𝑖 = 1, 2, . . . , 𝑃 
𝑗 = 1, 2, . . . , 𝐷

 

(6 ) 

where, ⅈ ∈ {1,2, … , 𝑃} and j ∈ {1,2, … , 𝐷} which 
P and D values are the population size and 
problem dimension, respectively. 𝑟1,  𝑟2 ∈

[1, 𝐷] as tow random numbers Also, 𝑉𝑖,𝑘 and 𝑉𝑖,𝑗
′  

are the current and updated agent’s location. the 
Modified Quadratic Approximation (MQA) 
search approach is mathematically formulated as 
follow: 

𝐶ℎ𝑖𝑙𝑑 = 0.5
(𝑅2

2 −𝑅3
2)𝑓(𝑅1) + (𝑅3

2 −𝑅1
2)𝑓(𝑅2) + (𝑅1

2 −𝑅2
2)𝑓(𝑅3)

(𝑅2
 −𝑅3

 )𝑓(𝑅1) + (𝑅3
 −𝑅1

 )𝑓(𝑅2) + (𝑅1
 − 𝑅2

 )𝑓(𝑅3)
 (7 ) 

in which 𝑓(. ) indicates the objective function 
value for any indicidual and 𝑅1

 , 𝑅2
  and 𝑅3

  are 
slected randomly among the colony so that 𝑅1 ≠
𝑅2 ≠ 𝑅3. For more clarity, the pseudo code for 
DSO is provided in Table 3. 

Table 3. The pseudo code for DSO 
Initialize internal algorithm parameters; 

Evaluate fitness of each individual in the populations  

while (not termination condition) 

Use tournament selection 

   for (each agent i) 

         For each agent in the population make the 

neighborhood search using Eq. (6) and update it 

        Evaluate objective function of each member f(Xi) 

using Eq. (6)  

        The best place of agent is saved 

        If the fitness of any agent and its old position is 

within 1% radius, then apply MQA using Eq. (7)  

The old individual will only retain its position if it is 

better than the current individual 

  end 

end 

 

Ions Motion Optimization (IMO) Algorithm 

The Ions Motion Optimization (IMO) mimics the 
ions behavior in nature, indeed it is inspired from 
repulsion and attraction force between cations 
and anions. This algorithm has two different 
navigation schemes as liquid and solid to 
guidance the agents. It is considerable that the 
algorithm of IMO has not any random coefficient 
in its main phase (i.e. liquid phase). So, in the 
liquid phase all agents (ions) are move toward 
each other non-stochastically. Also, since all of 
initial population are divided into two main 
groups of ions as anions and cations the 
population size should be an even number. In the 
solid phase agents are navigated toward (or 
around) the best solution to provide exploitation. 
Based on the method’s authors this phase 
preventing from local optima trappings [8]. 
Based on provided information the liquid and 
solid phases of IMO respectively are formulated 
as below: 
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Liquid phase 

𝐴𝑖𝑗 = 𝐴𝑖𝑗 + 𝐴𝐹𝑖𝑗 × (𝐶𝑏𝑒𝑠𝑡𝑗 − 𝐴𝑖𝑗) 

𝐶𝑖𝑗 = 𝐶𝑖𝑗 + 𝐶𝐹𝑖𝑗 × (𝐴𝑏𝑒𝑠𝑡𝑗 − 𝐶𝑖𝑗) 

Solid phase 

if 

(

 
 
𝐶𝑏𝑒𝑠𝑡𝐹𝑖𝑡 ≥

𝐶𝑤𝑜𝑟𝑠𝑡𝐹𝑖𝑡

2

𝑎𝑛𝑑 

𝐴𝑏𝑒𝑠𝑡𝐹𝑖𝑡 ≥
𝐴𝑤𝑜𝑟𝑠𝑡𝐹𝑖𝑡

2
 )

 
 

  

     if 𝑟𝑎𝑛𝑑( ) > 0.5 

𝐴𝑖 = 𝐴𝑖 +Φ1 × (𝐶𝑏𝑒𝑠𝑡 − 1) 

     else  

𝐴𝑖 = 𝐴𝑖 +Φ1 × (𝐶𝑏𝑒𝑠𝑡) 

     end if 

     if 𝑟𝑎𝑛𝑑( ) > 0.5 

𝐶𝑖 = 𝐶𝑖 +Φ2 × (𝐴𝑏𝑒𝑠𝑡 − 1) 

     else  

𝐶𝑖 = 𝐶𝑖 +Φ2 × (𝐴𝑏𝑒𝑠𝑡) 

     end if 

     if 𝑟𝑎𝑛𝑑( ) < 0.05 

𝑅𝑒 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝐴𝑖  𝑎𝑛𝑑 𝐶𝑖 

     end if 

end if 

( 8 ) 

where Cbest and Abest are shown the best cation 
and anion, respectively. Also, Φ is the random 
number uniformly selected form interval of [0,1]. 
CbestFit and AbestFit are indicated the fitness 
values for the best cation and anion, respectively. 
AFij and CFij are force coefficient between ions 
and they are defined as follows: 

𝐴𝐹𝑖𝑗 =
1

1 + 𝑒−0.1/𝐴𝐷𝑖𝑗
 

𝐶𝐹𝑖𝑗 =
1

1 + 𝑒−0.1/𝐶𝐷𝑖𝑗
 

( 9 ) 

In which, 𝐴𝐷𝑖𝑗 = |𝐴𝑖𝑗 − 𝐶𝑏𝑒𝑠𝑡𝑗| , 𝐶𝐷𝑖𝑗 = |𝐶𝑖𝑗 −

𝐴𝑏𝑒𝑠𝑡𝑗| are distance between ith agent and best 

cation and best anion, respectively. for more 
clarification the pseudo code for IMO is given as 
follows: 

 

 

 

 

Table 4. The pseudo code for IMO 
Initialize internal algorithm parameters and random 

population; 

while (not termination condition) 

   Fitness evaluation of all agents 

   Determine the best and worst Anions and Cations 

   Determine force factor using Eq. ( 9 ) 

  Update locations of ions based on the liquid phase as 

given in Eq. ( 8 ) 

  if (Mean fitness of worst ions are equal or smaller than 

the best ions)  

     Perform solid phase motion based on the Eq. ( 8 ) 

  end 

end 

 

Butterfly Optimization Algorithm (BOA) 

The butterfly optimization algorithm models the 
biological behavior of the butterflies to find food 
sources and mating. This method has three main 
phases as initializing, main iterations and 
finalizing [2]. The created model can be idealized 
as follows: (a) It is supposed the all butterflies are 
able to emit the fragrance which causes 
butterflies attract to each other, (b) each butterfly 
provides a stochastic movement toward the best 
butterfly (i.e. the butterfly emitted most intense 
fragrance), (c) landscape of the search domain 
affect the level of stimulus intensity of each 
butterfly.  For global and local searches, BAO 
applies two similar but different strategies as 
given in following: 

Global search 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑔∗ − 𝑥𝑖
𝑡) × 𝑓𝑖 

Local search  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 × 𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) × 𝑓𝑖 

( 10 ) 

where, t+1 and t are shown the current and 
updated condition for the related variable. Also, 
g* indicates the best agent in the colony while xj 
and xk are two randomly selected agents from the 
colony. The coefficient of r is a random number 
uniformly selected from [0,1]. The fragrance 
factor is defined as below: 

𝑓 = 𝑐𝐼𝑎 ( 11 ) 

where, f is the magnitude of the fragrance and I 
is the intensity of the stimulus and a is the value 
that accounts the fluctuating absorption degree. 
Also, a coefficient can take values between [0,1] 
and c can be selected from interval of [0, ∞]. 
However, the based on presenters of BOA the 
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proper values for both of these coefficients are 
selected in range of [0,1]. For more clarity the 
pseudo code for BOA are given as below: 

Table 5. The pseudo code for BOA 
Initialize internal algorithm parameters  

Generate n random butterflies 

Calculate F(Xi) to determine stimulus intensity Ii 

Define sensor modality c, switch probability p and power 

exponent a  

while (not termination condition) 

    for each population (butterfly) 

Using Eq. ( 11 )  calculate the fragrance for current 

butterfly  

   end 

Select the best agent 

   for each butterfly in the colony  

                  Generate rand number r 

                 If r<p then 

Moving toward the best solution using global search of 

Eq. ( 10 )  

                 else 

Perform a random movement using local search of Eq. ( 

10 )  

                 end 

   end 

end 

 

Numeric problems 

In this section the different perfections and 
deficiencies of the addressed five metaheuristic 
algorithms are comparatively tested on a number 
of numeric mathematical and mechanical 
problems. These problems are covered both 
constrained and non-constrained cases. It should 
be noted that the main aim of the current work is 
not to make a fine tuning on any of cited 
algorithms over different types of problems, but 
their original and well stablished forms are 
applied to provide a fair comparison. To illustrate 
more details about these algorithms the internal 
terms’ values are given as follow: 

 

 

 

 

 

 

 

 

Table 6. Parameters values for utilized 

algorithm 

Algorithm Parameter values 

FA [29] α=0.25, β=0.2, =1 

TLBO [22] TF = round[1 + rand(0, 1){2 - 1}] 

DSO - 

IMO [8] - 

BOA [2] p=0.8, a=0.1, c=0.01 

It should be mentioned that the computer codes 
provided by their own authors for FA and BOA 
published over the MathWorks® are applied. All 
problems are solved via the system equipped 
with intel CORE i7@2GHz with 16GM of RAM 
installed. To prevent any premature convergence 
all cases are run for 30 times. 

Non-constrained benchmark functions 

This section is devoted to test the performance of 
the selected algorithms on the optimization of the 
non-constrained benchmark functions. In this 
regard five best well-known benchmark 
functions with different properties are selected. 
To provide more clarity these functions are 
schematically plotted in the 3D space in Table 7 
and their properties are also given in this table. 
The first two function relatively has smooth 
search space which challenge the global search 
behavior of the tested algorithms in addition the 
sphere function is the multimodal and separable 
while the Schwefel 2.22 function is unimodal and 
non-separable [12]. The Ackley function is a 
transmitting function for testing the algorithms. 
Since it has smooth but with vast uniform area of 
search space, while it highly challenges the 
global search behavior of the algorithms, it also 
requires an admissible level of local search 
behavior. This function search space is 
multimodal and non-separable. The functions of 
Griewank and Rastrigin both have high number 
of local optima, and as can be seen from Table 7 
specially the later one has very noisy search 
domain which makes the local search very 
difficult for the algorithms. The related 
formulation, the range and assumed dimensions 
for the selected functions are provided in Table 
8. All algorithms run for 10*D (D=dimension of 
the problem) number of objective function 
evaluation, also the error level for each example 
are taken as 1E-8 [26]. The error level indicates 
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the error level between achieved objective 
function and global optimum and it is applied as 
alternative termination criterion. Indeed, both the 
maximum number of iteration and maximum 
error level can be a termination criterion 
depending on whichever occurred first.  

 

Convergence analysis 

All algorithms performances are examined on 
solving the five addressed benchmark functions 
given in Table 7. The related convergence 
diagrams for all algorithms are presented in 
Figure 1. For the sphere function all tested 
method expect IMO can reach optimal condition. 
As the most capable methods both TLBO and 
BOA show nearly the same performance with 
6840 OFEs they are followed by DSO and FA 
with13020 and 16440 OFEs, respectively. For 
the Schwefel 2.22 function BOA with 2130 
OFEs outperform all other tested methods, and 
TLBO stands at the second place by 9000 OFEs 
and DSO can reach the optimal condition through 
32010 of OFEs. Both FA and IMO are not able 
to satisfy the optimal condition for this example. 
For the Ackley function, BOA outperforms all 
other methods via 1980 OFEs and it is traced by 
TLBO with 8640 OFEs. However, other tested 
algorithms do not reach to the optimal 
conditions. For the Griewank function the 
successful methods can be sorted in ascending 
order as BOA, TLBO and DSO with 2130, 6180 
and 11790 OFEs, respectively. This is despite the 
fact that IMO and FA cannot attained optimal 
condition. For the Rastrigin function BOA shows 
extreme performance among all other tested 
methods and it reaches to the optimal condition 
within just 1980 OFEs. After it TLBO with 
24360 OFEs other three methods are not able to 
satisfy any optimal condition. Overally looking 
to the obtained convergences histories for all 
tested methods it can be seen that BOA 
considerably outperforms all other methods 
while TLBO stands in the second place on 
solving the non-constrained functions. 
Subsequently FA, DSO and IMO methods stand 
in the next places, respectively. 

Diversity analysis 

In the current section the diversity level of the 
selected five methods are assessed via providing 

the illustrative diversity history diagrams. All 
swarm based methods demand an admissible 
level of the diversity which provides both 
exploration and exploitation search behaviors. 
With lower level of diversity, the algorithm loses 
its ability on explorations search and can be 
easily trapped into local minima and premature 
converge seems to be unavoidable. However, 
extensive level of diversity makes the algorithm 
to fail on achieving the required convergence, 
since it cannot provide an efficient search in the 
proximity of the local optima. To illustrate the 
diversity level of the selected methods their 
diversity history is comparatively addressed. In 
this regard, to measure the diversity level the 
diversity index is applied as follow: 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (𝑡) =
1

𝑁|𝐿|
∑√∑(𝑥𝑖

𝑗
− �̅�𝑗)

2
𝐷

𝑗=1

𝑁

𝑖=1

 ( 12 ) 

where t designates the current step, number of 
population is shown by N, L indicates the longest 
diagonal length of the search space, D stands for 

the problem dimension, 𝑥𝑖
𝑗
 is the jth component 

of the ith agent, and �̅�𝑗   declares the mean of the 
all jth components for whole swarm. The 
corresponding diversity history diagrams of 
selected methods for two dimensional sphere 
function are given in Figure 2. As can be seen 
from this figure the diversity in TLBO and DSO 
are rapidly decreased and it means that all agents 
are strongly conducted toward the optimal point. 
Diversity level of BOA is decreased in lower rate 
and it seems this method can provide a mediocre 
level of diversity, since the convergence rate of 
this method is a way higher than the others. 
Consequently, the FA and IMO show fluctuated 
diversity level and if the smooth domain of the 
2D sphere is considered, such a variation in the 
diversity is not required and these two methods 
don’t perform an adaptive search behavior. 
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Table 7. Benchmark functions’ schematic presentations and their specifications 

 Specification*  Specification* 

 

M,S 

 

U,N 

Sphere  Schwefel 2.22  

 

M,N 

 

M,N 

Ackley  Griewank  

 

M,S 

Rastrigin  

* M: Multimodal, N: Non-Separable, U: Unimodal, S: Seperable  
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Table 8. Benchmark functions’ definitions 

Function Specification Range Dimension 

Sphere 𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 [-100,+100] 30 

Schwefel 
2.22 

𝑓(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+∏|𝑥𝑖|

𝑛

𝑖=1

 [-10,+10] 30 

Ackley 

𝑓(𝑥) = −20 exp (−0.2 × √
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

)

−  exp (
1

𝑛
∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20

+ exp(𝑖) 

[-32,32] 30 

Griewank 𝑓(𝑥) =
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 [-600,+600] 30 

Rastrigin 𝑓(𝑥) =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝑛

𝑖=1

 [-5.12,+5.12] 30 
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(A) (B) 

  

(C) (D) 

 

(E) 

Figure 1. Convergence history for benchmark functions (a) Sphere (b) Schwefel 2.22 
(c) Ackley (d) Griewank (e) Rastrigin 
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(A) (B) 

  

(C) (D) 

 

(E) 

Figure 2. Diversity history for (a) BO, (b) FA, (c) IMO, (d) TLBO and (e) DSO 
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Complexity analysis 

In this section the complexity level of the 

selected algorithms is comparatively measured. 

To this end, the formulation suggested in [26] is 

applied. Based on this formulation to measure the 

complexity level of an algorithm three different 

times as T0, T1 and �̂�2 should be calculated as 

follows [26]:  

- T0 should be computed via 1000000 times 

evaluation run time for following loop: 

for i=1:1000000 

     x= 5.55 (x is double); 

     x=x + x; x=x./2; x=x*x; x=sqrt(x); 

x=ln(x); x=exp(x); y=x/x; 

end 

- T1 is calculated via 200000 times evaluation of 

a certain function, which Rastering function is 

selected in this study for the certain dimensions 

as D=30 and D=50. 

- T2 is assessed via time required for complete 

run of the proposed algorithm over the same 

function and �̂�2 is the mean value for five 

calculated T2 times. 

The complexity level for all five algorithms are 

calculated on same device and the results are 

tabulated in Table 9 and Table 10 for Rastering 

function with D=30 and D=50, respectively. As 

can be seen from these tables TLBO method is 

most complex algorithm while IMO is the least 

complex method among all algorithms. It should 

be noted that in these tables the algorithms are 

ranked for complexity ascendingly.  

 

Table 9. Complexity computation result for 

selected algorithms for D=30 
Algorithm T0 T1 �̂�2 (�̂�2-T1)/T0 Rank 

FA 1.4E-01 1.9E-01 5.00E+02 3.57E+03 3 

TLBO 1.4E-01 1.9E-01 6.00E+02 4.28E+03 4 

DSO 1.4E-01 1.9E-01 6.67E+02 4.76E+03 5 

IMO 1.4E-01 1.9E-01 3.95E+02 2.82E+03 1 

BOA 1.4E-01 1.9E-01 4.60E+02 3.28E+03 2 

 

 

 

 

 

Table 10. Complexity computation result for 

selected algorithms for D=50 
Algorithm T0 T1 �̂�2 (�̂�2-T1)/T0 Rank 

FA 1.4E-01 3.05E-01 5.59E+02 3.99E+03 3 

TLBO 1.4E-01 3.05E-01 7.14E+02 5.10E+03 4 

DSO 1.4E-01 3.05E-01 8.08E+02 5.77E+03 5 

IMO 1.4E-01 3.05E-01 4.01E+02 2.86E+03 1 

BOA 1.4E-01 3.05E-01 4.73E+02 3.38E+03 2 

 

Constrained benchmark problems 

In the current section the performance of the 

selected methods on handling the constrained 

optimization is evaluated. However, since the 

metaheuristic approaches are non-constrained 

methods, to handling the constraints of the 

problems in this investigation the penalty 

function is applied as below: 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐗) = (1 + 휀1𝑣)
𝜀2 × 𝑓(𝐗) 

𝑣 =∑max{0, 𝑔𝑖(𝐗)}

𝑞

𝑖=1

 
( 13 ) 

in which, 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦 is the penalized objective 

function of the problem and f(X) is the regular  

objective function value and gi(X) returns the ith 

constraint’s violation of the optimization 

problem. Also, 휀1 and 휀2 are the tuning terms of 

the penalty function which are taken as 1 and 1.5 

while linearly increased up to 6, respectively [9]. 

For provide a reliable results and preventing any 

premature convergence the algorithms is 

permitted to perform 100000 number of OFEs or 

500 null iterations (i.e. iteration without 

improving the solution) whichever occurs first. 

 

Pressure vessel problem 

In this section, the optimization of manufacturing 

cost of the pressure vessel capped in both ends 

with two parabolic heads shown in Figure 3 is 

selected as a real world constrained example. The 

related cost function of the problem and its 

constraints are formulated in Eqs. (14),(15) . This 

function combines both costs of the material 

required for components and necessary welding. 

The vessel system can work in the 3000 Psi 

condition while the vessel maximum volume 

should be limited up to 750 ft3. The thicknesses 
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of the head parts and shell bodies are restricted 

up to 1.1 in. and 2 in., respectively. For this 

problem the decision variables are set as: x1= the 

shell thickness (Ts), x2= the head thickness (Th), 

x3= the radius of cylindrical shell (R), and x4= the 

length of shell (L). Achieved results for all 

selected methods are comparatively is tabulated 

in Table 11. Based on the given information 

TLBO and DSO can respectively attain the best 

solutions. After these two methods FA provides 

a near optimal solution.  Interestingly it can be 

observed that despite of BOA method 

outperforms all other methods in the non-

constrained problems, in the current constrained 

problem it does not show a significant 

performance and it stands in fourth place among 

all five tested methods and IMO ranked in the last 

place for the current problem. Also, considering 

statistical data TLBO with lowest value of 

standard deviation shows most stable behavior. 

 
Figure 3. The system of pressure vessel 

 

𝑓(𝐗) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 

            +3.1661𝑥1
2𝑥4 + 19.84𝑥1

2𝑥3 
(14 ) 

while it is constrained as follow: 

𝑔1(𝐗) = −𝑥1 + 0.0193𝑥3 ≤ 0 

𝑔2(𝐗) = −𝑥2 + 0.00954𝑥3 ≤ 0 

𝑔3(𝐗) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0 

𝑔4(𝐗) = 𝑥4 − 240 ≤ 0 

( 15 ) 

where variables should be bounded as below 

0 ≤ 𝑥1 ≤ 100 

0 ≤ 𝑥2 ≤ 100 

10 ≤ 𝑥3 ≤ 200 

10 ≤ 𝑥4 ≤ 200 

( 16 ) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11.  Comparison of the optimal results for the pressure vessel problem 

Values FA TLBO DSO IMO BOA 

x1(Ts) 0.783564 0.778169 0.778167 1.072400 0.812499 

x2(Th) 0.387770 0.384649 0.384649 0.503148 0.437500 

x3(R) 40.59555 40.319689 40.31963 52.75704 42.09126 

x4(L) 196.30941 199.999022 199.9998 78.56643 176.7465 

f(X)      

Best   5898.33 5884.71 5884.719 6756.42 6061.077 

Worst 6075.45 5889.41 5884.790 6820.33 6363.804 

Mean 5998.02 5886.01 5884.728 6788.25 6347.133 

Std. Dev. 250.38 3.68 4.91 101.23 326.4545 

OFEs 52250 10360 9970 16320 2120 

Welded beam problem Next constrained problem taken into account to 
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measure the search performance of selected 

optimization methods is the design of the welded 

beam problem presented in Figure 4. The 

objective function of the current problem is the 

total cost minimization of the welded beam 

satisfying constraints restrict bending stress (σ), 

deflection (δ) and shear stress (τ). Four aspects 

associated with the cross-section (b, t) and welds 

(l, h) are considered as the decision variables. So, 

this problem mathematically formulated in 

Eq.(16)-(19). As can be seen the search space of 

this problem is restricted with seven different 

constraints. The obtained results for all methods 

are comparatively tabulated in Table 12. Based 

on the given information the methods can be 

sorted as TLBO, FA, DSO, BOA and IMO with 

1.724856, 1.73309, 1.737297, 1.90001 and 

2.093012 objective values, respectively. Is 

should be noted that, respecting to the statistical 

data TLBO with lowest value of standard 

deviation shows most stable behavior. 

 
Figure 4.  The welded beam  

 

 

cost(𝐗) = 1.10471𝑥1
2𝑥2 

                    +0.04811𝑥3𝑥4(14 + 𝑥2) 
where, 

𝐗 = {𝑥1, 𝑥2, 𝑥3, 𝑥4 } 

( 17 ) 

 
subjected to 

𝑔1(𝑥) = 𝜏(𝑥) − 𝜏max  ≤ 0 

𝑔2(𝑥) = 𝜎(𝑥) − 𝜎max  ≤ 0 

𝑔3(𝑥) = 𝑥1 − 𝑥4 ≤ 0 

( 18 ) 

𝑔1(𝑥) = 0.10471𝑥1
2 

             +0.04811𝑥3𝑥4(14 + 𝑥2) − 5 ≤ 0 

𝑔5(𝑥) = 0.125 − 𝑥1 ≤ 0 

𝑔6(𝑥) = 𝛿(𝑥) − 𝛿max  ≤ 0 

𝑔7(𝑥) = 𝑝 − 𝑝𝑐(𝑥) ≤ 0 

bounded with 

0.1 ≤ 𝑥1 ≤ 2 

0.1 ≤ 𝑥2 ≤ 10 

0.1 ≤ 𝑥3 ≤ 10 

0.1 ≤ 𝑥4 ≤ 2 

where 

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏"
𝑥2
2𝑅

+ (𝜏")2 

𝜏′ =
𝑃

√2𝑥1𝑥2
 

𝜏" =
𝑀𝑅

𝐽
 

𝑀 = 𝑃 (𝐿 +
𝑥2
2
) 

𝑅 = √
𝑥2
2

4
+ (

𝑥1 + 𝑥3
2

)
2

 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2
2

12
+ (

𝑥1 + 𝑥3
2

)
2

]} 

𝜎(𝑥) =
6𝑃𝐿

𝑥4𝑥3
2 

𝛿(𝑥) =
4𝑃𝐿3

𝐸𝑥3
3𝑥4

 

𝑃𝑐(𝑥) =
4.013√𝐸(𝑥3

2𝑥4
6/36)

𝐿2
(1 −

𝑥3
2𝐿
√
𝐸

4𝐺
) 

where, 

𝑃 = 6000 lb, 𝐿 = 14 ⅈn. , 𝐸 = 30 × 106 psⅈ,  
𝜏max  = 13,600 psⅈ, 𝜎max  = 30,000 psⅈ, 
𝛿max  = 0.25 ⅈn.   

( 19 ) 
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Design of a spatial 582-bar tower 

The last case is devoted to a structural 

optimization example as the weight 

minimization of the spatial 582-bar tower shown 

in Figure 5. To maintain symmetry, the members 

of the structure are categorized into 32 

independent groups. There are three load 

condition acting on the tower as follows: 

I. The vertical load as -6.75 kips on 

each node 

II. The horizontal load as 1.12 kips on 

each node in x- direction 

III. The horizontal load as 1.12 kips on 

each node in y- direction 

 

 
Figure 5. The 582-bar truss tower 

 

The sizing variables for this example are selected 

from the discrete set addressed in Table 13. The 

members of this set consist of 140 W-shape 

profiles given in steel structural profiles of AISC-

ASD. 

 

Table 12.  Comparison of the optimal results for welded beam design problem 

Values FA TLBO DSO IMO BOA 

x1(h) 0.206976 0.205730 0.199742 0.206188 0.248729 

x2(l) 3.460759 3.470484 3.612060 4.952083 2.953780 

x3(t) 8.992902 9.036616 9.037500 8.647560 8.362973 

x4(b) 0.207736 0.20573 0.206082 0.235955 0.249008 

f(X)      

Best 1.73309 1.724856 1.737297 2.093012 1.90001 

Worst 1.99654 1.728774 1.994651 7.332687 3.89657 

Mean 1.75741 1.730001 1.813290 4.978542 2.55489 

Std. Dev. 0.15637 0.070401 0.092100 4.002589 1.99562 

OFEs 100000 10680 11680 25860 8650 



DUJE (Dicle University Journal of Engineering) 10:3 (2019) Page 879-898 

895 

 

 

Table 13. W-shape profiles list taken from AISC code 

W27×178 W21×122 W18×50 W14×455 W14×74 W12×136 W10×77 

W27×161 W21×111 W18×46 W14×426 W14×68 W12×120 W10×68 

W27×146 W21×101 W18×40 W14×398 W14×61 W12×106 W10×60 

W27×114 W21×93 W18×35 W14×370 W14×53 W12×96 W10×54 

W27×102 W21×83 W16×100 W14×342 W14×48 W12×87 W10×49 

W27×94 W21×73 W16×89 W14×311 W14×43 W12×79 W10×45 

W27×84 W21×68 W16×77 W14×283 W14×38 W12×72 W10×39 

W24×162 W21×62 W16×67 W14×257 W14×34 W12×65 W10×33 

W24×146 W21×57 W16×57 W14×233 W14×30 W12×58 W10×30 

W24×131 W21×50 W16×50 W14×211 W14×26 W12×53 W10×26 

W24×117 W21×44 W16×45 W14×193 W14×22 W12×50 W10×22 

W24×104 W18×119 W16×40 W14×176 W12×336 W12×45 W8×67 

W24×94 W18×106 W16×36 W14×159 W12×305 W12×40 W8×58 

W24×84 W18×97 W16×31 W14×145 W12×279 W12×35 W8×48 

W24×76 W18×86 W16×26 W14×132 W12×252 W12×30 W8×40 

W24×68 W18×76 W14×730 W14×120 W12×230 W12×26 W8×35 

W24×62 W18×71 W14×665 W14×109 W12×210 W12×22 W8×31 

W24×55 W18×65 W14×605 W14×99 W12×190 W10×112 W8×28 

W21×147 W18×60 W14×550 W14×90 W12×170 W10×100 W8×24 

W21×132 W18×55 W14×500 W14×82 W12×152 W10×88 W8×21 

Their upper and lower bounds are respectively 

limited to 6.16 in2 (39.74 cm2) and 215.00 in2 

(1387.09 cm2). The nodal displacement for all 

principal directions are limited up to 3.15 in (8 

cm). The stress limitation is determined based on 

the buckling criterion of the AISD-ASD89 code 

as follows [1]: 

{
𝜎𝑖
+ = 0.6𝐹𝑦          𝜎𝑖 ≥ 0             

𝜎𝑖
−                          𝜎𝑖 < 0            

    ( 20 ) 

where Fy is the yielding stress of the materials 

and 𝜎𝑖
− and 𝜎𝑖

+ are compressive and tensile 

stresses, respectively. While, σi
- is also a function 

of the slenderness ratio given as follows: 

𝜎𝑖
− =

{
 
 

 
 [(1 −

𝜆𝑖
2

2𝐶𝑐
2)𝐹𝑦 (

5

3
+
3𝜆𝑖
8𝐶𝑐

−
𝜆𝑖
3

8𝐶𝑐
3)⁄ ]                                     𝑓𝑜𝑟 𝜆𝑖 < 𝐶𝑐 

12𝜋2𝐸

23𝜆𝑖
2                                                                                      𝑓𝑜𝑟 𝜆𝑖 ≥ 𝐶𝑐

 ( 21 ) 

in which Cc is the slenderness ratio which is 

defined as: 

𝐶𝑐 = √
2𝜋2𝐸

𝐹𝑦
 ( 22 ) 

According to the code, maximum slenderness 

ratio (i.e. allowable ratio) should be limited as up 

to 200 and 300 for compressive and tensile 

structural members, respectively. The 

slenderness ratio is mathematically illustrated as 

follows: 

𝜆𝑖 =
𝑘𝑖𝑙𝑖
𝑟𝑖

≤ {
300 𝑓𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠          
 200 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑒𝑚𝑏𝑒𝑟𝑠

 
( 23 ) 

where λi, ri, and li are the slenderness ratio, radius 

of gyration and length of the ith member, 

respectively. For compression elements, if the 

required slenderness ratio is not be satisfied, the 

allowable stress must not surpass the value of 

(
12𝜋2𝐸

23𝜆𝑖
2 ) ever [1]. This example as the complex 

structural optimization are solved via five 

selected techniques and the archived results are 

tabulated in Table 14. The number of structural 

analyses (NSA) and standard deviation (STD) for 

each algorithm are provided. 
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Table 14. Comparison of the optimal results for the 582-bar tower problem 

Groups 
Optimal cross-sectional areas 

FA TLBO DSO IMO BO 

1 W8×21 W8×21 W8×24 W8×21 W8×24 

2 W24×76 W24×84 W12×72 W12×79 W24×68 

3 W8×21 W8×21 W8×28 W8×24 W8×28 

4 W12×65 W24×62 W12×58 W10×60 W18×60 

5 W8×21 W8×21 W8×24 W8×24 W8×24 

6 W8×21 W8×21 W8×24 W8×21 W8×24 

7 W10×54 W16×57 W10×49 W8×48 W21×48 

8 W8×21 W8×21 W8×24 W8×24 W8×24 

9 W8×21 W8×21 W8×24 W8×21 W10×26 

10 W12×50 W12×53 W12×40 W10×45 W14×38 

11 W8×21 W8×21 W12×30 W8×24 W12×30 

12 W10×68 W10×77 W12×72 W10×68 W12×72 

13 W24×76 W21×83 W18×76 W14×74 W21×73 

14 W14×53 W21×57 W10×49 W8×48 W14×53 

15 W12×79 W18×76 W14×82 W18×76 W18×86 

16 W8×21 W8×21 W8×31 W8×31 W8×31 

17 W12×65 W10×22 W14×61 W8×21 W18×60 

18 W8×21 W18×55 W8×24 W16×67 W8×24 

19 W8×21 W8×21 W8×21 W8×24 W16×36 

20 W12×45 W8×21 W12×40 W8×21 W10×39 

21 W8×21 W14×30 W8×24 W8×40 W8×24 

22 W8×21 W8×21 W14×22 W8×24 W8×24 

23 W16×26 W8×21 W8×31 W8×21 W8×31 

24 W8×21 W8×21 W8×28 W10×22 W8×28 

25 W8×21 W8×21 W8×21 W8×24 W8×21 

26 W8×21 W8×21 W8×21 W8×21 W8×24 

27 W8×21 W10×22 W8×24 W8×24 W8×28 

28 W8×21 W8×21 W8×28 W8×24 W14×22 

29 W8×21 W8×21 W16×36 W8×24 W8×24 

30 W8×21 W8×31 W8×24 W8×24 W8×24 

31 W8×21 W8×21 W8×21 W8×24 W14×22 

32 W8×21 W12×22 W8×24 W8×24 W8×24 

Volume (m3) 20.07 20.3 22.07 23.4 22.37 

NSA 25890 16050 17670 5850 8880 

Std. (m3) 0.53 0.22 0.51 1.82 0.32 
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Conclusion 

The current investigation deals with 

comparatively measurement of the five 

metaheuristic algorithms from various aspects. 

These algorithms have been selected to cover the 

latest methods announced in the last decade 

(between 2009 to 2019). The selected algorithms 

chronologically (i.e. based on their emerging 

date) can be sorted as Firefly Algorithm (FA), 

Teaching and Learning Based Optimization 

(TLBO), Drosophila Food-Search Optimization 

(DSO), Ions Motion Optimization (IMO) and 

Butterfly Optimization Algorithm (BOA). To 

gain a comprehensive assessment, the 

performance of these algorithms are verified on 

different classes of optimization problems 

contain mathematical, mechanical and structural 

cases. Beside of the variety, technically these 

cases consist both constraint and non-constrained 

search spaces, discrete and continuous design 

variables. So, they comprehensively challenge 

the algorithms on handling the different types of 

domains and boundaries. The methods are 

evaluated and compared considering different 

features like convergence rate, stability, 

diversity, complexity and accuracy level.  

The achieved outcomes are provided through the 

illustrative tables and diagrams. Obtained 

numeric result show that BOA could outperform 

all other algorithms on handling the non-

constrained optimization problems. But 

interestingly it cannot show the same 

performance on handling the constrained 

optimization problems, and in this category 

TLBO demonstrates the superior performance. 

Complexity tests reveal that DSO stands as the 

most complex method while IMO is the least 

complex algorithm among the all other selected 

techniques. Also, it should be noted that for the 

constrained problems, TLBO with the least 

standard deviation value shows the most stability 

level on finding the optimal solution. Overall 

insight into the results declares that not 

necessarily the latest method(s) should be picked 

up as the best method(s), but the algorithms, as 

the black-box optimizer tools, may show 

distinctive performances on different classes of 

problems. Consequently, since this investigation 

cover different classes of optimization problems, 

it provides contributory platform for scholars on 

taking the most proper algorithm(s) for desired 

problems. 
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