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Abstract
This study investigates exact analytical solutions of some nonlinear partial differential equations arising
in mathematical physics. To this reason, the Kudryashov-Sinelshchikov equation, the ZK-BBM equation
and the Gardner equation have been considered. With the implementation of the trial solution algorithm,
solitary wave, bright, dark and periodic exact traveling wave solutions of the considered equations have
been attained. The solutions have been checked and graphs have been given via package programs to see
the behavior of the waves.
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1. Introduction
Investigating exact solutions of nonlinear partial differential equations still take a great deal of attention due

to the success of explaining the physical phenomenon. Nonlinear equations (NLEs) arise in many areas such as
biology, chemistry, solid state physics, nonlinear optics, fluid mechanics, quantum field theory, and so on. In this
work, considered models are Kudryashov-Sinelshchikov equation, Zakharov-Kunzetsov-Benjamin-Bona-Mahony
equation and Gardner equation.

Nonlinear differential equations like Korteweg-de Vries (KdV) and Burgers describe the solitary and periodic
waves in a mixture of gas and liquid bubbles. Kudryashov and Sinelshchikov [11], [12]proposed a more general
model for describing pressure waves in a a gas and liquid bubbles mixture by taking into account of the heat
transfer and the viscosity of liquid. The equation is known as Kudryashov-Sinelshchikov (KS) equation [16].

Benjamin et al. [3] proposed Zakharov-Kunzetsov-Benjamin-Bona-Mahony (ZK-BBM) equation to be an alterna-
tive model for the KdV equation for long waves. It has applications in nonlinear dispersive systems, drift waves in
a plasma, and waves in rotating fluids [7].

Gardner equation has been proposed by Miura about half a century ago [18]. It is an expansion of the KdV
equation and has identical features with KdV equation, but also expands the order of availability. Unlike the KdV
equation which represents shallow water waves, Gardner equation construct a model for deep ocean waves [4], [9],
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[24]. The equation has crucial applications in different fields such as quantum field theory, fluid dynamics, solid
state physics, and plasma physics [5], [10].

Because of the applications mentioned, scientists still study NLEs and their solution methods. Numerous
analytical and numerical methods have been proposed and applied to NLEs up to now. Recently, based on the
approach proposed by Ma and Fuchssteiner [17], Cheng-Shi Liu [13]- [15] introduced the trial solution method that
reduces the undertaking equation to solvable differential equations for solving nonlinear differential equations.
Some authors [6], [19-23] applied this efficient procedure to some nonlinear evolution equations. In this study,
among the methods used for nonlinear partial differential equations, the trial solution procedure is considered.
The method have been applied to the KS, ZK-BBM and Gardner equations for the first time and exact analytical
solutions of them have been attained.

2. Trial Solution Procedure
To summarize the solution procedure of the method we can use four steps [13]- [15]:

Step 1. A nonlinear evolution equation is given as

V (u, ux, ut, uxx, utt, uxt, . . .) = 0. (2.1)

Introducing the wave transformation

u(x, t) = U(ξ), ξ = x− ρt,

reduces Eq. (2.1) to an ODE as follows:
N(U,U ′, U ′′, . . .) = 0. (2.2)

Step 2. Auxiliary equation which is an important step of the method is given by

(U ′)2 = H(U) =

n∑
i=0

aiU
i, (2.3)

which has the essential coefficients ai, i = 1, ..., n. Substituting the trial equation and other derivatives into Eq. (2.2)
yields a polynomial:

Ω(U) = psU
n + . . .+ p1U + p0.

With the aid of balancing procedure, one can find n.

Step 3. If one lets all coefficients of the polynomial to zero, it gives

pi = 0, i = 0, . . . , s.

The requisite constants a0, . . . , an can be found by solving the system above.

Step 4. By integrating Eq. (2.3), the important equation of the solution procedure can be imparted with

± (ξ − ξ0) =

∫
1√
H(U)

dU. (2.4)

Analytical solutions of Eq. (2.1) are recovered when discriminant of H(U) is classified.

3. Application of the Method

Example 3.1. Consider the Kudryashov-Sinelshchikov equation [8], [16]:

ut + γuux + uxxx − (uuxx)x − βuxuxx = 0, (3.1)
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where γ, β are real parameters and u is the density.

Using
u(x, t) = U(ξ), ξ = x− ρt, (3.2)

Eq. (3.1) turns into the form of an ODE:

−(ρU)′ + γ(U
2

2 )′ − (UU ′′)′ + U ′′′ − β
2

[
(U ′)2

]′
= 0.

Integrating this equation once

− ρU + γ
U2

2
− UU ′′ + U ′′ − (U ′)2β

2
+ µ = 0, (3.3)

where µ is constant of integration.
Applying the balance procedure in Eq. (3.3) gives n = 2.

Then, the trial equation can be chosen as (also known as Riccati equation)

(U ′)2 = a0 + a1U + a2U
2.

We will find the solution of this equation by using the trial solution algorithm and complete discrimination system
for polynomials. The overdetermined equations derived from the coefficients of the polynomial are as follows:

a0β + a1 + 2µ = 0

−(1 + βa1) + 2a2a2 − 2ρ = 0

−(2 + β)a2 + γ = 0.

Following coefficients are obtained:

a0 =
2(−2ρ− βρ+ 2µ+ 3βµ+ β2µ+ γ)

(2 + β)(1 + β)β

a1 = −2(2ρ+ βρ− γ)

(2 + β)(1 + β)
(3.4)

a2 =
γ

2 + β
.

Inserting the Eqs. (3.4) in the integral form Eq. (2.4), we obtain

± (ξ − ξ0) =

∫
1√

2(−2ρ−βρ+2µ+3βµ+β2µ+γ)
(2+β)(1+β)β − 2(2ρ+βρ−γ)

(2+β)(1+β) U + γ
2+βU

2
dU. (3.5)

Integrating Eq. (3.5), we obtain

U(ξ) =
−2a1 + e−

√
a2(ξ+ξ0)((a21 − 4a0a2)e2

√
a2ξ + e2

√
a2ξ0)

4a2
. (3.6)

Using the transformations (3.2), the solution (3.6) reduces to the traveling wave solution to the Kudryashov-
Sinelshchikov equation as:

u(x, t) =
bρ+ 2ρ− γ

(1 + b)γ
+ cosh

√
γ

2 + β
(x− ρt), (3.7)

and

u(x, t) =
bρ+ 2ρ− γ

(1 + b)γ
+ sinh

√
γ

2 + β
(x− ρt), (3.8)

when γ(2 + β) > 0.
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Figure 1. Solution (3.7) for γ = β = a = b = 1 and ρ = ±1, respectively.

Figure 2. Solution (3.8) for γ = β = a = b = 1 and ρ = ±1, respectively.

The solutions mean periodic solutions when γ(2 + β) < 0:

u(x, t) =
bρ+ 2ρ− γ

(1 + b)γ
+ cos

√
−γ

2 + β
(x− ρt), (3.9)

and

u(x, t) =
bρ+ 2ρ− γ

(1 + b)γ
+ sin

√
−γ

2 + β
(x− ρt). (3.10)

Figures 1- 4 show the behavior of the solutions (3.7)- (3.10) for some arbitrary constants.

Example 3.2. Consider the ZK-BBM equation [1], [3], [7]:

ut + ux − 2αuux − βuxxt = 0, (3.11)

where α and β are arbitrary constants.

Some authors have studied different forms of the ZK equation such as with power law nonlinearity [2] and
space-time fractional modified KdV-ZK equation [25] by means of the Bernoulli sub-equation function method.
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Figure 3. Solutions (3.9) and (3.10) for γ = −1, β = a = b = ρ = 1, respectively.

Figure 4. Solutions (3.9) and (3.10) for γ = 1, β = −3, a = b = 1, ρ = 2, respectively.

Using the transformations (3.2) change Eq. (3.11) into the form of an ODE:

βρU ′′′ − 2αUU ′ + (1− ρ)U ′ = 0. (3.12)

Integrating Eq. (3.12) with respect to ξ yields

βρU ′′ − 2αU2 + (1− ρ)U + µ = 0, (3.13)

where µ is constant of integration.
Balancing the terms U2 and U ′′, one can have n = 3.

(U ′)2 = a0 + a1U + a2U
2 + a3U

3. (3.14)

Substituting Eq. (3.14) and other derivatives into Eq. (3.13), and letting the coefficients of obtained polynomial
zero, we have

2µ+ βρa1 = 0

1− ρ+ βρa2 = 0

−2α+ 3βρa3 = 0.

Following coefficients are determined from the solution of the system:
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a0 = a0, a1 = − 2µ
βρ , a2 = −1+ρ

βρ , a3 = 2α
3βρ .

Substituting these coefficients into Eq. (2.4) by assuming a1 = 0 , we have

± (ξ − ξ0) =

∫
1√

a0 + ρ−1
βρ U

2 + 2α
3βρU

3
dU. (3.15)

Integrating Eq. (3.15) by choosing a0 = 0, we obtain bright soliton solution:

u(x, t) =
3(1− ρ)

2α
sech2

[√
ρ− 1

2
√
βc

(x− ρt)
]
, (3.16)

and singular soliton solution

u(x, t) = 3(ρ−1)
2α csch2

[√
ρ−1

2
√
βc

(x− ρt)
]
.

The solutions can be expressed in the forms:

u(x, t) = 3(1−ρ)
α
(
cos
[√

1−ρ
βρ (x−ρt)

]
+1
) ,

and

u(x, t) = 3(1−ρ)
α
(
sin
[√

1−ρ
βρ (x−ρt)

]
+1
) .

Figure 5. Solution (3.16) for α = β = 1, ρ = ±2, respectively.

Figure 5 shows the soliton solution (3.16) for some chosen constants.

Example 3.3. Consider the Gardner equation [5], [18]:

ut + αuux + βu2ux + γuxxx = 0, (3.17)

where α, β, γ are arbitrary constants.

The transformations (3.2) turns the Eq. (3.17) to an ODE in the form:

γU ′′′ − ρU ′ + αUU ′ + βU2U ′ = 0. (3.18)
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If one integrates the Eq. (3.18) with respect to ξ, it gives

γU ′′ − ρU +
α

2
U2 +

β

3
U3 + µ = 0, (3.19)

where µ is constant of integration.

Balancing terms U ′′ and U3, one can find n = 4.

(U ′)2 = a0 + a1U + a2U
2 + a3U

3 + a4U
4. (3.20)

Substituting derivatives obtained from Eq. (3.20) into Eq. (3.19), and letting the coefficients of obtained
polynomial zero, we have

2µ+ γa1 = 0

−ρ+ γa2 = 0

α+ 3γa3 = 0

β + 6γa4 = 0.

Coefficients are as follows:

a0 = a0, a1 = −2µ

γ
, a2 =

ρ

γ
, a3 = − α

3γ
, a4 = − β

6γ
. (3.21)

By inserting Eqs. (3.21) into Eq. (2.4), one obtain

± (ξ − ξ0) =

∫
1√

a0 − 2µ
γ U + ρ

γU
2 + α

3γU
3 − β

6γU
4
dU. (3.22)

Figure 6. Solution (3.23) for α = β = ρ = 1, respectively.

Integrating Eq. (3.22) by choosing a0 = 0, a2 = − α2

6βγ and µ = 0, we obtain 1-soliton solution:

u(x, t) =
−α
2β

(
1± tanh

[ √
ρ

2
√
α

(x− ρt)
])

, (3.23)

and solitary wave solution

u(x, t) =
−α
2β

(
1± coth

[ √
ρ

2
√
α

(x− ρt)
])

. (3.24)

Figures 6-8 show the behavior of the solutions (3.23), (3.24) for some arbitrary constants.
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Figure 7. Solution (3.23) for α = ρ = −1, β = 1, respectively.

Figure 8. Solution (3.24) for α = β = ρ = 1, respectively.

4. Conclusion
In this study, the trial solution method is studied for the nonlinear partial differential equations. To this reason,

the KS equation, the ZK-BBM equation and the Gardner equation have been considered. With the implementation
of the trial solution algorithm to these equations for the first time, solitary wave, bright, dark and periodic exact
traveling wave solutions of the considered equations have been attained.

The solutions have been checked and graphs have been given via package programs to see the behavior of the
waves. Figures 1-8 show the bright and dark soliton, periodic and single kink structure of obtained solutions for
some arbitrary constants. Finding hyperbolic function solutions with important physical meanings as indicated
will help interpreting phenomena considered. Considering all the results and graphs demonstrates that the method
is an efficient tool for NLEs. The method is a problem dependent method and according to the structure of the
reduced ODE it provides several solutions such as single kink, soliton, and periodic solutions.
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