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1. INTRODUCTION. Let us consider the following boundary value problem

2
ey d( ,du

—| X o mau=f(x), xe(, D) (1
x) dx dx

[1(0)] < 4o, Eu(l) +ne(Du’(1) =y, (2)

We assume the functions ¢, f in (1) to be sufficiently smooth , and additionally the

conditions
q(x)=2¢q, >0 npu x €[0,1]; 3)
ee€(0]1];: 20, n=0;, £+n>0. 4)

are satisfied.
We can obtain problem of type (1), (2) with € = 1/ r if we shall solve equation of

sphere symmetry property Au—qu = f for the sphere of radius equal to 7. If r is big

enough, then function u(x) can form a boundary layer near the point x=1. Numerical
solving of the similar problems (as called singularly perturbed problems) need to use
special difference schemes which guaranteed the uniform convergence of appropriate
solution to exact one [1]. There are two fundamental manners to construct the uniformly
converging numerical algorithms for singularly perturbed boundary problems. The first
of them deals with construction of the “special” difference schemes on the uniform
grids and start from A.M.Ilyin’s investigation [2]. The second way is based on using of
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adapted to properties of solution non-uniform grids, and is connected with
N.S.Bakhvalov’s name historically [3]. The method [4,5], which permits to associate
both of the ways, was used in our paper. Firstly, the method of the discretisation keep
particulars of the original differential problem automatically, therefore constructed
schemes are those of the special type. Secondly, in the framework of proposed method
can be realized the algorithm of grid’s adapting. Furthermore, the method permits us to
approximate a solution as well as its derivatives at the same time.

It is necessary to remind some properties of the problem (1), (2). In particular, for
its solution u(x) the following condition holds (see [6]):

w(0)=0. (5)
Throughout the paper we shall assume that problem (1), (2) has a unique solution from

the class C'[0,1]N C*(0,1). Let the operator L of the problem (1), (2) define by
representations

Lv(0) = —&v’(0);
Lv(x) = —(S/x)2 (xzv') +q(x)v, xe€(0,D);
Lv(1) = &v(1) + nev’(1).

for functions v from the above described class. Using corresponding methods from [7]

we can prove that L is the operator of monotonic type, therefore follow “theorem of
compare” takes place:
Lemma 1. Let us assume that the problem (1), (2) satisfies the conditions (3), (4).

Then inequality |Lu(x)| < |Lv(x)| follows inequality |u(x)| < |V(x)| for functions
u,v € C'[01]nC*(0,1) (x €[0,1]).

Following statement guaranties a uniformly bounded (with respect to € ) solution
of the problem (1), (2):

Lemma 2. Let us assume that the problem (1), (2) satisfies the conditions (3), (4).
Then its solution can be estimated by

o)l < maxl £ fao +wl(E+ a0 [(3+a0)) ®)

0<y<1
for any x €[0,1].
Proof. We denote

S0l /a0 B=lwl(G+ne’/+6))

-1
5

0= A = max
9o 0<y<1

_ Sh(xe/ 8)
- xsh(@/ 8)

Vo(x
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and consider “barrier” function
v(x)= A+ Bv,(x).
It is necessary to verify following representations now

Ly(0) = —€Bv, (0) = 0 =|Lu(0);

Lv(x) =gy A+ Bg(x) = gy oo () = maxl £ ()] 2 [Lau(x)

Li(l) = §(4+ B)+neBci{6)e) -0 e| 2 BE+16?/(3+6)) =|yf =[Lu(1) .
The last inequality uses estimation

cthz—1/z2z/3+z) (z2>0),

which may by verify easily. Using statement of the lemma I and inequality
vo(x)<1  (x €[0,1]) we complete proof of the lemma.

, xe(0,]);

2. SET OF THE DIFFERENCE SCHEMES for the problem (1),(2). Let s and ¢ be
a constants such that 0 < s <7 <1. Let constants ¢ and f approximate function
q(x) and f(x) ininterval [s,¢]; a choice of these constants will be determine later.

Multiplying equation (1) to — X V(x), where V(X) is sufficiently smooth testing

function, after that integrating a result on [s,7] we obtain:
2 22 b AN [ )
[—(pax v+uex vr+J‘u|:—£ (x v) +gx v]dx——fjx vdx +0(s,1);
t t

8(s.0)= [{7 = () +[7 - g(0) () v, (7

Here we denote @(x)=&u’(x). We choose testing functions v'”(x) ¢

v (x) in identity (7) according to

£’ (xzv') +x’gv=0, xe(s,1), ®)
o =1, xv'® ., =0

X=S X= 9

xvt .. =0, xv? o =1L ©
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Here § ¢ and g =q"" correspond to functions v* (x) and v (x)

respectively.
Solution of the problems (8), (9) can be found easily:

() = Sh((t—x)\/q(T)/S) ) = Sh((x—s)\/qT)/e) 0
e _xsh((t—s)\/q(T)/s)’ Y _xsh(\/E(t—s)/s).( )

Substitutingin (7) g = q”, £ = £, v=v'" we obtain:
e5(s)— 4 (1) ~u(s)) (£ —3) + (= )g [ RV )au(0) + o RV )suu(s)| =
= (=) Oy (R )+ u(RO)s]+ 8 (s,1). (11)

(1

Analogously for § = g, j_r = f(l) , V=V’ we can obtain

— &) +”5(ut) ~1(s) (1 =) +(t = 5)g " [1{ R Ju(t) + { R )sua9)| =
=—(t=9)f O [u(RD)e +y(RD)s]+ 8V (s,0) (12)
In (11) and (12) we denote:

R® =(t-s)q® Je. k=01,

w(z) = (zcthz—1)/2* , y(2) = (1 —z/shz)/22 . (13)
In order to transform the statements described above to the difference schemes for
problem (1), (2) let consider some grid on the interval [0,1]

O=x<x<...< x,<.<x,=1 (14)
and denote:
By = =%, i =12, N =15 h = max(h).

N
Let vV = {vl.h } | denote some mesh function with corresponding norm:
i

||vh ||h = maxvl.h‘ :

1Si<N
h N _—
moreover, we shall denote (V)" = {v(xl.) = vl.} , @ projection of some
i=

continuous function V(x) on the grid (14). Assuming in (11) and (12) §=X,,
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t =x,,, and do not taking into account errors of approximation O © (xl. X, +1) and

s (x,. ,xm) we obtain discrete problem corresponding to (1), (2):

[ h

(01 :Oa

&, Qh —€ ZX,HDU P g O RO W !, + (RO e u! |=— 106 ©;
H—l(pH—l +¢’ X; Du +h, q(l) Ri(l)J)XiHuihH +y(Rl.(l)>x uh] f(l)G(l)
i=l,N-1; 15)

Guy +105 =

N N

h j j i . .

Here u {ui’}, | and (D' = {gol.'}, | approximate unknown mesh functions
i= i=

()" and ()" respectively. We supply constants ¢, f*, R (k=0,1)by

index ‘i’ and denote
Du E( Uiy — Y, )/hz ;0" =h [Y(Ri(m )xi+l +/’L(Ri(0) )xi];
0" = hu(R)x,,, +7(RO)x, ] i=12, N~ 1.

Excluding from the equations (15) values (p,.h (i=12,...,N —1) we can rewrite
this problem in the traditional third-points form:

th”lh =—&’x,Du +hg,” [Y(R(O))" 1y +;LL(R1(O) )"1“1 ] -0\,

L'u! =—&’x,,Du' +€°x,Du}', +h.q"" [y(Rfo) ))(Hlu,.+1 +;,L<R.(0))x.u. ]+ (16)

+h g (RS Ju + 7RG s, % OG- f%;i, i=23,.,N—1;
R

2 (0] 0) 0)
L uN =ENeE Xy lDuN—l +77hN 19 N1 N— 1))‘N“N +7<RN 1 Pon- 1”N 1]+§84

_ M 50
gl// 17f‘ IGNI

The first and the latter equations of this system are non-standard approximations of
boundary conditions (5) and (2) accordingly. The following statement contains an
estimate of convergence of a multitude of the schemes (16):

Theorem 1. Let's assume, that for i =1,2,..., N —1 the inequalities

min{ql.(o) ,ql.(”} >0 >0
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are satisfying with a constant ¢, independent of € , N, and the values €, n

N
satisfy conditions (4). Then the problem (16) has a unique solution u' = {ulh }1:1 I
additionally for i = 1,2,..., N =1 and x € [xl. ,xm] the conditions

g™ = gq)|+|f,% - fo)|<Ch, k=01 a7)

are satisfy with a constant C , independent of € and N , then a solution u " of
the problem (16) is estimated by

Ju = @)"], < cn. (18)

where C does not depend on € and N . Thus, the difference scheme (16)
converges uniformly in € with the first rate on any irregular grid.
Proof. Using the appropriate statement from [7] (or discrete principle of maximum

from [8]) we can prove, that the operator L" of the problem (16) is an operator of a

monotone type for any parameters of a grid and number € . So, for an operator L" the
discrete variant of a comparison theorem (see Lemma 1) is fair. The last statement
guarantees a unambiguous resolvability of a problem (16) and used for the proof of an
estimate (18).

Comparing equations (16) and equations (11), (12) of the main identity taken for
s=x,, t=x,,, we come to a conclusion that grid function w' =) —u"
satisfies a system

h 0 .
L'w, =4 )(xl,xz),
I 0 .
L'w, =4 )(x,.,xA )+6(D(xi,x,._l), i=23,...,N—1 (19)

i+l

L Wy = 776(1) (xN—l > Xy )

Inequality (6) of a lemma 2 and the estimates (17) allow to prove inequalities
69(x,,x,,)| < Cha™  (i=12,..,N~1; k=0l), (0)

where C does not depend of /2 and €. On the other hand, by virtue of definition

(16) of operator L" we obtain
L' () 2 a0
L' za(c® +0)), i=23,...,N-1 @1)
L"(D% =2naoc)),.

Comparing the formulas (19), (20), (21), we have
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IL'w!|< L' (e 'Ch)!, i=12,..,N .

The last evaluation, because of a comparison theorem, results in an inequality (18),
thereby proving the theorem.

After solving a system (16) we can, in case of necessity, to calculate derivatives of
the solution, using the formulas (15). For an example we shall consider the following
variant of choice of parameters in a multitude (16):

) — n _ .
q, = C](x,-) > 4; = q('xiﬂ)a
f;'(()) :f(xi)’ ]1;(1) :f(xi+1)’ i:172""7N_1'
In this case difference scheme from (16) satisfies the conditions of the theorem 1
and looks rather simply (4, =/, i=12,..,N—-1; n=0, E=1):

inq(0) /(e sh(f9(0) /€)~ g (0) ) (ul =) +ul == £ (0)/(0):

—1/4sh? (hq(x,) /2€) (x, il =230 +x, 0l )+ ! = =x, 1 (x)/q(x,);
Uy =y; i=23,.,N—1.

(22)

Let's mark, that this scheme is not conservative. The conservatism of the scheme
guarantees choice of parameters under the formulas

q,-(o) = q,-(l) = (Q(xi) + q(xi+l))/2 =divy2>
£ = 10 = (P + )22 oy 121200 N1,

(23)

3. NUMERICAL EXAMPLES. Let's present results of numerical experiments
permitting to compare new and well-known schemes.

The experiments deals with a calculation of orders of uniform convergence and
classical convergence in according with the following algorithm (see also [1,9]). Let

Vv, (x) is solution of an initial differential problem dependent on a parameter € € (0,1]
and determined on an interval [0,1]; Vé’ = {Vé”i }:]11
Vv, (x,.) in the uniform grid x, =(—-1)h (i=12,.,N, N=1/h+1) and
calculated for he H= {ho /2j‘ j= 0,1,...,/(} and
eeE= {80 /2j‘ j= O,l,...,m}. Let's designate:

8(ne)=|(v.) v . A=Ay =maxS(he).

is a mesh function approximating

€
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The experimental orders of uniform and classical convergence (" p" and" p,")
were determined by the formulas

= Llﬂ[éi la(r 127 )/ AR, 27 )]] 24)

In2 =

b = Lln[ii 5t /27 e, 6l 27 e, )]] 03)

In2 | ki3

for hy =1/8, €,=1/2, k=7, m=8.

In case of a constant coefficients obtained in section 2 schemes (15) reduce to the
exact solution of a problem (1)-(2). Therefore the problem (1)-(2) tests with
coefficients:

2
q(x) =q, +byx~,
f(x)=f, +2a,e’ (10x* =12x+3)—a,q,x> (1-x)* —=b,x’u,

for g =1, f,=1, a,=10, b,=0.1and E=5, n=05, y=I.

Here 1, (x) is the solution of a problem:

uy (x) = =1+ (6/(5+0.5¢[ctg(1/e )/ e —1)))- (sh(x/€ )/ xsh(1/€))+10x> (1 - x)*
The quantities (24) and (25) were calculated for Vv, (X)=u(x) and
v, (x)=@(x)=¢eu’(x). Table 1 allows us to analyse of experimentally determined

orders of convergence’s of the difference schemes for the functions #(x) and @(x).

Samarskiy’s well-known scheme [8] and scheme (16) with parameters (22) and (23)
were tested here. Approximate solutions, which were found by means of corresponding
difference schemes, were used for calculation of derivatives. In case of the scheme of
Samarskiy for calculation of a derivative in internal points of a grid was used the
central-difference approximation, the boundary values of a derivative were calculated
with use of a directed difference (right point) and under the formula:

u'(0) = 1 (q(0)u(0)+ £(0))/6.
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Table 1. The experimental order of convergence

u(x) o(x)
Scheme uniform classical uniform classica
converge converge converge 1
nce nce nce conver
Samarskiy 0.30 1.10 0.23 0.98
[8]
(15), (22) 1.22 2.00 0.84 1.97
(15), (23) 1.06 1.99 0.99 1.98

The analysis of table allows to make a conclusion that the above described
experiment confirms the statement of the theorem 1 about uniform convergence’s (with
the first order) solution of a difference problem (16) to a solution of an initial problem
(1), (2). Moreover, by results of this experiment the hypothesis about uniform
convergence’s (with the first order) streams can be formulated.

) 0. 1 ) 0. 10X

Solution of a problem: u(x) and ¢ =eu’(x). Number of knots - 9, € = 1/4,
fo=4,=b,=1, a, =100, £=n=1 y=10. The continuous line corresponds to a
exact solution, ‘*’ - solution on the scheme A, dotted line — on the scheme B and ‘0’ —
on the scheme C.
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