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The review of the modern situation in development of periodical solutions of
equations of Korteweg-De Vries type could be found in [1, pp. 112-186]. In this article
the problem of existence of periodical solutions of regularized equations of KDF type is
considered. Also, in this work the problem of existence and uniqueness of continuous
and bounded solutions of initial problem of the same type equations is considered.

The present article searches the existence and uniqueness of periodical with period

T by x solution of nonlinear partial differential equation of 3 order as
(@® +Du,(t,x) +a (u (t,x) +20u (t,x) +@ > +Du(t,x)) +0 u_(t,x)
(1, )1t (¢,0) +00(t, %))+, (1,%) = £ (63,8, ),

(1
where f'(t, x, u) is known periodical by ¢ with period 7, and periodical with period

271Tby x function, ( -is some positive constant.
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Periodical with period ¢ and by x solution of nonlinear partial differential equation

(1) is defined as

t+T x _—a(x—s+1-V) i
e sin(x—s)O(, s)dsdv
u(t9= [ [ e(aT _1)Q( )dsdv.

2
where Q(t, X) - is a new unknown periodical with period T by ¢, and periodical

with period 27T by x function.
We have

42T x+21T  —q(x+21m—s+t +T V) _: + _
u(t+T,x+2r[):I J' e sin(x +211—5)OQ(V, s)dsd v _

1] eaT _1
t+T x  —a(x=y+-p) ,: —

_ J’ J’e sin(x VZTQ(K:+T’ y+2mnd yl p:u(t,x).
t - ¢

To determine the unknown function Q(f,x) = Q(t+T,x+2m) (2) is
substituted  into  (1). For this purpose differentiating (2) by ¢,

e—a(x—s) sin éC— S) [ e—a(t—r—]) _]] Q t, S) ds +T x e—a(x—sﬂ—v) sin éC_ S)QV, S)d s
LX) = - -
u[ ( ’)o _Jo-o eaT _1 a‘!. _‘[o eGT _1

= (™ Sing-) 0l Sds—auut, )

is received.

Therefore

X

u, +au(t,x) = Ie‘“(”)Sin(x—s)Q(t,s)ds

-0

3
is obtained.

Further, differentiating (3) by x,
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u_+au. +ou +a’u = [ cos(x —=5)O(t, s)ds
x X t

“4)

is received.

Differentiating (2) by x,

~ +T x e—a(x—s+I—V) Cos(x— S)Q(V,S)dsdv
U, +Qau = aT
r —oo e -1

(%)
is obtained.

Here differentiating once more (5),

t+T —a(t-v)
e V, x)dv
uxx +aux([’ x) = I Q( ) —_

1

a(u, +au)—u

X
e’ -1

(6)
is obtained.

Therefore, from (6) follows the inequity

t+T -a(i-v)
u . +2au (t,x)+(@* +u = I e ag(v:,[x)dv
e —

t

(7
Differentiating (7) by ¢,

u_, +2au, +(a2 +Du, =0(t,x) afu, +20u_ +@ 2 H)u]

(8
is obtained.

Hence, the inequity
u, +(@ +Du, +20u, +au, +20u +a > Hu] =0(t,x)
©)
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follows up.

Multiplying (5) by u

t+T x —C{(x—H-t-V) t+T x -C{(x-sf V)
sin(x—s)QV, s)dsdv cos(x —s)QV, s)dsdv
u(u, +ou) = I J' ] I I A1
(10)
is obtained.

Adding the right and left parts of (9) and (10),

@+, +20u, Hafu, +2u, +H* A, =f(txu) =
T eI G (x—$)OWV, $)dsdv T % e Y cos(ox —s)QV, s)dsdv

=) +.[ .ﬂ[ ¢ -1 I I ¢l -1

an

is obtained.

From (11) to define the unknown function Q(t,X), the following nonlinear

integral equation of

4T e ) gin(x = 5) OV, s)dsdy

Q(l!x):f(l!x!f I T -1 )_

t+T x —a(x S+-V) Sln(x S)Q(V S)deV t+T x —a(x—x+t—v) COS(X—S)Q(V,S)deV

-JJ [ o

(12)
type is obtained.

Thus, the problem of existence of periodical with period 7 by argument ¢ and
periodical with period 27Tby x solution of nonlinear differential equation (1) lead to the
problem of existence and uniqueness of the solution of periodical with period T by

argument ¢ and periodical with period 7, by x of nonlinear integral equation (12).
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Further, let’s state that the condition (A) is fulfilled if in area

R ={0<¢<T,—-o0 <Xxu<+oo} function f(¢,x,u) is continuous and periodic

with period 7 by argument ¢, and this function is periodic with period 27T by argument

X

Hf(l X, u)H< M = const, HfH max sup \f(t X, u)\

0<i<T _
function f'(¢,x,u) in area R ={0<t<T, —o0 < x,u <+oo} satisfies to
Lipschitz's condition by argument u
Hf(lax1”2) _f(l1x'”1)H < M‘”z -
Na* +4M 1
a2

To prove the existence of periodical with period 7 by ¢ and periodical with period

0< N =const,

27T by argument x of solution the principle of compressive mapping is implemented.
For this purpose the right part of (12) is considered as some operator H[ (] acting on
function Q(t, x) .

We have

t+T x —C{(x s+ V) SanC_S)

f(t,x, J' J' T QV,s)dsd))— f(t,x,0)

IH0] < +Hrtex0f+

+T x —a(x s+t—v) +T x —a(x Sﬂ_v)‘COSQC )‘

infc—s
I i ] [ e

+T x —0(x— s+t—v)‘81néc

sM+NJ’J'

"o, ofdsdo+

ol _
e

t+T x —a(x—s+t—v)d d/HT X —a(x—s+tﬂ/)d d/

uii I R

NR R2 (Ma* +R)R
4

SM+—+—=M+

<M+ RR
a’ at a 2
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Therefore, let R=2M .

Thus, we have shown; that the operator H[Q] maps the point of sphere

HQ([ , X)H < R the space of nonlinear periodical functions into point of the same sphere.

Let's show that operator H[(Q] maps the point of sphere ”Q(t ) x)" <R=2M

compressively.

t+T x —a(x s+t=V) _ d Cl‘/
| <l f(t,x, .” :olr?(fl $)Ods )-

++T x —a(x-sﬂ—v) — dsd 4T x -G(x—s+t-v) SlIl(C
. J_J, sma(; SI)G(V ,5)ds. )H+J.J. e XQ ~Cdsadrx

+T x —a(x—s+t—v)‘c
I I e -1

t+T x —C{(x s+t—v)‘c

t+T x —G(x s+t—v)‘81n@

e -1

t+T x —C{(x—s+t—v)

II o 1@ XQ(VS) G(VsjkideNJ’J’

—dsdfo-Gi+
Q—qs;Q—G«

Therefore, the operator H[ Q] maps the points of sphere ”Q(t ) x)" <R=2M

N 2R No* +4M
+o-G+Zlo-dl<+Tio-ds

into the same sphere compressively. That is why on the basis of compressed mappings
the equation (12) has the unique solution. Let's show that the function Q(¢,X) is
periodical function
O(t+T,x+2m) = Q(t,x).
We have
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TR —o(x 2t vs)
QT x2ny=f(t H.x +271I I € Sldé)len_s)g VSWV) -

HT -

HRTT SO 4) S5\ USW\}HTXE T_ex2rs +¥ 9 as(x 27E5)A \B)dd vV

] = [I° 7 )

t+ —o tH -

T x  —QGARBAT-T-py-21) + T
=fies ¢ e

&1 & -1

=f(t,x’t:rrjr Priaa) ;I{Tnfl_ S)gp W dwp) _}T} oD Sizfr__ ?gg V)dW)x

s vy g,

THEOREM 1. Let the condition (A) is fulfilled, then the nonlinear

_[}T}e““’”-m sin¢-pdp+T; y+2n)awﬂf" NP cost-YAp+Ty 21l _

="

differential equation in partial derivatives (1) has unique continuous solution u (7, x),

which is periodical with period T by argument ¢ and period 27T by argument x.

Let's consider now the system of nonlinear integro-differential equations of

u'(x) = TK(x—s)f(s,u(s))ds

type, where u (x) - n-dimensional vector, / (x, u (x)) - n- dimensional vector

function, K (x-s) - nxn —matrix function. To make further researches easy it is assumed

(x—s)2

K(x=s)=e 2 (x-s),

where O -some positive constant, and 20 >1.
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It is assumed here, that f (x, u (x)) - is periodical function by argument x with

period 7, and this function is continuous in R1 = (—00 <X Uy < +00) area.

Periodical with period T solution of the system (13) we will search as

u(x)=C+ J' e 2 (9)ds — J’ e z(s)ds

(14)
where z (x) - is a new periodical function with period 7 to be determined,
C -is n-dimensioned arbitrary constant vector.
From (14) follows that under x=0
u (0)=C
Substituting (14) into (13),

+00 +00 _(x—s)2 +00 ,
u'(x)=—2a J’e*”(’”)2 (x—s5)z(s)ds =J’e 2 (x=s)f(s,C+ J’eﬂ’(‘v"’) z(y)dy -
- J'eﬂyz 2(y)dy)ds
(15)
is obtained.
The equation (15) is written as
400 +00 _(x—s)2 +00 +00
me (b=~ fe (x5 Le*"”fz(v)dyieﬂf Ay b

(16)
Thus, researching the existence of all continuous periodical with period 7 solutions
of system (13) is reduced to the existence of periodical with period T solutions of

system of nonlinear integral equations of 1% order (16).
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Implementing the transformation of Fourier to the both parts of (16)

Tz(y)fe‘““‘”z”"”(s—v)dsav=—%ff(y,c++feﬂ’<y‘mzzdp —fe‘“pz 2(P)dp)
o )

Xfe ¥ (s=y)dsdy

—00

is obtained.

From this substituting s—y=0,
400 ) +00 ) 1 +00 ) +00 5 +o0 ,
wy d iwo—-ao® azl —_ wy C+ —a(y—-p d -ao X
Le =(y) vLe o= Le J(¥ J;e 2( P &Le 2 pd p

+o0 ‘m—ﬁ
X I e 2agdody

(;;)
is obtained.
As
+0 . W +o  g? _aw?
J’ei”’a'aazada =ﬂ—ne 4a- J’ew 2 g =iwae 2 +J2ma,
4 2a Ja 2,
(18)
Then
w? 5
. Caw +o +oo
e Ny =T Jamafe™ f(y,C+ [~ )=(o)dp)dy
2oa 2 LA E
(19)

follows from (17) and (18).

Therefore

aw?

2= 2 MaV2[ e f(y.C+ [~ )z(p)d p)dy.

Consequently, passing from mapping to original
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+oo +o0 W

)——I I f(y,.C+ I (€™ =& )z(p)dp)dyw

(20)

is obtained.

Thus, we have shown that the researches on periodic with period 7 of all solutions
of system of nonlinear integro-differential equations (13) is reduced to researching of
existence of all periodical with period 7 systems of nonlinear integral equations (20).

Let’s state that the condition (A) is fulfilled, if in area

R = (- < xuy,...,u, <+0) vector function f(x,u,...,u,)= f(x,u) is

continuous and periodic with period 7 by x and bounded, and ” f (x,u)” < Me_a‘x2

>

where ) and M are some positive constants; beside this, function satisfies to Lipschitz

's condition by vector argument u

2
”f(x’“z) - f(x7u1)|| < Ne™™" |u, _“1" >
where N — is some positive constant, and
daNmN 1
dadrN 1 gy k0.
20(2a-1) 2
Let's consider the right part of (20) as operator H[z] acting on vector function z
().
We have
WP
0] =| =] < j j e lfs.C j( e = )z(y)dy{ dsdes
tootoo W (2(1 -1) oo W (20“—1) +00
oM dsdvie—

da dWIe”‘SE ds=a LM =R

_@HI I V2 nI a0’ 1)

Let's show now that the operator H[ z] is the compressing operator. Indeed,
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+o0+00 W (2[1 1)

|29 ~g(of =| 2] H[g\<— o | S VGG j( NN = YA y)dy) -

—f(s,C++_°[°(e”““y)z = )gWidy) | dsdves

+o0+00 w (20-1)

< EHJ’ fe « Ne | J’( & e i)~y deins

SO g o[- ST
daA TV
s

Thus, based on the principles of compressed mappings the system of nonlinear

integral equations (2) has the unique solution, which could be determined by successive
approximation method.
Let's show now the periodical with period T solution of the system (20). Let vector

- function z (x) transfer the system (20) into identity. Then,

\/é +00k00 nZ(Za 1) () +0c0 to? +00 o
A= e BT Cr [ Ay~ [ APy

Substituting s = 7'+ 3, then,

_afz e (Zal) -o(B+T) - o
A= ffe T ABTCs j(e Ay~ J’e ADoK

In this identity let’s substitute Yy =7+ 0, then from the last identity

follows

+oa—m WZ(ZCI D,

v =22 | e j(e*“‘”) Aovo~ je*’%)do)dﬁdw(»o

Thus the following theorem is proved.
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THEOREM 2. Let the known periodical with period 7 by x vector-function
f(x,u) satisfies the condition (A,). Then, the system of nonlinear integro-differential

equation (20) has the unique periodical with period 7 solution as:

+o0 Y]

u(x) = C+ [ Z(s)ds— Ie“"’z 2P)dp=C+ [¢ T 2(s)ds— Ie*’f’z Ap)dp=

00

=C+ [ AT +y)dy= [ APUp=C+ [¢™ iy~ [ (p)dp =ufx-+T)

Thus, u (x)=u (x + 7).

Let’s consider now the differential equation of

1 (1,20 (07 +142(8, ), (1,9 +1a, (6,3) + 200, 0, 3) 2, (69) = /1, 0)
21

type, with the initial condition of

u(0,x) = ()
(22)

Here ¢(x) and f(¢,x,u) are known functions, O - is some positive constant.

Let’s show that the problem (21) and (22) has near soliton solution.

The near soliton solution of the problem (21)-(22) is searched as

t x—ttv

u(t,x) =c(t,x) +J' J' e MUY D sin(x =t +v =)0V, 5)dsdv
0 -o

(23)

where Q(t,X) is a new unknown function to be determined, and C(,X) is
soliton solution of known nonlinear differential equation of Korteweg-De Vries type
(@ +1)c, +(@ +1+e(t,x)e, (1,%) +e,, (1,%) =0

24

with the initial condition
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c(0,x) =¢(x).

The main problem is to determine the unknown function Q(f,X). For this

purpose (23) is substituted into equation 21). We have

t xt

u(t,x)=c(t,x) +J'e'a(”) sin(x =s)Qt,s)ds +aI J' e Isin(x ~t W )OOV, s)dsd —
—0 0 -oo

t xt

—I I €™ cos(x 1 H =5)QV, S)dsdv

0 -oo
(25)
And derivative of (23) by x has the following type:

t x—tt+v

u (t,x)=c(t,x) —aJ’ J' e TV sin(x =t v —s)OW, 5)dsdv +
0 -oo

t x—tt+v

+J' J' e TV cos(x —t +V —5)OV, 5)dsdv
0 -oo

(26)
From (25) and (26) the equity follows:

x—t+v

u,(t,x)+u (t,x) =c,(t,x) +c (t,x) + J' e " sin(x —5)O(t, 5)ds.

@7
Differentiating the both parts of 27 by X,

Xt

ulx(t7 'X) +u,m(t’ ')a = clx(t’ ')a +cxx(t7 ')a _a(ul +ux _CI _cx) + Ie'a(x"f) COSéC _S)Qt ’ S)dSi

s received.

Therefore it follows that

01, 40, 0 =6, 09 e, (9 ol )+ [ cost-)Cl sk

28)
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Differentiating ones more time by x both parts of (28), taking into account (27) and
(28),
U (6,0 Yu (69 +a(, Fu ) =c (L) Fe (6 +ale, +e )+ A X) -
—alu,, u oy, u)—c, me ~ale +e ) -lu fu —c ¢ ]
29)
is obtained.

Therefore, from 27

, (62) +1, (6,0 + 2000, +u, ) + @ + D, +u,) = At e, (L) +e, (1.9 +
+20(c, e ) +at H)( +c,)

(30)

is obtained.

We have

t x—tH

u(u, +u ) =[c(t,x) +J' J' e 1TV I gin(x —t W =5)QWV, s)dsdv][c, +c, +

+j'e_a(”) sin(x —s)O(t,s)ds] =(t,x)(c, +c,) +

t x—t+

+(, +CX)J’ J' eV D sin(x —t + —s)OV, s)dsdv +
0 -

+cJ' e sin(x —$)O(t, 5)ds +

—00
t x—t+

e sin(x =)Q( s)ds[ [ €V sin(x ~1 + =)0, 5)ds.
ES 0

€1y
Further, the left and right parts of the equality (30), (31), and (24) considering
1),
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U (6, +1t (1) +2 () +H( 1), +u) = £ x50) =)+, (69 +
+2 (¢, e (t,9)+ct, ¥)c, (t,%) +c}eﬂ(”) sinf—s)At,s)ds+

Xt

+(c, +CX)'O[ Ieﬂ(‘”_’w_‘y)sinéc—t-h =) ,s)dsd + | ¢ sing—s) A, s)dsx

—00

1 X1+

x1!' J'e"’“‘“’”"s)sin(c—t-h —-)X ,8)dsd

(32)

is obtained.

To determine the unknown function (%, X) the nonlinear integral equation of

t x—t+v

o(t,x) = f(t,x,c(t, x) +I J'e'a("'“v"‘) sin(x =t +v —5)Q(V, s)dsdV) —

—c(t,x) }e"’(""") sin(x —s)Q0(¢, s)ds —(c, (¢, x) +

t x—t+v

+c (¢, x)I J'e_”(x_”"_s) sin(x =t +V —5)0Q(V, s)dsdv —
0 -

- J'e_”(x_s) sin(x —s)QO(t, s)ds *

t x—ttv

| J’e"’(""”"” sin(x =2 +V =5)O(v, s)dsdv —c,,, =2a(c, +c,)=cc (2, x)
0 -

(33)
type is obtained
Further, it is assumed, that the condition (A,) is fulfilled, if:

1) Inarea R, ={0<¢<T, -0 <xu<+oo} function f(¢,xu) is

continuous and bounded, ” f(t,x, u)” <M, = const



46 OAAEAEE EEE TAAD AODTAEU

and satisfies to the Lipschitz condition by argument u

|t xy) = £ x| < Ny =)

where N — is some positive constant,

in area R, ={0<t<T,-00 <x<+0} soliton function c(t,X) is
continuous and bounded with derivatives

(9, 6y, e 1), 6y, e 69, cultx) and

¢, (6,90t ) e, 9], (et )] He 12 )

+

)20,

; ; Jc (@, )@\}SCO =cons

sup{c, (1.} +

O<T’
NTO +cy (T+1)a +4(My +¢,)T _ 1
a’ T2

Let's prove the existence of unique solution of nonlinear integral equation (33).

2)

For this purpose, as it was done above, the right part of (33) is considered as operator

H[ Q] acting on function Q(t, X) . We have

t x—t+v

|0 =IO S| faecten) [ [ sinte—r+v=5)QU,s)dsd) = (xclt. )] +

t x—t+

*fexcaDl Kl [+l Df [ sing=t+v=s)]| O dsdv +

)|l Ieﬂ’(”) |sing—s) || L,5) | ds+J'67““7‘° | sin=s) [[| Qt,5) || dsx

t x—t+

X[ e |sin—t+v=3)|| QUs) | st 6. (10) | 20|, 1) |+ e ) D+
0 —o

| @)l @) = M +Nj'e*’(x'” |sing=s) || At,s) || ds+

t x—t+v x

+alf [N Ollds* (e | Q)| ds]+ [ | Qt,s) | dsx
[ I I

o NTP ¢(T+))  PT

x[ [ OW,s) || dste, SM+c, +——+ 22 P+—— < M+c, +
[ ] | QU.s)lldst S M, += =+ =Pt <Mt
JINTo+ca(T+)+27R 1

p PsMO+c0+§P:P, P=2(M,+c,)
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Let’s show that H[ Q] is compressive operator.

t xttv

|09 ~Gex) SHO-HG S|+ [ sint-1+v-s)Quisklsil) -

1 xt

St Ie“”ﬂ”)siw(-t H=s)AVskisd)||H| )| [ |sings|[|O-Gllds

—00

txtv

HlE|[He eI [ sintr+v=9)| Qs -Cus dsit+

txt1

+’[€1’(”) |sin-s/l|Qs)~At.s)lldf J'eﬁﬁw |siné—t+—s)|[|QV.s) || dsd+
—00 0 -0

1 x1

o st [o" sinf-r 409 Qu) -G dsis

txttv

N I@“’”w | sin(—t-+v=9)|||Qus)~Quus) || dsatHe, [ ds+
[

—00

+coﬁ?*"ﬁ“’dsdﬂ|w|+ﬁ}“ﬁ“’dsd||w|sﬁf+qﬁﬂ)+

o A 10

Therefore, by the principle of compressed mappings of nonlinear integral equation

(33) have the unique continuous and bounded solution Q(f,X) under
0<t<T, —o00<x<+00, and theevaluation
|O(t,x) || R=2(M, +c,) takes place.

Let’s search the differential properties of solution (%, X) of the problem (21) and
(22). Here, it is assumed that the condition (A;) if in area

R ={0<t<T, -0 <Xx,u<+o}of function f(¢, x,u) has continuous and

bounded derivative of 1* order by arguments x and u(?, X) , i.e.
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||fx(l, xu)” < H, = const, ||fu (, xu)” < H, =const, H, H >0.

For this purpose the derivative of the 1* order by argument x of the solution of

equation (33) is needed.

We have
t x—t+
Q(t,X) :fx(t,X,C(t,X) +I Ie—a(x-ﬁv—s) Sin@_t +v _S)QV,S)de/) +
0 —-oo
t x—tt
+ fx(t,x,u)I ¢ "I [—asing —¢ +V —s) +cosg—1 +V —s) |GV, s)dsd) ||
0 -

—cx(t,x)}eﬂ("_“) sing—s)QAt, s)ds—c(t,x)}eﬂ("_“') [-asing—s)+cosg—s) (A, s)ds+

t xttv

He, (%) +cxx(t,x)1[ J'eﬁ()ﬁ I sing— -+ —s)QAV,S)dsd{c (t,0)+c, () *

t xt

XJ' Ie'a(“W'S) [~asing—z +V—s)+cost— +H—s) AV, s)ds ) —
0 —oo

X txt

- e_a(”)[—asinﬁ—s)+coSf—S)Ht,S)dSI eV sing— -+ —s)AV,s)dsd -
0

—00 —0

t xttv

—j’eﬂ(”) sinﬁ—s)G(t,s)de' Ieﬂ(“ I -asing—¢ +V—s)+cost— +V—s) QV,s)dsd—
669 =206, +¢,) TG (LA +HG G 1))

From this identity under {0 < ¢ < T, — 00 < X, u < +00} the inequity follows up:
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1 x1

QI E sl LA Gu[ [ (aydsips

1 xt

ARl e ds Pl [ sl | f [e™dsuP

tx 1 txt

s 4lc ) ﬁ“*‘“kaﬂ)dsqu i e s+

*I g o o9 R 4, DMl e 9
e oD pa S0 2O pﬂ";l)f P =My=con

Therefore, in area R ={0<t< T, —o00 <x<+oo} function Q (t,Xx)

uniformly bounded ”QY (, x)” < M, =const

From identities (23) and (25) the inequities follows up:

t x—ttv tx—tH

[[ut. ) [=| ) | +_!' e sink—1+v=9)[|QUis) [ dsd <+ [TV dsaPs
0 -

<o) P+ PTa+))
a a
We have

=M,,=const

t x—t+V

[ERCISICN R | Ieﬂ’”_’w_”[asin@—f +V—s)t|cosk—1+v —s)|]|| Olldsd <

a+)T
Sco+( ) P=M, =const
a

From identity (25) the identity
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) =60+ [ sing=s)Heosé- s+

+ j’“}*"eﬂ(ﬁw—ﬁ[—, sing—t+ —s)+cost—t+ —s)[A ,s)dsd +jQV,x—t+V)d/—

0 -
t x—t+v

—I J’e_”("_“"_”[a cos(x —t +V —s) +sin(x =t +V — 5)|O(V, s)dsdV ,
0 -

u, (¥ =c, (L9+dt +}e’”‘“’ [0 sing—s) —20c0s(—s) —sing—s) 1A, s)ds+

 x1t

+2a;[gv,x—z+v)cz\m! [ laf sing-t+v=9 ~2ncost-r -9

 x1t

=sing—z+v—s)1AV, s)dsa’/+, OV, x—t+v)dv +‘!' J’e*’(“*”)[(l—az)cost—t +V—s)-

=20sing—t+v—s) AV, s)dsd
follows up.

Therefore in area R, ={0 <7 < T, — 00 < X < +00} the inequities

t x—t+

[, (&0 Sl ¢, @0 | +f€ﬂ(‘”_‘g) @+ Q.9 dsﬂ‘!' Ieﬂ(”w_‘” @+D)|| Qv,s) | dsd +

[ . rﬁv—a(x—t-w—s) (a + 1)
+.!'H Avx—t+v)|| dv+‘!' Ie @+) || Qv,s)||dsd <, + P+a(a+1)TP+
R a

a+l
+PT+(7)PTS]\440 =const
a
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[ &) [ e &0 |+ A9 | +_|'eﬂ(x_‘°(a +)’ | Q)| dS+20ﬁ| Qu.x—t+V)dv ||+

t x—t+

v fo IIQ(Vs)IIdsd/+_ﬂ|Q(vx (+) | dv+

t x—t+ ( a 1)

+J’ J’ VI @ +1) || QV,s) || dsd < ¢, + P+~ P+20PT+(a+1y TP+
0 —oo

@+ 1)

+M, [+ TP<M,,=const

follows up.

From (28) the inequity

(14, (&.) |8 4, @20 [| (24, @) ||+ |0, @) [ ¢, @2 |+l @) ||+ e @) [+

x 1
+ [ | cosk=9) |G| dsS My oM +My) 46,10+ P=M,, =cons
J a

follows.

From (30) inarea R, ={0 <7< T, — 00 < x < 400} the inequities

24, [ QL1+ 124, 1.) | 4200 o4, €, |+, E ) [T+ +D g [+, [+
et |+l . ) 1420l @0 |+l e 60 1+ +DIl [+l ¢, 1<
< P+M,, +20(M,,+M, ) +@" +)(M,,+M,) =M, =const

follows up.

THEOREM 3. Let the known functions f(¢,x,u) and c(Z,x) satisfy the
conditions (A;) and (Aj;). Then the Cauchy problem (22) for nonlinear differential
equation (21) has the unique continuous solution, which could be introduced as (22),
and this solution has continuous and bounded derivatives

u, (t,x), u (t,x), u, (t,x), u (t,x), u, (t,x), u_ (t,x),and

xx
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t x—t+v

Fut,x)=c@tx) | [ '[e_“(x_”v_” | sin(x =z +v =s) ||| Q(v,s) || dsdv <
0 -oo

t x—t+v

SJO' Le‘“(""””"”dsa’vP = gT,

where ¢(t,x) is the soliton solution of Cauchy problem c(0,x) = @(x) of the
equation (24).

This solution u(Z,X) is near soliton solution of Cauchy problem (22) for the
equation (21).
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