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1. STATEMENT OF THE PROBLEM

The system of differential equations describing one-dimensional non-stationary
flow of a viscous heat-conducting gas in a magnetic field in a porous medium can be
written [1] in terms of Lagrange mass coordinates:
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Here p,v,u, 60, H, p, the density, specific volume, velocity, absolute temperature,
magnetic field intensity and pressure, respectively, are the required functions;
Ak, py, pyy are positive physical constants; the variables xeR:(—oo,oo),

t, 1€[0,T] 0<T<o0; f(x) is coefficient of penetration — continuous non-negative

[e0)
bounded function and jﬂ(x)dx <C; 0<ac<l.
—00

The functions vq, ug, 6, Hy, Which have initial values

V[0 =Vy(x) ulmo =ug(x). 0],—0=6o(x), H |,—o=Ho(x)

x‘ <0, (2)
are assumed to be known and continuous, (vq(x),&g(x)) are strictly positive and
bounded: 0<mg<vy(x)<My <o, mg<Oy(x)<My,

and have finite limits at infinity
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lim vo(x)=vy, lim vo(x)=vd, v} =v3,
xX—> —00 X —> +00
lim wug(x)= u(l) , lim wug(x)= ug , u(l) <u§ , @)
X—> —0 X —> +00
lim 6y(x)=63, lim 6y(x)=68, 0% =068
X—>—0 X—>+00

lim Ho(x)=H§, lim Ho(x)=HE, H} =HE:
X —> —0 X —> +00

It has been proved [2, p.76] that Cauchy problem for system (1) when
H=0, ﬂ(x)zo and the limits of the initial values at infinity are the same is well
posed. In [3] the Cauchy problem for system (1) without a porous medium, viz.
B(x)=0 and in case when the limits of the initial temperature at infinity is the same is
considered. In [4] the Cauchy problem for system (1) without a porous medium is
considered. In [5] local solvability of the Cauchy problem for system (1) is proved. In
this paper we study whether the problem defined by (1)-(3) is well posed.

We introduce four auxiliary functions 1//(x), f (x), n(x), (p()c) , such that:

0< C1_1<1//(x)<C1, lim vo(x)w(x)=1 l//'(x)eWzl(R)’

|x|—>o0

f@)<Co<ow, lim f(x)=uf, lim f(x)=uf,
X—>-0 X—>+00

0<f(x)<Co, f(x)eW3(R), f(x)eLy(R), (4)
n(x)|<Cy<o0, lim p(x)=HE, lim nx)=HE, 7'(x)eW3(R),
X—>-00 X—>+00

0<Cil<p(x)<Cy, lim Gy(Mp(x)=1, ¢'(x)eWa(R).

()P <5 /'(x), (@ )P <o f(x) 0<5<L. (5)
It is obvious that such functions exist.
THEOREM. Let the initial date (2) satisfy conditions (3) and
(”0 7f1 HO =1, 0040711 VOW71)€W22 (R) :
Then in any finite time interval [O,T], 0<T <o a unigue generalized solution of
problem (1), (2) exists which satisfies the equations and initial date almost everywhere, and
(u—f, -1, H-n )eLw(O,T;W%(R))m Lw(O,T ; WZZ(R)),
ov du JH 20
~1)eL 0.T;wW3(R)), | T 55,25 22 |e ()
(w)erforimw), [ 2004220 e r,m)
v(x, t), H(x, t) are strictly positive and bounded functions.



FEN BiLIMLERI DERGISI 9
Solvability the Equations of Magneto-Gas Dynamics in Non-Bounded Domain

The proof of the theorems is based on global a priori estimates in which the
constants C, C;, N; depend only on the problem data and the time T, but not on the

interval of existence of the local solution. These estimates permit us to extend the local
solution, whose existence follows from [3,5], to the whole time interval
[0,7], 0<T <.

2. A PRIORI BOUNDS

Without loss of generality we can assume for simplicity that the physical
parameters u, A, k, yy, gy are equal to unity.

We substitute the independent variable assuming ﬁzi. Then system (1) is

ox  olx
transformed as
v _1ou_g 1
ot 9ot o p
ou_ w(a”u}lﬁp_l OH o, p=?.
t pdi\was) 9dé ¢ ¢ v

20 _ 15(159}_1 du, 1[@) +1[5Hj ©6)
ot pot\woe) oo a\og) Tl e
JOH 1, 0u_ 15[151{]

TPV VYK
LEMMA 1. If the conditions of theorem are satisfied, the following estimate is true

+j W(z)dr<E=const>0, te[0,T] O
0
where
1 2 1 2
()= [{ 31 P+ 3wt = +(00-Ing0-1)+ (o —tnvy -} s

W(t)=j{ Vejz + 3’2 Ij;+ Vf( X)+ 1H £(x )+ﬁ(x]u“(u—f)2}dx-

The interval of integration with respect to x is from — o0 to o0,
PROOF. We multiply the first equation of system (1) by (,/,_j the second by
%

o(u— f) the third by ((p_iJ and the forth by o(# -7 ), add and integrate with respect
0

to R:

d 1

o {Ew(u—f)z+%¢N(H—f7)2+(¢9—|n¢9—1)+(vw—lnvw—l)}dcf+ ®
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+ o, 1 (@ T2 )+ HEN - R de =
v62 2 Va(pZ vogp? vV 2

_j”’u dé+| ‘5 dz; J.*ngr jnud§+j*dg’+j/3 ul” fu— f)pdé

Integrating by parts and employing the properties (4), (5) each integral on the right-
hand side of (8) can be estimated using the Cauchy inequality, Young's inequality,
enclosure inequality. First four integrals can be estimated as in [4]. Consider the last
two integrals

0112 0112 /2
O¢ _
J 3 £=] 51(72!// 7<= f/);” ,(ZV p) Wy —Invy —1d¢
vop O 00> (vp )2 vy —Invy -1
Note that
(v -1
<Cs’ ©)
(v 2 vy —Invy -1
since
12
lim (1 S (2 NS
/2 - /2 —\/7,
oo (v 2y —invy—1 ol (v vy vy -1 2
li w2 0
m =0
w0 (v 2 vy —Invy -1
Then
2
O:¢' 1) ,
[ S ad<| |5 ae | |[YGoZaz| +
V@(D vo 17 1)

02 /2 ( | 1) 12
vy —Invy -1)
+C5[j fzdg} [Iw(pzng <
vO“<p )
2

<5 dé + Co([ (vy — Invy ~1)dé +1):

V¢92 2
[ BNl 1~ 1) < 8] BEN (u— f) pdé+

+Cp| [ BN 11" r2pac + [ BENSI" r2pae <

2—a
2

<8[ pEYu|* (1) pdé +Cg ([qo(u d:T[ ( 2 Jo- adé} +1]<
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<sf ﬁ(fs]u“(u—f)2¢d§+cg[\/5 1) +1]-

By integrating the inequality obtained from (8) with respect to time ¢ and using
Gronwall’s lemma we get (7) after returning to the old independent variable X . This
proves the lemma 1.

Let us divide the number axis R and the strip II into finite segments and
rectangles [2]:

Uy, = U o,
N=—xn N=-w0
Qy ={x| N<x<N+1}, Oy =Qyx(0,T), N=0,+1+£2,..
As in [2] from (7) it follows that

N+1 N+1
Cid < [vindde<C, Cit< [0(xn)dxs<Cy, vie[or] (10)
N N

Thus, from the mean value theorem, for any ¢ [0,77] in each domain Q,; points
alt)=ay()e[N,N+1], a1(t)=ayy(c)e[N, N +1] exist such that
Cit <V(ay(6),)<Crp, Cii<0(a(t))<Cyq - (11)

From the first and second equations of system (1), as in [6], we derive an auxiliary
relation between the required functions:

v(x,t)zrl@)g-l(x,I)K(x,t){vo(xpj(m;vHZJI(T)B(x,T)K-l(x,f)dfl (12)

0
Here

Oxo( )
x are the arbitrary chosen points in the number axis.

LEMMA 2. If the conditions of theorem are satisfied, the following estimate is true
N{Y<B(x,))<Ny, N3'<K(x,1)<Np, N3 <I()<Ns (x.1)eOy
PROOF. The bounds for functions B(x,z), I(z) can be derived as in [6]. Let us
derive the bounds for function K(x,z). Consider 0<a <1. Case ¢ =1 is obvious. Using
Gelder's inequality, (4), (7), the properties of the function ,B(x), we have

t
]
Oa

p{]{( ft)df} K(x,z) exp{] J/} )ue|® (g,z-)dgdf},
)0

where xg = Xo

X t N+1 t N+1

<[ [ Be)u—f*Paxde+] [ pE)| s dxdr<
0N 0N

( )ﬁ(é)uau (& )dédr
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l+a 1o

t(N+1 2 [ N+1 2 2
<[l [lu-rf)ax [ pra(x)ax| +Cpp<Ca
o\ N N
Hence follow the bounds for function K(x,¢). This proves the lemma 2.
Let h(x,t) be a continuous function. We introduce the notation
My (t)=maxh(x,),  my(¢)=minh(x,z)-
xeR XER
LEMMA 3. If the conditions of theorem are satisfied, the following estimate is true
mv(t)ZN4, I’I’lg(I)Z Ng, Vtel[0,T].

PROOF. First estimate follow from representation (12) and lemma 2. From the
heat-conducting equation of system (1) can be derived the second estimate. This proves
the lemma 3.

LEMMA 4. If the conditions of theorem are satisfied, the following estimate is true

0 V03/2 v01/2 v01/2

}lxdr <Ng, Viefor]. (3)

PROOF as in [4].

LEMMA 5. If the conditions of theorem are satisfied, the following estimate is true
M, ()< N7, vee[o,T].
PROOF. Using (10), (11) we have

N+ N g2 M2 (va 1/2
max6(x,)< Cy+ [0, |dx<Cry+| [ —sdx [vo2ax|
Q N VO N

N N
Hence
Mg(t)< Cry +Cl2AM 2 () M3 2 (e) My 2 (e).
6?2
where A(t)=j .
ve
Applying Young's inequality with &, we deduce
Mg(t)< CoAt)M (£)+ Cry- (14)

Now estimate A7 (;). Consider arbitrary segment Q,; =[N,N+1]. Take points

a(t), x e Qy and use (10).

1N+1 0
91/4(x,t)=91/4(a(t),t)+z I X _dx <
N

93/4

14 1[N 07 Yo Y a1 s 0% "
<+ | Veslzdx Jvax| <cy +3C10 | dx
N N

V03/2
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Hence
1/2
max€1/4(xt)<C1/4+1C1/2I 0 dx|
Q, /=11 4 10 V93/2
Then
N+1 N+1 N+1
max H2(x,0)<Cis+ [ |HH |dx<Cis+ [|(H-n)H |dv+ [|nH,|dx<
Qy N N N
Na g2 2 N+1 1/2 i1 V2
<Cg+| [ —Fadc| maxo™ (eof| [W(H-n)Pdx| +C5 [vdx| |
N VH QN N N
Using (9), (10), (13) we find
2 2
2 05 Hy . (15)
M ()< Crg| [—2mdx+ [—2-de+1
IV93/2 Jvel/z

From (12), (16) and lemma 2 follow representation

t
2
My(0)< Cry {1+ (40 + M (), (T)dfl -
0
Using Gronwall’s lemma and (7), (13), (15) we derive the required estimate. This
proves the lemma 5.
From (7), (13), (14), (15), lemma 5 it follows that
T
[(Mg(t)+MF () de < Ng- (16)
0
LEMMA 6. If the conditions of theorem are satisfied, the following estimate is true

t
J(lex N2+ 0)? Yot < Ng, vr<fo7]:
0
PROOF. We multiply the momentum equation of system (1) by (u—f), the

magnetic field equation by (H —7), add and integrate with respectto R.

2P+t =P i

e Gyt e [ AN a1 Pt an

5
ZI( i fo T H e O Sl f)+ 5P +€“X)d’“:,§13" |

Let us estimate the integrals g, (,-:fg,) on the right-hand side of (17) using integrating by
parts, Young’s inequality with & , the properties (4) and the bounds (7)

4 1

E‘lBi < gl(j\];u)%dx—o—_[\];H%dx—»—j.ﬂ(x)ua(u —f)2 dx)+ Cig’ O<eg < 3’
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Bs :jguxdxszg_luxdx+jiuxdx=J1+J2'
v o o

In order to estimate Jl we partition the number axis R into following domains:
Ql(t)z {x eR: (0(x)6’(x,t)> Ny }, Nq =const >1,

Q,(0)={x e R:p(x)o(x,1)< Nyg, @(x)0(x,0)#1}, Q3(t)={xeR:p(x)o(x,1)=1}
It is easy to verify that in Q;(¢) we have

L<Clg since i, p0-1
@6 —Inpl -1 p6—> @0 —Inpl — 1
In Q,(z) we have
6 - : 06— 0 -

‘q) :u <C20 since lim ‘(0 ]'l :O, lim ‘¢ ]'l —
Jeb—Inpld -1 p6—-0,/pf —Inpb —1 P81, pf —Inpld —1
Using (4), (7), lemma 3, we find

J1=j"’€_1uxdx= I(go&—lngo&—l)ﬁu—xdxwL
ow o) @0 —Inpl -1 v
1
+ J.,/goé’—ln@@ o071 U —Ldx<
Q, () v 90 —1Inpd -1 ov

1/2
< Cy([(po-n gae—l)dx)“z[jluﬁdx) (M;’2 +1)s szjluf dv+Cy (Mg +1)
\' \'
where o<, <1. Transform and estimate the second addend in By using Cauchy
2

inequality and bounds (7).

12Inv dl ov
Jy = j”w j(p m‘”d = (p(vw—lnw// ~1)dx +jf V/d7
va y o(u-f) p
'[go ot _'[ ox d +'[ o

:J‘%(/” “—f)dx—jK u—f)dx+.fﬂf’dx§C22'
@ P @
Hence
d 1 12
Bsg S——J.—(Vl//—InVI//—l)dx+52J.fux dx+ Cog( My(t)+1)-
dt’ ¢ v

Substitute the obtained relations for p, (,-zfs) to (17). After integrating the

inequality obtained from (17) with respect to ¢ using (7), (16) we derive the required
estimate. This proves the lemma 6.
LEMMA 7. If the conditions of theorem are satisfied, the following estimate is true

o) <Ny, veelo]
PROOF. We multiply the second and forth equations of system (1)
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i[é’lnvy/):ﬁ(u—fhﬁ(gjﬂu d [1H2]+ﬂ )l
ax\ v

ot Jx ot Jx
8 160H) ou
—V H_ e T
oV =)= é’x[vé’xj 5%

y (Invy), and v(H —n) respectively, integrate with respect to R and add.
Eij[(m ) +(V(H—77))2]dx+.|'[Hf, + & vy/)i}dx:ij(u—f)
+.[1 2d Ilo”é’ﬂlnvv/ dr — 1o”ufd Ieo”lnvv/ (Iny/)'dx+

dx +

2Invy
ox

dx Ox
, ﬁH 2linvy B
+j dx+jH—(|m// ) dx +j s jn Im//) dx
_ a ﬂInVy/ 18
J-n—vH n dx+fﬂ x}u s dx. (18)

Let us estimate the integrals on the right-hand side of (18) using the Gelder, Young and
Cauchy inequalities, the conditions of theorem, the properties (4) and the known
estimates. After some reductions we have

Mmoot [ R 4 -
19 6?
+Coq4 J;uxdx+ Ive3/2dx+1

Here
(j(ln Vx// )L Uﬂ 2auzdlelz <

otk
SEH (Invy xH +C25(T§1)e(‘u_ﬂ2 +1jjﬂ(x)u\2adx,

ﬁlnvw det
X

(in VW)XHZ +1J+M9 )+ M} (t)}.

a é’lnvv/d

Tf?‘”*f‘z §2J'(uf)(uf)xdeC{(J‘\];ufdx)llz +([(f’)2dx)1/2:|SC27Dlqu.derl]
Jﬂ(x}u‘zadxsjﬂ(‘u—f‘za +‘f‘2 jdx< (_[ dx)a(Jﬂlll “ dx)1 +C<Cyys

2invy
J.T(u ~f)dx< C, +7H (InVy/)x
By integrating the inequality obtained from (18) with respect to ¢ and using Gronwall’s

lemma and (13), (16), lemma 6 we deduce estimate

2, O<y<1.

max | (Invy) H < Cog-
0<t<T

Using the properties (4) we have affirmation of lemma. This proves the lemma 7.
We multiply the forth equation of system (1) by A, and integrate with respect to

R and to ¢ . After some reductions [6] we conclude that
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T
2 2
H H < :
OZ‘?;;H x(t]‘ +£H xx(t]‘ dt < Nyp
Hence we have a2 (1)< Nyg,  VeeloT]-
We multiply the second and third equations of system (1) by w,, and (p@ 1)

respectively, integrate with respect to R and add. Reasoning as in [6] we derive

max ([ o)1 +| ux(t12j+1( [ ] eee)? ) e = Mo

After multiplying the heat-conducting equation of system (1) by ¢ . and some
reductions [6] we have

T
2 2
max || 6,.(¢ 0..(t)" dt<Nqig:
OStSXTH <o) +£H (0] 15

From system (1) it follows that

T
max v, <Mg, [ Ju o +] Ho 0 +] N7 + v o) ) < N7
0<t<T 0

Thus, all the a priori estimates need to prove the existence of a generalized solution
have been obtained. The uniqueness of the solution can be derived in the usual way,
viz., by constructing a homogeneous equation for the difference between the two
possible solutions.

The theorem is completely proved.
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