СХОДИМОСТЬ РЕГУЛЯРИЗОВАННОГО МЕТОДА НЬЮТОНА ДЛЯ РЕШЕНИЯ НЕЛИНЕЙНОГО ОПЕРАТОРНОГО УРАВНЕНИЯ ПЕРВОГО РОДА

Проф., др. Аскербек СААДАБАЕВ

Кыргызский государственный педагогический университет им. И. Арабаева

Названный метод для решения корректных задач применялся многими авторами (см. [1], [2]).

В данной статье этот метод применяется для решения некорректных задач. Линейные некорректные задачи исследовалось в работе [3]. Нелинейные некорректные задачи по методу Лаврентьева исследовано в работах (см. [4], [5]).

Рассмотрим нелинейное операторное уравнение

$$Kz = u \,, \tag{1}$$

где K — нелинейный оператор отображающий Гильбертовое пространство Z в Гильбертовое пространство Z, z — искомый элемент, u — заданный элемент.

Наряду с уравнением (1) рассмотрим уравнение

$$az + Kz = u, (2)$$

где a > 0 положительный регуляризирующий параметр.

Допустим, что при $u=u_0$ уравнение (1) имеет единственное решение z_0 . Нелинейный оператор K определен для любого z удовлетворяющего неравенству:

$$\left\|z - z_0\right\| \le r \tag{3}$$

где г – достаточно малое число и определяется ниже.

Далее предположим, что оператор Кz дифференцируема по Фреше в шаре (3) (см.[1], [2]).

Пусть производная оператора K в точке z_0 является линейным оператором, и этот линейный оператор является положительным обозначим этот оператор через A.

В этих условиях оператор (aE + A) имеет обратный оператор для любого a > 0 (см. [3]).

В этом случае уравнение (2) эквивалентно следующему операторному уравнению

$$z = z - (aE + A)^{-1}(az + Kz - u)$$
(4)

Введем оператор

$$B_{a}(z;u) = z - (aE + A)^{-1}(az + Kz - u)$$
(5)

Вычислим производную этого оператора

$$B'_{2}(z;u) = E - (aE + A)^{-1}(aE + A(z)).$$

Отсюда

$$B_a'(z;u) = (aE + A)^{-1}(aE + A - aE - A(z)) = (aE + A)^{-1}(A(z_0) - A(z))$$
 (6)

Норма оператора $(aE + A)^{-1}$ ограничена по норме и удовлетворяет неравенству (см. [1])

$$\left\| \left(aE + A \right)^{-1} \right\| \le \frac{1}{a} \tag{7}$$

Допустим, что производная оператора К является непрерывным

$$||A(z_0) - A(z)|| \le q(r), \quad ||z - z_0|| \le r$$
 (8)

Используя неравенства (7), (8) из (6), получаем

$$\left\|B_a'(z;u)\right\| \le \frac{q(r)}{a},\tag{9}$$

где q(r) - модуль непрерывности оператора A в шаре $\|z-z_0\| \le r$. В силу непрерывности оператора A модуль непрерывности q(r) удовлетворяет условию $q(r) \to 0$ при $r \to 0$.

Таким образом, оператор $B_a(z;u)$ удовлетворяет условию Липшица с постоянной $\frac{q(r)}{a}$, т.е. удовлетворяет неравенству

$$\|B_a(z_2;u) - B_a(z_1;u)\| \le \frac{q(r)}{a} \|z_2 - z_1\|.$$
 (10)

Параметр α подберем так, чтобы

$$\frac{q(r)}{a} \to 0$$
 при $r \to 0$.

Тогда существует r_0 такое что

$$q_0 = \frac{q(r_0)}{a(r_0)} < 1, \quad r < r_0 \tag{*}$$

Покажем, что оператор $B_a(z;u)$ шар $\|z-z_0\| \le r$ отображает в себя если окрестность $\|u-u_0\| \le d$ достаточно мала.

Рассмотрим разность:

$$||B_{a}(z;u)-z_{0}|| = ||(B_{a}(z;u)-B_{a}(z_{0};u))+(B_{a}(z_{0};u)-z_{0})|| \le$$

$$\le ||B_{a}(z;u)-B_{a}(z_{0};u)|| + ||B_{a}(z_{0};u)-z_{0}||$$
(11)

В правой части неравенства (11) первое слагаемое в силу (10) удовлетворяет неравенству

$$\|B_a(z;u) - B_a(z_0;u)\| \le \frac{q(r)}{a} \|z - z_0\|.$$
 (12)

Второе слагаемое оценивается следующем виде:

$$||B_{a}(z_{0};u)-z_{0}|| = ||z_{0}-(aE+A)^{-1}(az_{0}+Kz_{0}-u)-z_{0}|| =$$

$$= ||(aE+A)^{-1}(az_{0}+Kz_{0}-u)|| \le ||(aE+A)^{-1}az_{0}|| + ||(aE+A)^{-1}(u_{0}-u)||$$
(13)

Допустим, что точное решение представим в виде

$$z_0 = A^s \boldsymbol{u}_0, \quad \boldsymbol{u}_0 \in Z \quad 0 < \boldsymbol{s} < 1$$

Тогда первое слагаемое в неравенстве (13) оценивается следующем виде (см. [4])

$$\|(aE + A)^{-1}aA^{s}u_{0}\| \le a^{s}\|u_{0}\|$$
 (14)

Оценим второе слагаемое справа в (13).

В силу неравенства (7) и $\left\|u-u_0\right\| \leq d$, получаем

$$\|(aE + A)^{-1}(u - u_0)\| \le \frac{\|u - u_0\|}{a} \le \frac{d}{a}$$
 (15)

Используя неравенства (14), (15) из неравенства (13), получаем

$$\|B_a(z_0;u)-z_0\| \le a^s \|u_0\| + \frac{d}{a}$$
 (16)

Используя неравенства (16), (12) из равенства (11) получаем

$$||B_a(z;u)-z_0|| \le \frac{q(r)||z-z_0||}{a} + a^s ||u_0|| + \frac{d}{a}$$
 (17)

Используя неравенства (3) из (17) получаем

$$\|B_a(z;u) - z_0\| \le \frac{q(r)r}{a} + a^s \|u_0\| + \frac{d}{a} = r$$
 (18)

Учитывая неравенства

$$q_0 = \frac{q(r)}{a} < 1, \quad r < r_0$$

из равенства (18), получаем

$$||B_a(z;u)-z_0|| \le q_0r+a^s||u_0||+\frac{d}{a}=r$$

Отсюда

$$||B_a(z;u)-z_0|| \le a^s ||u_0|| + \frac{d}{a} = r(1-q_0).$$

Ниже будет показано, что при

$$a(d) = d^{\frac{1}{1+s}} \left(||u_0|| s \right)^{\frac{1}{1+s}}, \tag{19_0}$$

где $\|u-u_0\| \le d$, правая часть последнего неравенства достигает минимального значение.

Учитывая (190) из последнего неравенства определяем

$$r(d) = \frac{1}{1 - q_0} \left(\left\| u_0 \right\|_{\mathcal{S}} \right)^{\frac{1}{1 + s}} \left(1 + \frac{1}{s} \right) d^{\frac{s}{1 + s}}. \tag{19}$$

Оператор $B_aig(z;uig)$ шар $\|z-z_0\| \leq rig(dig)$ отображает в себя.

Доказана.

T e o p e m a I. Пусть выполняются следующие условия: 1) оператор K дифференцируема в точке z_0 ; 2) производная удовлетворяет условию Липшица; 3) производная оператора K в точке z_0 является линейным самосопряженным положительным оператором; 4) постоянная Липшица удовлетворяет условию $\frac{q(r)}{a} < \frac{q(r_0)}{a(r_0)} < 1$; при любом $r < r_0$; 5) при $u = u_0$ уравнение (1) имеет

единственное решение z_0 представимые в виде $z_0 = A^s u_0$. Тогда оператор $B_a \left(z;u\right)$ шар $\left\|z-z_0\right\| \leq r(d)$ отображает в себя, где r(d) удовлетворяет (19).

В силу неравенства (10) и (*) этот оператор является сжимающим.

Тогда к нелинейному операторному уравнению (4) в шаре $\|z-z_0\| \le r(d)$ можно применить принцип сжимающих отображений.

При любом $u \in U$ и $r < r_0$, уравнение (4) имеет единственное решение Z_a . Доказана следующая.

 $T\ e\ o\ p\ e\ M\ a\ 2.$ Пусть выполняются 1) и 4) условия теоремы 1. Тогда оператор B_a при любом и из шара: $\left\|u-u_0\right\|\leq d$ является сжимающим оператором и уравнение (4) имеет единственное решение при любом и.

Покажем, что это решение при $u=u_0$ сходится к решению уравнения (1) при $a\to 0$.

Действительно имеет места тождества

$$z_{a}^{0} \equiv z_{a}^{0} - \left(aE + A\right)^{-1} \left(az_{a}^{0} + Kz_{a}^{0} - u_{0}\right) \equiv B_{a}\left(z_{a}^{0}; u_{0}\right) \tag{20}$$

Далее имеет места тождества

$$z_0 \equiv z_0 - (aE + A)^{-1}(az_0 + Kz_0 - u_0) + (aE + A)^{-1}az_0 \equiv B_a(z_0; u_0) + (aE + A)^{-1}az_0$$
 (21)

Вычитая из тождества (20), (21), получаем

$$\|z_a^0 - z_0\| \le \frac{q(r)}{a} \|z_a^0 - z_0\| + a^s \|u_0\|$$

Отсюда учитывая неравенства (*) получаем

$$\left\| z_a^0 - z_0 \right\| \le \frac{a^s \left\| u_0 \right\|}{1 - q_0} \tag{22}$$

Доказана.

Теорема 3. Пусть выполняются все условия теоремы 1.

Тогда при $u=u_0\,$ уравнение (4) имеет решение $z_a^0\,$ и это решение при $a \to 0\,$ стремиться к точному решению уравнения (1). Скорость сходимости удовлетворяет неравенству:

$$\left\| z_a^0 - z_0 \right\| \le \frac{a^s \left\| u_0 \right\|}{1 - q_0}$$

Покажем устойчивость решение уравнения (4) от правой части.

Допустим, что вместе правой части u_0 задана u_d удовлетворяющая неравенству

$$\left\| u_0 - u_d \right\| \le d \tag{23}$$

Решение уравнения (4) при $u=u_d$ обозначим через z_a^d . Для z_a^d справедливы тождества

$$z_{a}^{d} \equiv z_{a}^{d} - (aE + A)^{-1} (az_{a}^{d} + Kz_{a}^{d} - u_{d}) \equiv B_{a}(z_{a}^{d}; u_{d})$$
(24)

 $z_a^d \equiv z_a^d - \left(aE + A\right)^{\!-\!1}\!\!\left(az_a^d + Kz_a^d - u_d\right) \equiv B_a\!\left(z_a^d; u_d\right) \tag{24}$ Оценим разность по норме $z_a^d - z_0$. Используя неравенства треугольника, получаем

$$\left\| z_a^d - z_0 \right\| \le \left\| z_a^d - z_a^0 \right\| + \left\| z_a^0 - z_0 \right\|.$$
 (25)

Для второго слагаемого справедлива оценка (22). Из тождества (25) вычтем тождества (25):

$$||z_a^d - z_a^0|| = ||B_a(z_a^d; u_d) - B_a(z_a^0; u_0)||$$
 (26)

Используя условия Липшица для оператора B_a и неравенства треугольника правую часть (26) оценим следующим образом

$$\begin{aligned} & \left\| z_{a}^{d} - z_{a}^{0} \right\| = \left\| B_{a} \left(z_{a}^{d}; u_{d} \right) - B_{a} \left(z_{a}^{0}; u_{d} \right) \right\| + \left\| B_{a} \left(z_{a}^{0}; u_{d} \right) - B_{a} \left(z_{a}^{0}; u_{0} \right) \right\| \leq \\ & \leq \frac{q(r)}{a} \left\| z_{a}^{d} - z_{a}^{0} \right\| + \left\| \left(aE + A \right)^{-1} \left(u_{d} - u_{0} \right) \right\| \end{aligned}$$

Отсюда получаем оценку

$$||z_a^d - z_a^0|| \le \frac{q(r)}{a} ||z_a^d - z_a^0|| + \frac{d}{a}$$
 (27)

Пусть z удовлетворяет неравенству $z < z_0$.

Тогда из неравенства (27) получаем

$$\left\| z_a^d - z_a^0 \right\| \le \frac{1}{1 - q_0} \frac{d}{a} \tag{28}$$

Используя неравенства (28), (22) из неравенства (25) получаем

$$\left\| z_a^d - z_0 \right\| \le \frac{1}{1 - q_0} \frac{d}{a} + a^s \frac{\left\| u \right\|}{1 - q_0} = \frac{1}{1 - q_0} \left(\frac{d}{a} + a^s \left\| u_0 \right\| \right)$$
 (29)

Рассмотрим функцию

$$y(a) = \frac{d}{a} + ||u_0||a^s$$
(30)

Найдем первую производную и приравниваем ее к нулю:

$$y'(a) = -\frac{d}{a^2} + ||u_0|| sa^{s-1} = 0$$

Отсюда

$$a^{1+s} = \frac{1}{\|u_0\|_{S}} d, \quad a = d^{\frac{1}{1+s}} (\|u_0\|_{S})^{\frac{1}{1+s}}$$
(31)

В этой точке функция (30) достигает минимального значения. Подставляя это значение в (30), получаем

$$y(a(d)) = \left(d^{1 - \frac{1}{1 - s}} \left(\left\| u_0 \right\| s \right)^{\frac{1}{1 + s}} + \left\| u_0 \right\| d^{\frac{s}{s + 1}} \left(\left\| u_0 \right\| s \right)^{\frac{s}{1 + s}} \right) =$$

$$= d^{\frac{s}{s + 1}} \left(\left\| u_0 \right\| s \right)^{\frac{1}{1 + s}} \left(1 + \left\| u_0 \right\| \left(\left\| u_0 \right\| s \right)^{-1} \right) = \left(\left\| u_0 \right\| s \right)^{\frac{1}{1 + s}} \left(1 + \frac{1}{s} \right) d^{\frac{s}{s + 1}}$$

Подставляя это значение в правую часть оценки (29) и получаем

$$\|z^{d}_{a} - z_{0}\| \le \frac{1}{1 - q_{0}} (\|u_{0}\|_{S})^{\frac{1}{1 + s}} \left(1 + \frac{1}{s}\right) d^{\frac{s}{s + 1}}$$
 (32)

Доказана.

 $T\ e\ o\ p\ e\ m\ a\ 4$. Пусть: 1) выполняются все условия теоремы 1; 2) параметр a удовлетворяет условию (31).

Тогда уравнение (4) при $u=u_d$ имеет решение z_a^d . Это решение при $d\to 0$ сходится к точному решению уравнения (1). Скорость сходимости удовлетворяет неравенству (32).

При доказательстве теоремы 1 мы выбрали функции a(d) и r(d). Мы сейчас покажем законность этого выбора.

Рассмотрим правую часть неравенства (18).

$$\frac{q(r)r}{a} + a^s \left\| u_0 \right\| + \frac{\left\| u - u_0 \right\|}{a} = r$$
 Отсюда при $\ z < z_0 \ , \ \frac{q(r)}{a} < q_0 < 1 \ .$

Тогда

$$a^{s} \|u_{0}\| + \frac{\|u - u_{0}\|}{a} = r(1 - q_{0})$$

Левая часть этого неравенства совпадает с функцией y(a). Таким образом, если $\|u-u_0\| \leq d$, то

$$r(d) = \frac{1}{1 - P_0} \left(\| u_0 \|_{\mathbf{S}} \right)^{\frac{1}{1 + s}} \left(1 + \frac{1}{s} \right) d^{\frac{s}{s + 1}}$$

Решение уравнения (4) найден методом последовательных приближений.

 $\|z-z_0\| \le r(d)$.

Остальные приближения определяем по рекуррентной формуле:

$$z_n = B_a(z_{n-1}; u), n = 1, 2, \mathbf{K}$$
 (33_n)

Оператор B_{a} удовлетворяет условию Липшица с постоянной $\mathit{q}_{0}.$

В силу теоремы 1 оператор B_a шар $\|z-z_0\| \le r(d)$ отображает в себя.

Полагая n = 1 в (33_n), определяем первое приближение

$$z_1 = B_a(z_0^*; u), (33_1)$$

причем

$$z_1 \in S_{Z_0}(r) = \{z; ||z - z_0|| \le r(d)\}$$

Полагая n = 2 в (33_n) , получаем

$$z_2 = B_2(z_1; u), (33_2)$$

Оценим разность

$$||z_{n+1} - z_n|| = ||B_a(z_n; u) - B_a(z_{n-1}; u)|| \le q_0 ||z_n - z_{n-1}|| =$$

$$= q_0 ||B_a(z_{n-1}; u) - B_a(z_{n-2}; u)|| \le q_0^2 ||z_{n-1} - z_{n-2}|| \le q_0^n ||z_1 - z_0^*||$$
(34)

Для любого $p \ge 0$, используя неравенства треугольника, получаем

$$||z_{n+p} - z_n|| \le ||(z_{n+p} - z_{n+p-1}) + (z_{n+p-1} - z_{n+p-2}) + \mathbf{K} + (z_{n+1} - z_n) + (z_n - z_{n-1})|| \le$$

$$\le q_0^{p-1} ||z_{n+1} - z_n|| + q_0^{p-2} ||z_{n+1} - z_n|| + \mathbf{K} + q_0 ||z_{n+1} - z_n|| + ||z_{n+1} - z_n|| =$$

$$= ||z_{n+1} - z_n||(1 + q_0 + q_0^2 + \mathbf{K} + q_0^{p-1}).$$
(35)

Из неравенства (35) используя неравенства (34) и условии $q_0 < 1$, получаем

$$\left\| z_{n+p} - z_n \right\| \le q_0^n \left\| z_1 - z_0^* \right\| \frac{1 - q_0^p}{1 - q_0} \le \frac{q_0^n}{1 - q_0} \left\| z_1 - z_0^* \right\| \tag{36}$$

Отсюда при любом $p \ge 0$, при $n \to \infty$

$$\left\|z_{n+p}-z_n\right\|\to 0,$$

т.е. последовательность $\{z_n\}$ является фундаментальной в пространстве Z.

В силу полноты пространства Z последовательность $\{z_n\}$ является сходящейся.

Предел этой последовательности обозначим через Z_a .

Из (36), переходя к пределу при $p \to \infty$ при любом n, получаем

$$||z_a - z_n|| \le \frac{q_0^n}{1 - q_0} ||z_1 - z_0^*||$$
(37)

Переходя к пределу в (33_n) при $n \to \infty$, используя что $z_n \to z_a$ и непрерывность оператора B_a , получаем

$$z_a = B_a(z_a; u),$$

т.е. z_{a} решение уравнения (4).

В силу неравенства (37) между n-ным приближением и точным решением имеет место оценка

$$||z_{a} - z_{n}|| \le \frac{q_{0}^{n}}{1 - q_{0}} ||B_{a}(z_{0}^{*}; u) - z_{0}^{*}||$$
(38)

Отсюда видно, что точность z_n зависит от того, насколько близко подобрана нулевое приближение к точному решению уравнения (4).

Доказана.

ЛИТЕРАТУРА

- 1. ЛЮСТЕРНИК Л.А., СОБОЛЕВ В.И. Элементы функционального анализа. М: Наука, 1965.
- 2. КАНТОРОВИЧ Л.В., АКИЛОВ Г.П. **Функциональный анализ**. –М: Наука, 1977.
- 3. ЛАВРЕНТЬЕВ М.М. **О** некоторых некорректных задачах математической физики. Новосибирск: СО АН СССР, 1962.
- 4. СААДАБАЕВ А.С. **Приближенные методы решения нелинейных интегральных и операторных уравнений 1-го рода**. Бишкек, 1997.
- 5. СААДАБАЕВ А.С. Регуляризованный метод Ньютона для решения нелинейного интегрального уравнения первого рода. Вестник КГНУ. Бишкек 2001. Сер.З. Выпуск 6. С.59-63.