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Abstract. In this paper, a theorem on absolute summability of infinite series is obtained by taking almost 

increasing sequence instead of positive non-decreasing sequence. Also, some results of absolute summability 

are given. 

Keywords: Riesz mean, absolute summability, almost increasing sequence, Hölder inequality, Minkowski 

inequality. 

Sonsuz Serilerin Mutlak Toplanabilmesi  Üzerine Bir Teorem 

Özet. Bu makalede,  pozitif azalmayan dizi yerine hemen hemen artan dizi alınarak, sonsuz serilerin mutlak 

toplanabilmesi üzerine bir teorem elde edildi. Ayrıca, mutlak toplanabilme  ile ilgili bazı sonuçlar verildi. 

Anahtar Kelimeler: Riesz ortalaması, mutlak toplanabilme, hemen hemen artan dizi, Hölder eşitsizliği,  

Minkowski eşitsizliği. 

 

1. INTRODUCTION  

A positive sequence  nb is said to be almost increasing if there exist a positive increasing sequence 

 nc  and two positive constants K  and L  such that  n n nKc b Lc  [1].  Obviously, every increasing 

sequence is almost increasing. However, the converse need not be true as can be seen by taking the 

example, say 
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 . Let na  be an infinite series with its partial sums ( )ns . Let  n  be a 

sequence of  positive real numbers. The series na  is said to be summable , ;n
k

N p  ,  1k  

and 0  ,  if  [2] 
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where   np  is a sequence of positive numbers such that  
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defines the  sequence  n  of the  , nN p   mean of  the sequence  ns  generated by the sequence of 

coefficients  np  [3]. 

In the special case, if we take n n nP p  , then , ;n
k

N p   summability reduces to , ;n
k

N p 

summability  [4]. Also, if we take n n nP p   and 0  , , ;n
k

N p   summability reduces to 

, n k
N p summability [5]. Finally,  if we take  n n  , 0   and 1np   for all values of n , then we 

get  ,1
k

C  summability  [6]. 

2. KNOWN RESULTS 

Absolute summability methods are generally used to summability of an infinite series. There is an 

important application area of these methods. Especially, they have applications on different sequences 

such as positive non-decreasing, almost increasing and quasi power increasing sequences. 

There are many different studies on absolute summability methods (see [2, 7-21]). Among them, in [7], 

the following theorem was proved. 

Theorem 1  Let  ( )nX   be  a  positive   non-decreasing  sequence  and  ( )n , ( )n  be 

sequences such that 

                                                                  ,n n                                                                    (4)       

                                                                  0n   as  n  ,                                                              (5)      
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            (1)n nX O     as  n             (7)  

hold  where 1n n n      . If  ( )np  is a sequence of  positive numbers such that  

                                                             ( )n nP O np   as  ,n                                                           (8) 
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then the series n na    is  summable , n k
N p , 1k  . 
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3.    MAIN RESULT 

Theorem 1 is generalized as in the following form under weaker conditions by using an almost 

increasing sequence instead of a positive non-decreasing sequence.    

 Theorem 2  Let  nX  be an almost increasing sequence and  n n np O P  . If conditions (4)-(8) of 

Theorem 1 and 
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   as  m   (11)                                                                            

are satisfied, then the series n na    is summable , ;n
k

N p  ,     and  0 1/ k  . 

Lemma 3 [22].  Under  the  conditions  of  Theorem 2, we have  

                                                  (1)n nnX O     as   ,n                                                             (12)    
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  .                                                                   (13)                

4.    PROOF OF THEOREM 2 

Let  nM   be the sequence of  , nN p  mean of  the series n na  .  Then, we get 
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From Abel’s transformation,  we obtain 
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To prove that n na   is summable , ;n
k

N p  ,  it is sufficient to show that     
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First, using the fact that   n n np O P  and the condition (4), we get 

1 1 1
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Now, using Hölder’s inequality and  the condition (8),  
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Here, using the condition (11), we get 
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then using the fact that  v v vp O P  , we obtain 
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Now using the fact that the sequence  nX  is almost increasing  and  the condition (12), we obtain
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 . Thus, we have 
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Then, using Abel’s transformation,   we get      
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Here considering the fact that 

1 1( ) ( 1)v v v v vv v v v            , 

and using the condition (10), we have 
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by  (6) , (13)  and  (12), respectively.  

 

Now, again using the fact that   n n np O P   and  Hölder’s inequality, we have 
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Here, using the fact that  the sequence  nX  is almost increasing  and considering the condition (7), it is 

clear that 
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 . Additionally, using the condition (11), we have 
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by virtue of  Abel’s transformation,  (4),  (10),  (13)  and  (7). 

Finally,  again using the fact that  n n np O P  , we have 
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as in ,2nM .  Thence,  the proof  of  Theorem 2 is completed. 

 

567 



 

 

Kartal / Cumhuriyet Sci. J., Vol.40-3 (2019) 563-569 

5.   CONCLUSION 

In this paper, generalized absolute summability of an infinite series is studied. A general theorem 

dealing with absolute summability is obtained. For the special cases of   nX ,  n ,  np  and  ,  some 

results can be obtained.  If  we take   nX  as a positive non-decreasing sequence in Theorem 2, we get 

an another theorem dealing with , ;n
k

N p   summability of an infinite series. If we take 

n n nP p    in Theorem 2, then we get a known theorem on  , ;n
k

N p   summability of an infinite 

series [23].  Also,  if we take  ( )nX  as a positive non-decreasing sequence,  n n nP p   and 0     in 

Theorem 2,  then the condition (10) reduces to the condition (9) and also the conditions   n n np O P   

and  (11)  are automatically satisfied.  Thus, Theorem 2 reduces to Theorem 1. Finally,  if we take ( )nX   

as a positive non-decreasing sequence,   n n  , 0   and 1np    for all values of n ,  then we get a 

known result of ,1
k

C summability [24].  
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