Universal Journal of Mathematics and Applications, 2 (3) (2019) 130-137 Research paper

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: http://dx.doi.org/10.32323/ujma.606050

Spaces J2-Convergence of Double Sequences of Functions in 2-Normed Spaces

Sevim Yegül¹ and Erdinç Dündar^{1*}

¹Department of Mathematics, Afyon Kocatepe Universit, Afyonkarahisar, Turkey *Corresponding author

Article Info

Abstract

Keywords: \mathcal{I}_2 -convergence, \mathcal{I}_2^* -convergence, Double sequences of functions, 2-normed Spaces.

2010 AMS: 40A05, 40A30, 40A35 **Received:** 18 August 2019

Accepted: 12 September 2019 Available online: 30 September 2019 In this study, we introduced the concepts of \mathscr{I}_2 -convergence and \mathscr{I}_2^* -convergence of double sequences of functions in 2-normed space. Also, were studied some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces.

1. Introduction and Background

Throughout the paper, \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [14] and Schoenberg [32]. Gökhan et al. [19] introduced the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions.

The idea of \mathscr{I} -convergence was introduced by Kostyrko et al. [25] as a generalization of statistical convergence which is based on the structure of the ideal \mathscr{I} of subset of \mathbb{N} [14, 15]. Gezer and Karakuş [18] investigated \mathscr{I} -pointwise and uniform convergence and \mathscr{I} *-pointwise and uniform convergence of function sequences and they examined the relation between them. Baláz et al. [4] investigated \mathscr{I} -convergence and \mathscr{I} -convergence and \mathscr{I} -convergence of double sequences in a metric space and studied some properties of this convergence. Dündar and Altay [7, 9] studied the concepts of pointwise and uniformly \mathscr{I}_2 -convergence and \mathscr{I}_2 *-convergence of double sequences of functions and investigated some properties about them. Furthermore, Dündar [11] investigated some results of \mathscr{I}_2 -convergence of double sequences of functions. Also, a lot of development have been made about double sequences of functions (see [8], [10]-[12], [18], [27], [28], [34]-[36]).

The concept of 2-normed spaces was initially introduced by Gähler [16, 17] in the 1960's. Statistical convergence and statistical Cauchy sequence of functions in 2-normed space were studied by Yegül and Dündar [39]. Also, Yegül and Dündar [40] introduced concepts of pointwise and uniform convergence, statistical convergence and statistical Cauchy double sequences of functions in 2-normed space. Sarabadan and Talebi [29] presented various kinds of statistical convergence and \mathscr{I} -convergence for sequences of functions with values in 2-normed spaces and also defined the notion of \mathscr{I} -equistatistically convergence and \mathscr{I} -cauchy sequences of functions in 2-normed spaces. Furthermore, a lot of development have been made in this area (see [3, 5, 13, 26, 30, 33]).

2. Definitions and Notations

Now, we recall the concept of density, statistical convergence, 2-normed space and some fundamental definitions and notations (See [1, 2, 4, 6, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 37, 38, 40]).

Let *X* be a real vector space of dimension *d*, where $2 \le d < \infty$. A 2-norm on *X* is a function $\|\cdot,\cdot\|: X \times X \to \mathbb{R}$ which satisfies the following statements:

(i) ||x,y|| = 0 if and only if x and y are linearly dependent.

- (ii) ||x,y|| = ||y,x||.
- (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \alpha \in \mathbb{R}$.
- (iv) $||x,y+z|| \le ||x,y|| + ||x,z||$.

The pair $(X, \|\cdot, \cdot\|)$ is then called a 2-normed space. As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x,y|| := the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|; \ x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2.$$

In this study, we suppose *X* to be a 2-normed space having dimension *d*; where $2 \le d < \infty$.

Throughout the paper, we X and Y be two 2-normed spaces, $\{f_n\}_{n\in\mathbb{N}}$ and $\{g_n\}_{n\in\mathbb{N}}$ be two sequences of functions and f,g be two functions

The sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ is said to be convergent to f if $f_n(x) \xrightarrow{\|...\|_Y} f(x)$ for each $x \in X$. We write $f_n \xrightarrow{\|...\|_Y} f$. This can be expressed by the formula

$$(\forall y \in Y)(\forall x \in X)(\forall \varepsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \geq n_0)||f_n(x) - f(x), y|| < \varepsilon.$$

A family of sets $\mathscr{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if

(i) $\emptyset \in \mathscr{I}$, (ii) For each $A, B \in \mathscr{I}$ we have $A \cup B \in \mathscr{I}$, (iii) For each $A \in \mathscr{I}$ and each $B \subseteq A$ we have $B \in \mathscr{I}$.

An ideal is called nontrivial if $\mathbb{N} \notin \mathscr{I}$ and nontrivial ideal is called admissible if $\{n\} \in \mathscr{I}$ for each $n \in \mathbb{N}$.

A family of sets $\mathscr{F}\subseteq 2^{\mathbb{N}}$ is called a filter if and only if

 $(i) \ \emptyset \notin \mathscr{F}, \quad (ii) \ \text{For each } A,B \in \mathscr{F} \ \text{we have } A \cap B \in \mathscr{F}, \quad (iii) \ \text{For each } A \in \mathscr{F} \ \text{and each } B \supseteq A \ \text{we have } B \in \mathscr{F}.$

 \mathscr{I} is nontrivial ideal in \mathbb{N} if and only if $\mathscr{F}(\mathscr{I}) = \{M \subset \mathbb{N} : (\exists A \in \mathscr{I})(M = \mathbb{N} \setminus A)\}$ is a filter in \mathbb{N} .

A nontrivial ideal \mathscr{I}_2 of $\mathbb{N} \times \mathbb{N}$ is called strongly admissible ideal if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to \mathscr{I}_2 for each $i \in \mathbb{N}$.

Throughout the paper we take \mathscr{I}_2 as a strongly admissible ideal in $\mathbb{N} \times \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also.

 $\mathscr{I}_{2}^{0} = \{A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N})(i, j \geq m(A) \Rightarrow (i, j) \notin A)\}$. Then \mathscr{I}_{2}^{0} is a strongly admissible ideal and clearly an ideal \mathscr{I}_{2} is strongly admissible if and only if $\mathscr{I}_2^0 \subset \mathscr{I}_2$.

A sequence $\{f_n\}$ of functions is said to be \mathscr{I} -convergent (pointwise) to f on $D \subseteq \mathbb{R}$ if and only if for every $\varepsilon > 0$ and each $x \in D$,

$${n: |f_n(x) - f(x)| \ge \varepsilon} \in \mathscr{I}.$$

In this case, we will write $f_n \stackrel{\mathscr{I}}{\to} f$ on D.

The sequence of functions $\{f_n\}$ is said to be \mathscr{I} -pointwise convergent to f, if for every $\varepsilon > 0$ and each nonzero $z \in Y$

$$A(\varepsilon, z) = \{ n \in \mathbb{N} : ||f_n(x) - f(x), z|| \ge \varepsilon \} \in \mathscr{I},$$

or $\mathscr{I} - \lim_{n \to \infty} ||f_n(x) - f(x), z||_Y = 0$, for each $x \in X$. In this case, we write $f_n \xrightarrow{\|\cdot\|_{Y}} \mathscr{I} f$. This can be expressed by the formula

$$(\forall z \in Y)(\forall \varepsilon > 0)(\exists M \in \mathscr{I})(\forall n_0 \in \mathbb{N} \setminus M)(\forall x \in X)(\forall n \geq n_0)||f_n(x) - f(x), z|| \leq \varepsilon.$$

The sequence of functions $\{f_n\}$ is said to be (pointwise) \mathscr{I}^* -convergent to f, if there exists a set $M \in \mathscr{F}(\mathscr{I})$, (i.e., $\mathbb{N} \setminus M \in \mathscr{I}$), $M = \{m_1 < 1\}$ $m_2 < \cdots < m_k < \cdots$ }, such that for each $x \in X$ and each nonzero $z \in Y$

$$\lim_{k \to \infty} ||f_{n_k}(x), z|| = ||f(x), z||$$

and we write

$$\mathscr{I}^* - \lim_{n \to \infty} ||f_n(x), z|| = ||f(x), z|| \text{ or } f_n \overset{\mathscr{I}^*}{\to} f.$$

An admissible ideal $\mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ satisfies the property (AP2) if for every countable family of mutually disjoint sets $\{E_1, E_2, ...\}$ belonging to \mathscr{I}_2 , there exists a countable family of sets $\{F_1, F_2, ...\}$ such that $E_j \Delta F_j \in \mathscr{I}_2^0$, i.e., $E_j \Delta F_j$ is included in the finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $F = \bigcup_{j=1}^{\infty} F_j \in \mathscr{I}_2$ (hence $F_j \in \mathscr{I}_2$ for each $j \in \mathbb{N}$).

Throughout the paper, we let $\mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal, X and Y be two 2-normed spaces, $\{f_{mn}\}_{(m,n) \in \mathbb{N} \times \mathbb{N}}, \{g_{mn}\}_{(m,n) \in \mathbb{N} \times \mathbb{N}}$ and $\{h_{mn}\}_{(m,n)\in\mathbb{N}\times\mathbb{N}}$ be three double sequences of functions, f, g and k be three functions from X to Y.

A double sequence $\{f_{mn}\}$ is said to be pointwise convergent to f if, for each point $x \in X$ and for each $\varepsilon > 0$, there exists a positive integer

 $k_0 = k_0(x, \varepsilon)$ such that for all $m, n \ge k_0$ implies $\|f_{mn}(x) - f(x), z\| < \varepsilon$, for every $z \in Y$. In this case, we write $f_{mn} \stackrel{\|...\|_Y}{\longrightarrow} f$. A double sequence $\{f_{mn}\}$ is said to be (pointwise) statistical convergent to f, if for every $\varepsilon > 0$, $\lim_{i,j \to \infty} \frac{1}{ij} |\{(m,n), m \le i, n \le j : \|f_{mn}(x) - g\|_{L^2(x)} \le 0$.

 $|f(x),z|| \ge \varepsilon\} = 0$, for each (fixed) $x \in X$ and each nonzero $z \in Y$. It means that for each (fixed) $x \in X$ and each nonzero $z \in Y$, $||f_{mn}(x) - f(x)|| \le \varepsilon$ $|f(x),z|| < \varepsilon$, a.a. (m,n). In this case, we write

$$st - \lim_{m \to \infty} ||f_{mn}(x) - z|| = ||f(x), z|| \text{ or } f_{mn} \xrightarrow{||...||_{Y}} st f.$$

The double sequences of functions $\{f_{mn}\}$ is said to be statistically Cauchy sequence, if for every $\varepsilon > 0$ and each nonzero $z \in Y$, there exist a number $k = k(\varepsilon, z)$, $t = t(\varepsilon, z)$ such that $d_2(\{(m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f_{kt}(x), z|| \ge \varepsilon\}) = 0$, for each (fixed) $x \in X$, i.e., for each nonzero $z \in Y$, $||f_{nm}(x) - f_{kt}(x), z|| < \varepsilon$, a.a. (m, n).

3. Main Results

We introduced the concepts of \mathcal{I}_2 -convergence and \mathcal{I}_2^* -convergence of double sequences of functions in 2-normed space. Also, were studied some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces.

Definition 3.1. $\{f_{mn}\}$ is said to be \mathscr{I}_2 -convergent (pointwise sense) to f, if for every $\varepsilon > 0$ and each nonzero $z \in Y$

$$A(\varepsilon,z) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\} \in \mathscr{I}_2,$$

for each $x \in X$. This can be expressed by the formula

$$(\forall z \in Y) \ (\forall x \in X) \ (\forall \varepsilon > 0) \ (\exists H \in \mathscr{I}_2) \ (\forall (m,n) \notin H) \ \|f_{mn}(x) - f(x), z\| < \varepsilon.$$

In this case, we write

$$\mathscr{I}_2 - \lim_{m,n \to \infty} \|f_{mn}(x), z\| = \|f(x), z\|, \text{ or } f_{mn} \xrightarrow{\|...\|_{Y}} \mathscr{I}_2 f.$$

Theorem 3.2. For each $x \in X$ and each nonzero $z \in Y$,

$$\lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z|| \text{ implies } \mathscr{I}_2 - \lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||$$

Proof. Let $\varepsilon > 0$ be given. Since

$$\lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z||$$

for each $x \in X$ and each nonzero $z \in Y$, therefore, there exists a positive integer $k_0 = k_0(\varepsilon, x)$ such that $||f_{mn}(x) - f(x), z|| < \varepsilon$, whenever $m, n \ge k_0$. This implies that for each nonzero $z \in Y$,

$$A(\varepsilon, z) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| < \varepsilon \}$$

$$\subset ((\mathbb{N} \times \{1, 2, ..., k_0 - 1\}) \cup (\{1, 2, ..., k_0 - 1\} \times \mathbb{N})).$$

Since \mathcal{I}_2 be an admissible ideal, therefore

$$((\mathbb{N} \times \{1, 2, ..., k_0 - 1\}) \cup (\{1, 2, ..., k_0 - 1\} \times \mathbb{N})) \in \mathscr{I}_2.$$

Hence, it is clear that $A(\varepsilon, z) \in \mathscr{I}_2$ and consequently, for each nonzero $z \in Y$ we have

$$\mathscr{I}_2 - \lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||.$$

Theorem 3.3. If \mathcal{I}_2 -limit of any double sequence of functions $\{f_{mn}\}$ exists, then it is unique.

Proof. Assume that

$$\mathscr{I}_2 - \lim_{m,n \to \infty} \|f_{mn}(x_0), z\| = \|f(x_0), z\| \text{ and } \mathscr{I}_2 - \lim_{m,n \to \infty} \|f_{mn}(x_0), z\| = \|g(x_0), z\|,$$

where $f(x_0) \neq g(x_0)$ for a $x_0 \in X$ each nonzero $z \in Y$. Since $f(x_0) \neq g(x_0)$. So we may suppose that $f(x_0) \geq g(x_0)$. Now, select $\varepsilon = \frac{f(x_0) - g(x_0)}{3}$, so that neighborhoods $(f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ and $(g(x_0) - \varepsilon, g(x_0) + \varepsilon)$ of points $f(x_0)$ and $g(x_0)$, respectively, are disjoints. Since for $x_0 \in X$ and each nonzero $z \in Y$

$$\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x_0), z|| = ||f(x_0), z|| \text{ and } \mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x_0), z|| = ||g(x_0), z||,$$

then for each nonzero $z \in Y$, we have

$$A(\varepsilon,z) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x_0) - f(x_0), z|| \ge \varepsilon\} \in \mathscr{I}_2$$

and

$$B(\varepsilon,z) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x_0) - g(x_0), z|| \ge \varepsilon\} \in \mathscr{I}_2.$$

This implies that the sets

$$A^{c}(\varepsilon,z) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x_0) - f(x_0), z|| < \varepsilon\}$$

and

$$B^{c}(\varepsilon, z) = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x_0) - g(x_0), z|| < \varepsilon\}$$

belongs to $\mathscr{F}(\mathscr{I}_2)$ and $A^c(\varepsilon,z) \cap B^c(\varepsilon,z)$ is nonempty set in $\mathscr{F}(\mathscr{I}_2)$ for $x_0 \in X$ and each nonzero $z \in Y$. Since $A^c(\varepsilon,z) \cap B^c(\varepsilon,z) \neq \emptyset$, we obtain a contradiction to the fact that the neighborhoods $(f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ and $(g(x_0) - \varepsilon, g(x_0) + \varepsilon)$ of points $f(x_0)$ and $g(x_0)$ respectively are disjoints. Hence, it is clear that for $x_0 \in X$ and each nonzero $z \in Y$,

$$||f(x_0),z|| = ||g(x_0),z||$$

and consequently, we have ||f(x),z|| = ||g(x),z||, (i.e., f=g) for each $x \in X$ and each nonzero $z \in Y$.

Theorem 3.4. For each $x \in X$ and each nonzero $z \in Y$, If

$$\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z|| \text{ and } \mathscr{I}_2 - \lim_{m \to \infty} ||g_{mn}(x), z|| = ||g(x), z||,$$

then

(i)
$$\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x) + g_{mn}(x), z|| = ||f(x) + g(x), z||,$$

(ii)
$$\mathscr{I}_2 - \lim_{m \to \infty} ||cf_{mn}(x), z|| = ||cf(x), z||, c \in \mathbb{R},$$

(iii)
$$\mathscr{I}_2 - \lim_{m,n \to \infty} ||f_{mn}(x)g_{mn}(x), z|| = ||f(x)g(x), z||$$

Proof. (i) Let $\varepsilon > 0$ be given. Since

$$\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z|| \text{ and } \mathscr{I}_2 - \lim_{m \to \infty} ||g_{mn}(x), z|| = ||g(x), z||,$$

for each $x \in X$ and each nonzero $z \in Y$, then

$$A\left(\frac{\varepsilon}{2},z\right) = \left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x),z|| \ge \frac{\varepsilon}{2} \right\} \in \mathscr{I}_2$$

and

$$B\left(\frac{\varepsilon}{2},z\right) = \left\{(m,n) \in \mathbb{N} \times \mathbb{N} : \|g_{mn}(x) - g(x),z\| \ge \frac{\varepsilon}{2}\right\} \in \mathscr{I}_2$$

and by the definition of ideal we have

$$A\left(\frac{\varepsilon}{2},z\right)\cup B\left(\frac{\varepsilon}{2},z\right)\in\mathscr{I}_2.$$

Now, for each $x \in X$ and each nonzero $z \in Y$ we define the set

$$C(\varepsilon,z) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||(f_{mn}(x) + g_{mn}(x)) - (f(x) + g(x)), z|| \ge \varepsilon\}$$

and it is sufficient to prove that $C(\varepsilon, z) \subset A\left(\frac{\varepsilon}{2}, z\right) \cup B\left(\frac{\varepsilon}{2}, z\right)$. Let $(m, n) \in C(\varepsilon, z)$, then for each $x \in X$ and each nonzero $z \in Y$, we have

$$\varepsilon \leq \|(f_{mn}(x) + g_{mn}(x)) - (f(x) + g(x)), z\| \leq \|f_{mn}(x) - f(x), z\| + \|g_{mn}(x) - g(x), z\|.$$

As both of $\{\|f_{mn}(x) - f(x), z\|, \|g_{mn}(x) - g(x), z\|\}$ can not be (together) strictly less than $\frac{\varepsilon}{2}$ and therefore either

$$||f_{mn}(x) - f(x), z|| \ge \frac{\varepsilon}{2} \text{ or } ||g_{mn}(x) - g(x), z|| \ge \frac{\varepsilon}{2},$$

for each $x \in X$ and each nonzero $z \in Y$. This shows that $(m,n) \in A\left(\frac{\varepsilon}{2},z\right)$ or $(m,n) \in B\left(\frac{\varepsilon}{2},z\right)$ and so we have

$$(m,n) \in A\left(\frac{\varepsilon}{2},z\right) \cup B\left(\frac{\varepsilon}{2},z\right).$$

Hence, we have

$$C(\varepsilon,z) \subset A\left(\frac{\varepsilon}{2},z\right) \cup B\left(\frac{\varepsilon}{2},z\right)$$

and so

$$\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x) + g_{mn}(x), z|| = ||f(x) + g(x), z||.$$

(ii) Let $c \in \mathbb{R}$ and $\mathscr{I}_2 - \lim_{m,n \to \infty} ||f_{mn}(x),z|| = ||f(x),z||$, for each $x \in X$ and each nonzero $z \in Y$. If c = 0, there is nothing to prove. We assume that $c \neq 0$. Then,

$$\left\{ (m,n) \in \mathbb{N} \times \mathbb{N} : \|f_{mn}(x) - f(x), z\| \ge \frac{\varepsilon}{|c|} \right\} \in \mathscr{I}_2$$

for each $x \in X$ and each nonzero $z \in Y$ and by the definition we have

$$\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|cf_{mn}(x)-cf(x),z\|\geq\varepsilon\right\}=\left\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|f_{mn}(x)-f(x),z\|\geq\frac{\varepsilon}{|c|}\right\}.$$

Hence, the right side of above equality belongs to \mathcal{I}_2 and so

$$\mathscr{I}_2 - \lim_{m \to \infty} ||cf_{mn}(x), z|| = ||cf(x), z||,$$

for each $x \in X$ and each nonzero $z \in Y$.

(iii) Since $\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z||$ for each $x \in X$ and each nonzero $z \in Y$, then for $\varepsilon = 1 > 0$,

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: ||f_{mn}(x)-f(x),z||\geq 1\}\in\mathscr{I}_2,$$

and so

$$A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| < 1\} \in \mathscr{F}(\mathscr{I}_2).$$

Also, for any $(m,n) \in A$, $||f_{mn}(x),z|| < 1 + ||f(x),z||$ for each $x \in X$ and each nonzero $z \in Y$. Let $\varepsilon > 0$ be given. Choose $\delta > 0$ such that

$$0 < 2\delta < \frac{\varepsilon}{\|f(x), z\| + \|g(x), z\| + 1}$$

for each $x \in X$ and each nonzero $z \in Y$. It follows from the assumption that

$$B = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| < \delta\} \in \mathscr{F}(\mathscr{I}_2)$$

and

$$C = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||g_{mn}(x) - g(x), z|| < \delta\} \in \mathscr{F}(\mathscr{I}_2)$$

for each $x \in X$ and each nonzero $z \in Y$. Since $\mathscr{F}(\mathscr{I}_2)$ is a filter, therefore $A \cap B \cap C \in \mathscr{F}(\mathscr{I}_2)$. Then, for each $(m,n) \in A \cap B \cap C$ we have

$$||f_{mn}(x)g_{mn}(x) - f(x).g(x),z|| = ||f_{mn}(x)g_{mn}(x) - f_{mn}(x)g(x) + f_{mn}(x)g(x) - f(x)g(x),z||$$

$$\leq ||f_{mn}(x),z|| ||g_{mn}(x) - g(x),z|| + ||g(x),z|| ||f_{mn}(x) - f(x),z||$$

$$< (||f(x),z|| + 1)\delta + (||g(x),z||)\delta$$

$$= (||f(x),z|| + ||g(x),z|| + 1)\delta$$

$$< \varepsilon$$

and so, we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:\|f_{mn}(x).g_{mn}(x)-f(x).g(x),z\|\geq\varepsilon\}\in\mathscr{I}_2,$$

for each $x \in X$ and each nonzero $z \in Y$. This completes the proof of theorem.

Theorem 3.5. For each $x \in X$ and each nonzero $z \in Y$, if

(i) $\{f_{mn}\} \leq \{g_{mn}\} \leq \{h_{mn}\}$, for every $(m,n) \in K$, where $\mathbb{N} \times \mathbb{N} \supseteq K \in \mathscr{F}(\mathscr{I}_2)$ and

(ii)
$$\mathscr{I}_2 - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||k(x), z|| \text{ and } \mathscr{I}_2 - \lim_{m,n \to \infty} ||h_{mn}(x), z|| = ||k(x), z||,$$

then we have

$$\mathscr{I}_2 - \lim_{m,n \to \infty} ||g_{mn}(x), z|| = ||k(x), z||.$$

Proof. Let $\varepsilon > 0$ be given. By condition (ii) we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}:||f_{mn}(x)-k(x),z||\geq\varepsilon\}\in\mathscr{I}_2$$

and

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: ||h_{mn}(x)-k(x),z||\geq\varepsilon\}\in\mathscr{I}_2,$$

for each $x \in X$ and each nonzero $z \in Y$. This implies that the sets

$$P = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - k(x), z|| < \varepsilon\}$$

and

$$R = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||h_{mn}(x) - k(x), z|| < \varepsilon\}$$

belong to $\mathscr{F}(\mathscr{I}_2)$, for each $x \in X$ and each nonzero $z \in Y$. Let

$$Q = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||g_{mn}(x) - k(x), z|| < \varepsilon\},\$$

for each $x \in X$ and each nonzero $z \in Y$. It is clear that the set $P \cap R \cap K \subset Q$. Since $P \cap R \cap K \in \mathscr{F}(\mathscr{I}_2)$ and $P \cap R \cap K \subset Q$, then from the definition of filter, we have $Q \in \mathscr{F}(\mathscr{I}_2)$ and so

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: \|g_{mn}(x)-k(x),z\|\geq\varepsilon\}\in\mathscr{I}_2,$$

for each $x \in X$ and each nonzero $z \in Y$. Hence,

$$\mathscr{I}_2 - \lim_{m,n \to \infty} \|g_{mn}(x), z\| = \|k(x), z\|.$$

Theorem 3.6. For each $x \in X$ and each nonzero $z \in Y$, we let

$$\mathscr{I}_2 - \lim_{m,n \to \infty} \|f_{mn}(x),z\| = \|f(x),z\| \text{ and } \mathscr{I}_2 \lim_{m,n \to \infty} \|g_{mn}(x),z\| = \|g(x),z\|.$$

Then, for every $(m,n) \in K$ we have

- (i) If $f_{mn}(x) \ge 0$ then, $f(x) \ge 0$ and
- (ii) If $f_{mn}(x) \leq g_{mn}(x)$ then $f(x) \leq g(x)$, where $K \subseteq \mathbb{N} \times \mathbb{N}$ and $K \in \mathcal{F}(\mathcal{I}_2)$.

Proof. (i) Suppose that f(x) < 0. Select $\varepsilon = -\frac{f(x)}{2}$, for each $x \in X$. Since

$$\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z||,$$

so there exists the set M such that

$$M = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| < \varepsilon\} \in \mathscr{F}(\mathscr{I}_2),$$

for each $x \in X$ and each nonzero $z \in Y$. Since $M, K \in \mathscr{F}(\mathscr{I}_2)$, then $M \cap K$ is a nonempty set in $\mathscr{F}(\mathscr{I}_2)$. So we can find out point $(m_0, n_0) \in K$ such that

$$||f_{m_0n_0}(x)-f(x),z||<\varepsilon.$$

Since f(x) < 0 and $\varepsilon = -\frac{f(x)}{2}$ for each $x \in X$, then we have $f_{m_0n_0}(x) \le 0$. This is a contradiction to the fact that $f_{mn}(x) > 0$ for every $(m,n) \in K$. Hence, we have f(x) > 0, for each $x \in X$.

(ii) Suppose that f(x) > g(x). Select $\varepsilon = \frac{f(x) - g(x)}{3}$, for each $x \in X$. So that the neighborhoods $(f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ and $(g(x_0) - \varepsilon, g(x_0) + \varepsilon)$ of f(x) and g(x), respectively, are disjoints. Since for each $x \in X$ and each nonzero $z \in Y$,

$$\mathscr{I}_2 - \lim_{\substack{m \ n \to \infty}} \|f_{mn}(x), z\| = \|f(x), z\| \text{ and } \mathscr{I}_2 - \lim_{\substack{m \ n \to \infty}} \|g_{mn}(x), z\| = \|g(x), z\|$$

and $\mathscr{F}(\mathscr{I}_2)$ is a filter on $\mathbb{N} \times \mathbb{N}$, therefore we have

$$A = \{(m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| < \varepsilon\} \in \mathscr{F}(\mathscr{I}_2)$$

and

$$B = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||g_{mn}(x) - g(x), z|| < \varepsilon\} \in \mathscr{F}(\mathscr{I}_2).$$

This implies that $\emptyset \neq A \cap B \cap K \in \mathscr{F}(\mathscr{I}_2)$. There exists a point $(m_0, n_0) \in K$ such that

$$||f_{mn}(x) - f(x), z|| < \varepsilon$$
 and $||g_{mn}(x) - g(x), z|| < \varepsilon$.

Since f(x) > g(x) and $\varepsilon = \frac{f(x) - g(x)}{3}$ for each $x \in X$, then we have

$$f_{m_0n_0}(x) > g_{m_0n_0}(x).$$

This is a contradiction to the fact $f_{mn}(x) \le g_{mn}(x)$ for every $(m,n) \in K$. Thus, we have $f(x) \le g(x)$, for each $x \in X$.

Definition 3.7. The double sequence of functions $\{f_{mn}\}$ in 2-normed space $(X, \|., .\|)$ is said to be \mathscr{I}_2^* -convergent (pointwise sense) to f, if there exists a set $M \in \mathscr{F}(\mathscr{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathscr{I}_2$) such that for each $x \in X$, each nonzero $z \in Y$ and all $(m,n) \in M$

$$\lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||$$

and we write

$$\mathscr{I}_{2}^{*} - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z|| \text{ or } f_{mn} \xrightarrow{\|.,.\|_{Y}} \mathscr{I}_{2}^{*} f.$$

Theorem 3.8. For each $x \in X$ and nonzero $z \in Y$,

$$\mathscr{I}_{2}^{*} - \lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z|| \text{ implies } \mathscr{I}_{2} - \lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||.$$

Proof. Since for each $x \in X$ and each nonzero $z \in Y$,

$$\mathscr{I}_{2}^{*} - \lim_{n \to \infty} ||f_{mn}(x), z|| = ||f(x), z||,$$

so there exists a set $H \in \mathscr{I}_2$ such that for $M \in \mathscr{F}(\mathscr{I}_2)$ (i.e., $H = \mathbb{N} \times \mathbb{N} \setminus M \in \mathscr{I}_2$) we have

$$\lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z||, \ (m, n) \in M.$$

Let $\varepsilon > 0$. Then, for each $x \in X$ there exists a $k_0 = k_0(\varepsilon, x) \in \mathbb{N}$ such that for each nonzero $z \in Y$, $||f_{mn}(x) - f(x), z|| < \varepsilon$, for all $(m, n) \in M$ such that $m, n \ge k_0$. Then, clearly we have

$$A(\varepsilon, z) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon \}$$

$$\subset H \cup [M \cap ((\{1, 2, 3, ..., (k_0 - 1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1, 2, 3, ..., (k_0 - 1)\}))],$$

for each $x \in X$, for each nonzero $z \in Y$. Since $\mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be a strongly admissible ideal then

$$H \cup [M \cap ((\{1,2,3,...,(k_0-1)\} \times \mathbb{N}) \cup (\mathbb{N} \times \{1,2,3,...,(k_0-1)\}))] \in \mathscr{I}_2$$

and so, $A(\varepsilon, z) \in \mathscr{I}_2$. This implies that $\mathscr{I}_2 - \lim_{m \to \infty} ||f_{mn}(x), z|| = ||f(x), z||$.

Theorem 3.9. Let $\mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}}$ be an admissible ideal having the property (AP2). For each $x \in X$ and nonzero $z \in Y$,

$$\mathscr{I}_2 - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z|| \text{ implies } \mathscr{I}_2^* - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z||.$$

 $\textit{Proof.} \ \ \text{Let} \ \mathscr{I}_2 \subset 2^{\mathbb{N} \times \mathbb{N}} \ \text{be an admissible ideal having the property } (AP2) \ \text{and} \ \mathscr{I}_2 - \lim_{m,n \to \infty} \lVert f_{mn}(x),z \rVert = \lVert f(x),z \rVert, \ \text{for each} \ x \in X \ \text{and e$ nonzero $z \in Y$. Then, for any $\varepsilon > 0$

$$A(\varepsilon,z) = \{(m,n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge \varepsilon\} \in \mathscr{I}_2$$

for each $x \in X$ and each nonzero $z \in Y$. Now, put

$$A_1(\varepsilon, z) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : ||f_{mn}(x) - f(x), z|| \ge 1 \}$$

and

$$A_k(\boldsymbol{\varepsilon}, z) = \{ (m, n) \in \mathbb{N} \times \mathbb{N} : \frac{1}{k} \le ||f_{mn}(x) - f(x), z|| < \frac{1}{k-1} \}$$

for $k \geq 2$. $A_i \cap A_j = \emptyset$ for $i \neq j$ and $A_i \in \mathscr{I}_2$ for each $i \in \mathbb{N}$. By property (AP2) there exists a sequence $\{B_k\}_k \in \mathbb{N}$ of sets such that $A_j \triangle B_j$ is finite union of rows and columns in $\mathbb{N} \times \mathbb{N}$ for each $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathscr{I}_2$. We shall prove that, for each $x \in X$ and each nonzero $z \in Y$

$$\lim_{m \to \infty} ||f_{mn}(x) - f(x), z|| = ||f(x), z||, \ (m, n) \in M,$$

for $M = \mathbb{N} \times \mathbb{N} \setminus B \in \mathscr{F}(\mathscr{I}_2)$. Let $\delta > 0$ be given. Choose $k \in \mathbb{N}$ such that $\frac{1}{k} < \delta$. Then, we have

$$\{(m,n)\in\mathbb{N}\times\mathbb{N}: ||f_{mn}(x)-f(x),z||\geq\delta\}\subset\bigcup_{j=1}^kA_j.$$

Since $A_i \triangle B_j$, j = 1, 2, ..., k are included in finite union of rows and columns, there exis

$$\left(\bigcup_{j=1}^k B_j\right) \cap \{(m,n) \in \mathbb{N} \times \mathbb{N} : m \ge n_0 \land n \ge n_0\} = \left(\bigcup_{j=1}^k A_j\right) \cap \{(m,n) \in \mathbb{N} \times \mathbb{N} : m \ge m_0 \land n \ge n_0\}.$$

If $m, n \ge n_0$ and $(m, n) \notin B$ then

$$(m,n) \notin \bigcup_{j=1}^k B_j \text{ and so } (m,n) \notin \bigcup_{j=1}^k A_j.$$

Thus, we have $||f_{mn}(x) - f(x), z|| < \frac{1}{k} < \delta$ for each $x \in X$ and each nonzero $z \in Y$. This implies that

$$\lim_{m,n\to\infty} ||f_{mn}(x),z|| = ||f(x),z||, \ (m,n) \in M$$

and so we have

$$\mathscr{I}_{2}^{*} - \lim_{m,n \to \infty} ||f_{mn}(x), z|| = ||f(x), z||$$

for each $x \in X$ and each nonzero $z \in Y$.

References

- M. Arslan, E. Dündar, *J-Convergence and J-Cauchy Sequence of Functions In 2-Normed Spaces*, Konuralp J. Math., 6(1) (2018), 57–62.
 M. Arslan, E. Dündar, *On J-Convergence of sequences of functions in 2-normed spaces*, Southeast Asian Bull. Math., 42 (2018), 491–502.
 M. Arslan, E. Dündar, *Rough convergence in 2-normed spaces*, Bull. Math. Anal. Appl., 10(3) (2018), 1–9.

- [4] V. Baláz, J. Červeňanský, P. Kostyrko, T. Šalát, I-convergence and I-continuity of real functions, Acta Math., Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, 5 (2004), 43-50.

- the Fillosopher University, Nitra, **5** (2004), 43–30.

 [5] H. Çakalli, S. Ersan, New types of continuity in 2-normed spaces, Filomat, **30**(3) (2016), 525–532.

 [6] P. Das, P. Kostyrko, W. Wilczyński, P. Malik, I and I*-convergence of double sequences, Math. Slovaca, **58**(5) (2008), 605–620.

 [7] E. Dündar, B. Altay, I-convergence of double sequences of functions, Electron. J. Math. Anal. Appl., **3**(1) (2015), 111–121.

 [8] E. Dündar, B. Altay, I-convergence and I-cauchy of double sequences, Acta Math. Sci., **34B**(2) (2014), 343–353.

 [9] E. Dündar, B. Altay, I-convergence of double sequences of functions Filomat, **30**(5) (2016), 1273–1281.

 [10] E. Dündar, B. Altay, Multipliers for bounded I-convergence of double sequences, Math. Comput. Modelling, **55**(3-4) (2012), 1193–1198.

 [11] E. Dündar, On some results of I-convergence of double sequences of functions, Math. Anal. Sci. Appl. E-notes, **3**(1) (2015), 44–52.
- [12] E. Dündar. Ö. Talo, I-convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst., 10(3) (2013), 37–50.
- [13] E. Dündar, M. Arslan, S. Yegül, On *I-Uniform Convergence of Sequences of Functions In 2-Normed Spaces*, (Under Review).
 [14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.

- [15] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
 [16] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148.
 [17] S. Gähler, 2-normed spaces, Math. Nachr. 28 (1964), 1–43.
- [18] F. Gezer, S.Karakus, I and I* convergent function sequences, Math. Commun. 10 (2005), 71–80.
- [19] A. Gökhan, M. Güngör, M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum, 2(8) (2007), 365–374.
- [20] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27(3) (2001), 321–329.
- [21] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2(1) (2004), 107–113.
- [22] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math., 33 (2009), 257–264.

- [23] M. Gürdal, I.Açık On J-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11(2) (2008), 349-354.
- [24] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1) (2006), 85–91.
- [25] P. Kostyrko, T. Šalát, W. Wilczyński, *I-convergence*, Real Anal. Exchange, 26(2) (2000), 669-686.
- [26] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca, 61(6) (2011), 933-940.
- [27] N. Pancaroğlu, E. Dündar, F. Nuray, Wijsman I-Invariant Convergence of Sequences of Sets, Bull. Math. Anal. Appl., (Accepted in press).
- [28] N. Pancaroğlu, E. Dündar, U. Ulusu, Wijsman Lacunary I-Invariant Convergence of Sequences of Sets, (Under Review).
- [29] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Internat. J. Math. Math. Sci. 2011 (2011), 10 pages.
- A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007), 1477–1484.
- [31] E. Śavaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat, 30(3) (2016), 557–567.
- [32] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [33] Y. Sever, E. Dündar, Regularly ideal convergence and regularly ideal Cauchy double sequences in 2-normed spaces, Filomat, 28(5) (2015), 907–915.
- [34] Ş. Tortop, E. Dündar, Wijsman I₂ invariant convergence of Double Sequences of Sets, 9(4) (2018), 90–100.
- [35] U. Ulusu, E. Dündar, F. Nuray, Lacunary \$I_2\$-Invariant Convergence and Some Properties, Internat. J. Anal. Appl., 16(3) (2018), 317–327.
 [36] U. Ulusu, E. Dündar, \$I\$-Lacunary Statistical Convergence of Sequences of Sets, Filomat, 28(8) (2013), 1567–1574.

- [37] M. R. Türkmen and M. Cmar, Lambda Statistical Convergence in Fuzzy Normed Linear Spaces, J. Intel. Fuzzy Sys., 34(6) (2018), 4023–4030
 [38] M. R. Türkmen and E. Dündar, On Lacunary Statistical Convergence of Double Sequences and Some Properties in Fuzzy Normed Spaces, J. Intel. Fuzzy Sys., DOI: 10.3233/JIFS-18841 (Pre-press).
- S. Yegül, E. Dündar, On Statistical Convergence of Sequences of Functions In 2-Normed Spaces, J. Class. Anal., (2017); 10(1):49–57.
 S. Yegül, E. Dündar, Statistical Convergence of Double Sequences of Functions and Some Properties In 2-Normed Spaces, Facta Univ. Ser. Math. [40] Inform., **33**(5) (2018), 705–719.