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concepts and investigated relationships between them for double sequences of functions in
2-normed spaces.

1. Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R the set of all real numbers. The concept of convergence of a sequence
of real numbers has been extended to statistical convergence independently by Fast [14] and Schoenberg [32]. Gokhan et al. [19] introduced
the notion of pointwise and uniform statistical convergence of double sequences of real-valued functions.

The idea of .#-convergence was introduced by Kostyrko et al. [25] as a generalization of statistical convergence which is based on
the structure of the ideal .# of subset of N [14, 15]. Gezer and Karakus [18] investigated .#-pointwise and uniform convergence and
#*-pointwise and uniform convergence of function sequences and they examined the relation between them. Balaz et al. [4] investigated
#-convergence and .#-continuity of real functions. Das et al. [6] introduced the concept of .#-convergence of double sequences in a
metric space and studied some properties of this convergence. Diindar and Altay [7, 9] studied the concepts of pointwise and uniformly
#-convergence and ;" -convergence of double sequences of functions and investigated some properties about them. Furthermore, Diindar
[11] investigated some results of .#,-convergence of double sequences of functions. Also, a lot of development have been made about double
sequences of functions (see [8], [10]-[12], [18], [27], [28], [34]-[36]).

The concept of 2-normed spaces was initially introduced by Géhler [16, 17] in the 1960’s. Statistical convergence and statistical Cauchy
sequence of functions in 2-normed space were studied by Yegiil and Diindar [39]. Also, Yegiil and Diindar [40] introduced concepts
of pointwise and uniform convergence, statistical convergence and statistical Cauchy double sequences of functions in 2-normed space.
Sarabadan and Talebi [29] presented various kinds of statistical convergence and . -convergence for sequences of functions with values in
2-normed spaces and also defined the notion of .# -equistatistically convergence and study .7 -equistatistically convergence of sequences
of functions. Recently, Arslan and Diindar [1, 2] inroduced .#-convergence and .#-Cauchy sequences of functions in 2-normed spaces.
Futhermore, a lot of development have been made in this area (see [3, 5, 13, 26, 30, 33]).

2. Definitions and Notations

Now, we recall the concept of density, statistical convergence, 2-normed space and some fundamental definitions and notations (See
[1,2,4,6,16,17, 18, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 37, 38, 40]).

Let X be a real vector space of dimension d, where 2 < d < eo. A 2-norm on X is a function ||-,-|| : X x X — R which satisfies the following
Statements:

(i) []x,y|l = 0if and only if x and y are linearly dependent.
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@) flx,yll = [y x|
(i) [ox,y|| = |a|llx, ], @ € R.
(iv) [lxy+zl < [lx )+ [x,z].

The pair (X, ]||-,-||) is then called a 2-normed space. As an example of a 2-normed space we may take X = R? being equipped with the
2-norm ||x,y]|| := the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

[x,9] = |x1y2 —xoy1 ] x = (x1,%2),y = (v1,)2) € R%.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 < d < oo,

Throughout the paper, we X and Y be two 2-normed spaces, {f, },cny and {g, }nen be two sequences of functions and f, g be two functions
fromX toY.

The sequence of functions { f;, },en is said to be convergent to f if f;,(x) ‘ﬁ; f(x) for each x € X. We write f, lﬁ{ f. This can be expressed
by the formula

(VyeY)(Vx € X)(Ve > 0)(Ing € N)(Vn > ng)|| fu(x) — F(x),y]] < €.

A family of sets .# C 2N is called an ideal if and only if

(i)0e .7, (ii)ForeachA,B¢c . wehave AUB € .#, (iii) ForeachA € .# and each BC A we have B€ ..

An ideal is called nontrivial if N ¢ .# and nontrivial ideal is called admissible if {n} € .# for eachn € N.

A family of sets .F C 2N is called a filter if and only if

()0 ¢ #, (ii) ForeachA,B € .% wehave ANB € .%, (iii) For each A € % and each B D A we have B € .%.

# is nontrivial ideal in N if and only if #(.#)={M CN:(3A € #)(M =N\A)} is afilterin N.

A nontrivial ideal .#, of N x N is called strongly admissible ideal if {i} x N and N x {i} belong to .#, for each i € N.
Throughout the paper we take .#, as a strongly admissible ideal in N x N.

It is evident that a strongly admissible ideal is admissible also.

I ={ACNxN: (Im(A) € N)(i,j > m(A) = (i, j) ¢ A)}. Then .#} is a strongly admissible ideal and clearly an ideal .#, is strongly
admissible if and only if .7y C 5.

A sequence {f,} of functions is said to be .#-convergent (pointwise) to f on D C R if and only if for every € > 0 and each x € D,

{n:1falx) = f(X)| = e} € 7.

In this case, we will write f, Z) fonD.
The sequence of functions {f, } is said to be .#-pointwise convergent to f, if for every € > 0 and each nonzero z € Y

Ale.d) = {neN: ()~ f().2l| > e} € 7,

or % — lgn lfin(x) = f(x),z]ly =0, for each x € X. In this case, we write f;, ‘M;j f. This can be expressed by the formula
n—oo

(Vz € Y)(Ve > 0)(IM € &) (Vng € N\M)(¥x € X)(Vn > no) || fu(x) — F(x),2]| < €.

The sequence of functions { f,} is said to be (pointwise) .# *-convergent to f, if there exists a set M € (), (i.e, N\M € #), M = {m; <
my < -+ <my <---},such that for each x € X and each nonzero z € Y

Jim | fu, (), 2l| = [1£(x), 2]
—yo0
and we write

S = lim || £ (x), 2] = [ f(x),2]] or f 2T

An admissible ideal %, C 2N*N satisfies the property (AP2) if for every countable family of mutually disjoint sets {E|, E5, ...} belonging to
¥, there exists a countable family of sets {F|, F3,...} such that E JAF; € 7, 0 je., E;AF; is included in the finite union of rows and columns
in Nx N foreach j € Nand F =J5_, Fj € % (hence F; € %, for each j € N).

Throughout the paper, we let .% C 2N*N be a strongly admissible ideal, X and Y be two 2-normed spaces, { fyun } (m;n)ENXNs 18mn } (mn)eNxN
and {hm,,}(m’,%NX  be three double sequences of functions, f, g and k be three functions from X to Y.

A double sequence { i, } is said to be pointwise convergent to f if, for each point x € X and for each € > 0, there exists a positive integer

ko = ko(x, €) such that for all m,n > ko implies || fin (x) — f(x),2]| < €, for every z € Y. In this case, we write fy, lﬁf f.

A double sequence { f,, } is said to be (pointwise) statistical convergent to f, if for every € > 0, lim %’{ (myn),m <in<j:|fmm(x)—
i j—eo

f(x),z|| > €}| =0, for each (fixed) x € X and each nonzero z € Y. It means that for each (fixed) x € X and each nonzero z € Y, || fyun (x) —

f(x),z| <&, a.a. (m,n). In this case, we write

st= im_[Lfon(6) =2l = £zl or fum " 1.

The double sequences of functions { fi, } is said to be statistically Cauchy sequence, if for every € > 0 and each nonzero z € Y, there exist a
number k = k(€,z) , t =1(&,z) such that dp ({(m,n) € Nx N: || frun(x) — fir (x),2|| > €}) = 0, for each (fixed) x € X, i.e., for each nonzero
2€Y, [fam(x) = fu(x),2ll < &, a.a. (m;n).
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3. Main Results

We introduced the concepts of .#-convergence and .5 -convergence of double sequences of functions in 2-normed space. Also, were studied
some properties about these concepts and investigated relationships between them for double sequences of functions in 2-normed spaces.

Definition 3.1. {f,u.} is said to be #5-convergent (pointwise sense) to f, if for every € > 0 and each nonzero z € Y
A(g,2) = {(m,n) € NX N : || fum(x) — f(x),z]| > €} € S,

for each x € X. This can be expressed by the formula
(VzeY) (VxeX) (Ve >0) (3H € £) (V(m,n) € H) || fnm(x) — f(x),2]| < €.

In this case, we write

jz _m.llilri)lm”fm"(x)’zu = ”f(x)vZ”v or fmn ‘wﬂ f

Theorem 3.2. For each x € X and each nonzero z €Y,

tim (0,21 = 1700) 2] implies 72— lim_ | fn ()2l = 11/

m,n

Proof. Let € > 0 be given. Since

tim_ || fonn (), 2]l = (1 (), 2l

m)

for each x € X and each nonzero z € Y, therefore, there exists a positive integer kg = ko(€,x) such that || i, (x) — f(x),z]| < €, whenever
m,n > kg. This implies that for each nonzero z € Y,

A(g,2) = {(m,n) € NXN: || finn (x) = f(x),2]| < &}
C(NX{1,2,..kg— 1) U{1,2,...kg— 1} x N)).

Since .%, be an admissible ideal, therefore
(Nx{1,2,.,ko—1})U({1,2,..,ko — 1} xN)) € .
Hence, it is clear that A(€,z) € .#, and consequently, for each nonzero z € Y we have

Sy — Mm || foun (x),2l| = (1 (x), 2]

Theorem 3.3. If .#,-limit of any double sequence of functions { fun } exists, then it is unique.
Proof. Assume that

Sy i fon(0),2] = 150}, 2l and 73 = lim_fun(x0),2] = l1gx0). 1,

where f(xp) # g(xg) for a xy € X each nonzero z € Y. Since f(xp) # g(xp). So we may suppose that f(xp) > g(xo). Now, select

e= w, so that neighborhoods (f(xg) — €, f(x0) + €) and (g(xo) — €,8(xp) + €) of points f(xg) and g(xp), respectively, are disjoints.
Since for xp € X and each nonzeroz €Y

Ty lim_ | fan(0), 2l = [1£(50), 2l and 2= lim_fn ()21 = llgx0), 1
then for each nonzero z € Y, we have
A(g,2) = {(m,n) ENXN: || fn(x0) = f(x0),2] = €} € A
and
B(e,2) = {(m,n) € NxN: || fun(x0) — 8(x0),2l| > €} € A
This implies that the sets
A%(&,2) = {(m,n) € NXN: | finn(x0) = f(x0),2]| < &}
and
B(€,2) = {(m,n) € NXN: | fn(x0) — g(x0), 2| < €}

belongs to .% (%) and A°(g,z) N B°(€,z) is nonempty set in .7 (.%) for xy € X and each nonzero z € Y. Since A°(g,z) NB“(g,z) # 0,
we obtain a contradiction to the fact that the neighborhoods (f(xg) — €, f(xp) +€) and (g(xp) — €,8(x0) + €) of points f(xp) and g(xo)
respectively are disjoints. Hence, it is clear that for xg € X and each nonzero z € Y,

I1f(x0), 2]l = llg(x0), <]

and consequently, we have || f(x),z]| = ||g(x),z]|, (i.e., f = g) for each x € X and each nonzero z € Y. O
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Theorem 3.4. For each x € X and each nonzero z €Y, If

Sy i fon).2l) = 10,2l and 73 = Tim_lgmn(5),2] = 180,21

then
(i) 52— Tim_ || fom(x) + &) 21 = 170 + 800,21,
(i) 52— Tim_[cfom(x),] = lef(2).2

(iii) S5 — Hm_ || foun (x)gmn (x), 2l = || f(x)g(x), 2]|-
m,n—oo
Proof. (i) Let € > 0 be given. Since
o= lim_ || fun(x),z]| = || f(x),2] and 25 — Tim_|[gma(x),z]| = [|g(x),z],
m,n—o0 m,n—oo
for each x € X and each nonzero z € Y, then

A <§Z> = {mn) € NXN: | fyn () = (), 2] = g} cs

and
£ €
B(5:2) = {mm) e NxN: lgmn(x) ~8(x),2| 2 5 } € 7

and by the definition of ideal we have

A <§,z) UB(;,Z) € .

Now, for each x € X and each nonzero z € Y we define the set

C(&,2) = {(m,n) € Nx N [[(fiun(x) + gmn(x)) — (f(x) +8(x)),z[| > €}

and it is sufficient to prove that C(g,z) C A (§,z) UB(5,z) . Let (m,n) € C(€,z), then for each x € X and each nonzero z € Y, we have

& <[ (finn () + &mn (x)) = (f (%) + 8(x)) 2l| < [ fomn () = 1 (), 2l[ + [ gmn () — 8(x), 2.

As both of {{| fyun(x) — f(x),z], |gmn(x) — g(x),z||} can not be (together) strictly less than § and therefore either

() = £ (31,21 2 5 o llgmn () = 8().2] =

"\ I\J\m

for each x € X and each nonzero z € Y. This shows that (m

(m,n) €A (;,z> UB <§,z> .

Hence, we have

C(e,z) CA (g,z> uB(%,z)

,n) €A (5,2) or (m,n) € B(%,z) and so we have

and so
Ty = i fon () + gn(5),2] = 1 5) + (). 2]

(i) LetceRand & — Um || finn(x),z]| = || f(x),z||, for each x € X and each nonzero z € Y. If ¢ = 0, there is nothing to prove. We assume
m,n—soo
that ¢ # 0. Then,

{(m,n)ENXN:Hfmn(x) ()ZH,H}Efz

for each x € X and each nonzero z € Y and by the definition we have

€
{(m,n) €N XN [cfun(x) —cf(x).2]| > €} = {<m,n> ENXN: [ fum (@) — f(),] > H}'
Hence, the right side of above equality belongs to .%, and so
Sy 1im_lefun(x).2] = llef (0)2],

for each x € X and each nonzeroz €Y.
(iii) Since ¥ — lirg | fmn (%), 2] = || f (x),z]| for each x € X and each nonzero z € Y, then fore =1 > 0,
m,n—oo

{(m,n) € NXN: || fon(x) = f(x),2]| 2 1} € A,
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and so
A={(m,n) € NXN: || fyun(x) = f(x),2]| <1} € F ().

Also, for any (m,n) € A, || fin (x),z|| < 1+ f(x),z|| for each x € X and each nonzero z € Y. Let € > 0 be given. Choose & > 0 such that
€
17 ()2l + [l (x)2ll + 1

for each x € X and each nonzero z € Y. It follows from the assumption that

B ={(m,n) € NxN: || fun(x) - f(x),2l| < 8} € F(5)

0<20<

and
C={(mn) ENxN:|gm(x)—gx),z]| < 6} € F(H)
for each x € X and each nonzero z € Y. Since % (.%;) is a filter, therefore ANBNC € Z(.%,). Then, for each (m,n) € ANBNC we have

(| fomn (X)@mn (x) = f (x)-g(x), 2| = [l forn (X) 8mn () = fonn ()& (x) + finn (x) 8 (x) — f (x)g (%), 2|
< | fonn (%), 2l Ml 8mn () — 8(x), zll + (1 (x), 2l fonn () — S (x), 2l
< ()2l + 1)+ (llg(x),zl)d
= (If (), zll +llg(x),zll +1)8
<e

= =

=

and so, we have
{(m,n) € NXN: || foun (x)-gmn (x) — f(x)-8(x), 2] > €} € A,
for each x € X and each nonzero z € Y. This completes the proof of theorem. O

Theorem 3.5. For each x € X and each nonzero 7 €Y, if
(D) {fm} <{gmn} < {hmn}, for every (m,n) € K, where NxN D K € F (%)
and
(i) 72 = Jim_[|fn (021 = [KC3), 2] and 25— im0, 2] = 1G22
then we have
F= lim_lgmn(@),2] = [K(2) 2]
Proof. Let € > 0 be given. By condition (ii) we have
{(m,m) € NXN: || fynx) —k(x).2]| > £} € 75
and
{(m,n) € NXN: ||hyy(x) —k(x),z]| > €} € F,
for each x € X and each nonzero z € Y. This implies that the sets
P={(m,n) € NxN: | fum(x) —k(x),z|| < €}
and
R={(m,n) e NXN: ||hyn(x) —k(x),z|]| < €}
belong to .7 (.#;), for each x € X and each nonzero z € Y. Let
0 = {(m,m) € Nx N: lgmn (¥) —k(x),2]| < £},

for each x € X and each nonzero z € Y. It is clear that the set PANRNK C Q. Since PNRNK € .F () and PNRNK C Q, then from the
definition of filter, we have Q € .#(.%,) and so

{(m,n) e NXN: || gmn(x) —k(x),z]| > €} € H,
for each x € X and each nonzero z € Y. Hence,
S — lim_|[gmn(x),z]| = [[k(x), 2.
m,n—oo
Theorem 3.6. For each x € X and each nonzero z € Y, we let
Sy — lim_ | fin(x),zl| = [ f(x),2] and 22 1im_|[gmn(x),2]| = ||lg(x),z]|-
m,n—o0 m.,n~>oo

Then, for every (m,n) € K we have
(i) If fnn(x) > O then, f(x) >0 and
(i) If finn(x) < gmn(x) then f(x) < g(x), where K CN x N and K € 7 (9).
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Proof. (i) Suppose that f(x) < 0. Select € = — @, for each x € X. Since
S Jim_ (0,21 = 700,21,

so there exists the set M such that
M ={(m,n) € NxXN: || fumn(x) - f(x),2l| <€} € F (),

for each x € X and each nonzero z € Y. Since M, K € .F(.%,), then MNK is a nonempty set in .% (.#,). So we can find out point (ng,ng) € K
such that

[l fingno (x) — £ (x),2]| < €.

Since f(x) <0 and € = 7@ for each x € X, then we have fy,,,(x) < 0. This is a contradiction to the fact that f,,(x) > 0 for every
(m,n) € K. Hence, we have f(x) > 0, for each x € X.

(i) Suppose that f(x) > g(x). Select € = M, for each x € X. So that the neighborhoods (f(xg) — €, f(xg) +€) and (g(xp) — €, g(x0) +€)
of f(x) and g(x), respectively, are disjoints. Since for each x € X and each nonzeroz € Y,

S Jim (20,20 = 100, ll and 75— Tim_ g (9,21 = 10,2
and .7 (%) is a filter on N x N, therefore we have
A ={(m,n) e NXN: || fun(x) = f(x),2l| <€} € F(H)
and
B={(m,n) e NxN: [gmn(x) —g(x),2l| < €} € F(5).
This implies that @ 2 ANBNK € F(.#,). There exists a point (mg,ng) € K such that
[l fonn () = £ (x), 2| < & and [|gmn(x) — g(x),2]| < €.
Since f(x) > g(x) and € = M for each x € X, then we have
Tonono (X) > 8mono ()-
This is a contradiction to the fact f;,(x) < gmn(x) for every (m,n) € K. Thus, we have f(x) < g(x), for each x € X. O

Definition 3.7. The double sequence of functions { fiun } in 2-normed space (X ,||.,.||) is said to be .75 -convergent (pointwise sense) to f, if
there exists a set M € F (%) (i.e., H=NxN\M € %) such that for each x € X, each nonzero z € Y and all (m,n) € M

a1 fonn (), 2l| = [1f () 2]

and we write

* . [l
S5 7m71,1111)1w”ﬁnn(x)72” =[fx).z2ll or fium *{J; g

Theorem 3.8. For each x € X and nonzeroz €Y,

Fy = Mm | fon (), 2| = [|f (%), 2] implies S5 = Tim_ || finn (x),2]] = [[£(x), 2]

m,n—roo

Proof. Since for each x € X and each nonzeroz €Y,
Hy = lim | fon(x), 2l = [1f (), 2],
m,n—co
so there exists a set H € .% such that for M € .7 (%) (i.e.,H=NxN\M € .%,) we have

tim_|Lfon (0,20 = 10 () € .

m

Let € > 0. Then, for each x € X there exists a kg = ko(€,x) € N such that for each nonzero z € Y, || fun (x) — f(x),z|| < €, for all (m,n) € M
such that m,n > kg. Then, clearly we have

A(e,z) = {(m,n) € NX N[ frn(x) = f(x),z]| = €}
CHUMN(({1,2,3,.., (ko — 1)} x N)U(Nx {1,2,3,..., (kg — 1)}))],

for each x € X, for each nonzero z € Y. Since % C 2N*Nbe a strongly admissible ideal then
HUMN(({1,2,3,....,(kg— 1)} x N)U (N x {1,2,3,..., (kg — 1)}))] € £

and so, A(g,z) € #,. This implies that %, —mlrilrgm | finn (), 2] = || f(x),2]|- O
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Theorem 3.9. Let % C 2N*N be an admissible ideal having the property (AP2). For each x € X and nonzero z €Y,
S = B fon (0),2l| = 1 (o), 2ll implies S5 = lim || fomn (x), 2]l = [1 (), 2]l

Proof. Let %5 C 2NN be an admissible ideal having the property (AP2) and %5 — lirg [l fimn (x), 2]l = || (), 2|, for each x € X and each
m,n—oo

nonzero z € Y. Then, for any € > 0
A(g,2) ={(m,n) e NXN: || fun(x) = f(x),2]| = €} € A
for each x € X and each nonzero z € Y. Now, put

Ai(g,z) ={(m,n) e NXN: || frn(x) — f(x),2]| > 1}

and
1
A(e.2) = {(mm) €N XN 1 < | fun() — £(2), 2] < 2}

fork>2.A;NA; =0fori# jand A; € .%, for each i € N. By property (AP2) there exists a sequence {By }; € N of sets such that A;AB; is
finite union of rows and columns in N x N for each j € Nand B = U‘;-“:IBj € 9.
We shall prove that, for each x € X and each nonzero z € Y

im_ || fonn () = f(x), 2l = 1 £ (x) 2]l (m,n) € M,

m,n—soo

for M =N xN\B e .Z (). Let § > 0 be given. Choose k € N such that % < 8. Then, we have

k
{(m,n) eNxN: Hfmn(x) _f(x)vzH 2 5} c UAj'
j=1

Since A;ABj, j=1,2,...,k are included in finite union of rows and columns, there exis
k k
UBj | n{(mn) eNxN:m>ngAn>no}= | |JA; | n{(m,n) e NXN:m>mgAn>ng}.
Jj=1 Jj=1

If m,n > ng and (m,n) ¢ B then

k k
(m,n) ¢ UBJ and so (m,n) ¢ UAJ"

J=1 j=1
Thus, we have || fyun (x) — f(x),z|| < + < & for each x € X and each nonzero z € Y. This implies that

lim_ || fnn (%), 2l| = [1f (), 2], (m,n) € M

m,n—oo

and so we have

.]2* — léfgwnfmn(x%z” = Hf(x)7Z||

m

for each x € X and each nonzeroz €Y. O
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