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certain power are arithmetically-harmonically convex are obtained. Some applications to
special means of real numbers are also given.

1. Introduction

Definition 1.1. A function f : 1 CR — R is said to be convex if the inequality

flax+ (1 =0)y) <tf(x)+(1=1)f ()

valids for all x,y € I and t € [0, 1]. If this inequality reverses, then f is said to be concave on interval I # &. This definition is well known in
the literature.

Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences.
Theorem 1.2. Let f: 1 CR — R be a convex function defined on the interval I of real numbers and a,b € I with a < b. The inequality

holds.

The inequality (1.1) is known in the literature as Hermite-Hadamard integral inequality for convex functions. Moreover, it is known that
some of the classical inequalities for means can be derived from (1.1) for appropriate particular selections of the function f. See [3, 5, 8, 9],
for the generalizations, improvements and extensions of the Hermite-Hadamard integral inequality.

Theorem 1.3. Suppose that f : [a,b] — R is a convex function on |a,b]. Then, the inequalities are obtained:
a+b 1 3a+b a+3b
< —

b
% f<a;b) f(a)+f(b)}gf(a)+f(b). (12)
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The third inequality in (1.2) is known in the literature as Bullen’s inequality.

Definition 1.4 ([2, 10]). A function f:1 C R — (0,00) is said to be arithmetic-harmonically (AH) convex function if for all x,y € I and
t € [0,1] the inequality

ffB)

Flxt(U=03) < T =07

(1.3)

holds. If the inequality (1.2) is reversed then the function f(x) is said to be arithmetic-harmonically (AH) concave function.

Readers can find more informations on arithmetic-harmonically convex functions in [1, 2, 4, 6, 7, 10] and references therein.
In order to establish some integral inequalities of Hermite-Hadamard type for arithmetic-harmonically convex functions, the following
lemma [4] will be used.

Lemma 1.5 ([4]). Let f:1 C R — R be a twice differentiable mapping on I° such that f" € L{a,b], where a,b € I° with a < b, then the
following identity holds:

W‘
~——

B n (b—a)2 1 _ 1" ;(H'”
Jn(f7a7b)—k§,1 3 /0 tA=nf (l—l)(

3\»‘

b) (1.4)

foralln € N, where

I (fra,b) = i"zi{ ( W)Jrf(wrk(bn_a))}’bia/abf(X)dx

In this study, using Holder integral inequality and the identity (1.4) in order to provide inequality for functions whose first derivatives in
absolute value at certain power are arithmetic-harmonically-convex functions.

Throughout this paper, for shortness, the following notations will be used for special means of two nonnegative numbers a,b with b > a:
1. The arithmetic mean

b
A:=Ala,b) = % a,b>0,

2. The geometric mean
G:=G(a,b) =Vab, a,b>0

3. The harmonic mean

2ab
H:=H(a,b) = a%b, a,b >0,

4. The logarithmic mean

b—a
L::L(a,b):{ lnb;lnav Zii S a,b>0

5. The p-logarithmic mean

1
bp+l_ p+1 P
Lp:=Lpy(a,b)= ((erl)(Zfa)) » a#bpeR\{-1,0} ; a,b>0.

a, a=>b

These means are often used in numerical approximation and in other areas. However, the following simple relationships are known in the
literature:

H<GLLLILA.
It is also known that L,, is monotonically increasing over p € R, denoting Ly =/ and L_; = L. In addition,

1 —k k—1
A =Ani(a,b) = =k, —bneNk=12,..,n,
: n n

and B (a, ) is the classical Beta function which may be defined by

B(aﬁ):/olto‘*l(l—t)ﬁfldt, o, > 0.
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2. Main results

Theorem 2.1. Let f: 1 C (0,00) — (0,0) be a twice differentiable mapping on I°, n € N and a,b € I° with a < b such that f" € L, |a,b]
and | f"| are an arithmetic-harmonically convex function on the interval |a,b], then the following inequalities hold:

DI (Anicr1)| = | (Anc)| # . then

Lo(b—a)*  |f" (A |7 (Angir)]

[a (fra,b)] < .1
5 | 1 )
<A A L1 A ) = 17" A [ A |27 (17 (Ani) |1 (Amges) )]
ii)lf‘fﬂ An,k+1 !7‘f” An,k !ZO’ then
n (f;a,D)| Z 12”3 (Angs1)]- 2.2)
Proof. i) Let | f” (Apxs1)| — | /" (Anx)| # 0. From the Lemma 1.5 and the properties of modulus, the inequality can be written:
RS (k—1)(b—a) Kb-a)\] 1
()| = kgz— O e e R
Z - 'l /!
~ | o [ -0 whnscr (-0
u b
Z 2l V e (1 =10)| | /" (tAni+(1— nz+l)|dt:| (2.3)
Since | "] is an arithmetic-harmonically convex function on the interval [a, b], the inequality
f” (Ank)Hf” (Ank+1)|
"(tAn i+ (1 =1)A, < | ’ .
7 Ansct (1= A 7 (Angs) [+ (=) | f7 (Ank) |
holds. By using the above inequality in (2.3), the inequality
d a)® D" (Ani) || 7" (Anesr) |
n 9 24
‘J fab ; n /0 t‘f” nk+1 }+ lft ’f”(An,)’dt ( )
is obtained. By changing variable as u =1 | f" (A, x+1) |+ (1 —1) | f” (A, x)| in the last integral, it is easily seen that
/l t(1—1) g 1 /\f”<An_k+1)| (=" (Ani) ) (| (Anges1) | —u)
11 11 1= 3 /. du
0 ¢ (Anget) [+ A= (Aa) [ (|7 Aseir)| = |7 (An) ) /177 An) u
2.5)
u? 1 1 1 1 7" (Anier )|
[ ) [+ 1 @) ) = |7 (An) [ (Anps) | ]
o 7 (A _er(a 3
(’f ( ”7k+l)| |f ( ”vk)|) £ (Aui)|
_ ! {_ " (Anaee) [ =1 (Ani)
(1" (Angee)| = |7 (An))? 2
+ (17" (Ane) |+ 7" (Ani)[) (1" (Aniesr) [ = [ 7 (Ani) )
— " (An )| |F" (Mg | (In|f" (Apgsr) | = In[f" (Ani)])]
A" An) 1" Ansei) ) = 1" Ani) [ 1" Anser) [L (" (Ani) |1 F" (Aniesr)])

|f n,k+l)|_|f//( nk )|)2
Substituting (2.5) in (2.4), the inequality

<yn (=) | A)llf" Anksr)|
UnlF- B < Dt S5 (e L s P

A" A [ 1" Ane) ) = 1 Ani) [ (Anges ) |7 (11

is obtained which is the desired result.
i) Let | /" (Apys1) | — | (A,,,k){ = 0. Then, substituting | /" (Anx+1)| = | /" (Anx)| in the inequality (2.4), the following holds:

A (Anger) D]

n

‘Jn f7ab Z

12” | "(Apgs1)]-

This completes the proof of theorem. O
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Corollary 2.2. By choosing n =1 in Theorem 2.1, the following inequalities are obtained:
DIF|S" (A1 x| = |f7 (A1 x)| # 0 for k=1, then

fl@+fk) 1 /”f(x)dx _ o= [ @Il G) [AU" @ " B)) = L @l GIL (" (@)1 1 (B)])]
2 b=ala -2 (1" ®)] = 1" (@)])?

i) IF|f" (A1) | = | £ (A1x) | =0 for k=1, then

)

" (®)]-

fl@+fm) 1 P (b—a)*
2 *b—a/af(x)dxS 12

Corollary 2.3. By choosing n =2 in Theorem 2.1, the following Bullen type inequalities are obtained:

DIF|f" (Aogr)| = | f" (Aak)| # 0 for k=1,2, then
(b— a)2 @l | (442)]

L0 (20)] L (ﬂt%ﬂ—;wmzpoﬂ@L

el (43| (e (437)))]
Ry " (atl " (b s fa "
oy U G
()il (e (452 )
i) If| " (Ag 1) | = [ 17 (Ax) | = O for k= 1,2, then
O e

Theorem 2.4. Let f : 1 C (0,00) — (0,0) be a twice differentiable mapping on I°, n € N and a,b € I° with a < b such that f" € Ly |a, b]
and | f"|? are an arithmetic-harmonically convex function on the interval [a,b)] for some fixed q > 1, then the following inequalities hold:

iIf |f” (An,kJrl) |q - }f” (An,k) |q 7& 0, then

n ,, 2 1
‘ (f,ab < Z [ (P+1 p+1 G (|f ( n.k | ‘f nk-H)D7 (2.6)

L" (|f// nk |q7|f n,k+l)| )

i) If | 1" (Anges1) [T = | 7" (Ank) |q =0, then

n

Jn(fa,b) Z

[B P L+ 117 [ (Angs)] - (eX)

where B (e, ) is the classical Beta function and % + é =1.

Proof. 1) Let | f (Anﬁk+1 | | f Ank | 2 0. From the Lemma 1.5 and the properties of modulus, the following inequality can be writtten

u b
|7 (f,a,b)| Z @) V (=) f" (tAng+ (1= 1) Apgir)| dt | - 2.8)

Since | f”|? is an arithmetic-harmonically convex function on the interval [a, ], the inequality

" (An) | " (Anges) |

" (1A 1-DA q 2.9
|f" (tApp+ (1= 1) Apsr)|? < T (Asert) {q A0/ () [ 29)
holds. By applying the well known Hélder integral inequality and the inequality (2.9) on (2.8), the inequality
C ! ’l’ ! 1/ q %
nann< 3O ([Tea-ora) ([ e 0-0a) )
n N2 1 1 1 1A AN a4 i
<505 ([ ra-ora) ([ e o @10
k=1 2n 0 0 t|f (An,k+1)| +(1 _t) |f (An,k)|
_ Z": (b—a)® [B(p+1, p+1)] ? G (1" (An) |- 1" (Anasr) ) @.11)

k=1 27!3 Lq (|fﬂ( nk |q7|f (A”,k+1)|q) 7
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is obtained, where

1
/’p(l—f)”df:B(erl,erl)
0

1 A7)

1 1
de=L""(|f"
-/0 7 (Anges) |7+ (L= | £ (Ang) |7 t (7

i) Let | £ (Ang+1)|" = | £ (Ang)|” = 0. Then, substituting | f” (A, x11)|? = | £ (Anx)|? in the inequality (2.10), the following inequality
is found:

2

B(p+1,p+1)]7

n (f:a,b)] Z I (Angsr)]-

This completes the proof of theorem. O

Corollary 2.5. By choosing n =1 in Theorem 2.4, the following inequalities are obtained:
DI (Avgsr)| = |f" (Ark)| # 0 for k=1, then

<

fl@)+f) 1 (b—a [B(p-+1.p+ 1)) G (1" (@).1f" ()
- f(x)dx 1
' il ? La (1" @I, 1" (B)])

i) If | f" (Args1)| = [f" (A1x)| =0 for k=1, then

a b —a)? 1
'f( );f(b)_bia/a f(x)dx S%[B(p_,_lm_’_mp

I ()]

Corollary 2.6. By choosing n =2 in Theorem 2.4, the following Bullen type inequalities are obtained:
DIF|f" (Aogsn)| = | £ (A2p)| # 0 for k= 1,2, then

'%{f(a);f(buf(a;b)} ; s ( ) B(p+1.p+ 17
@ (@ <%>\> ( <%> " >>]
LE <|f//( )4, f”(%) q) (f”(%) b )‘) 7

i) If | 1" (Aags1)| = | £ (Aog) | = O for k = 1,2, then

'% {f(a);rf( )_i_f(a—i-b)} _bia,/ahf(x)dx L (a—;b)‘+|f,, |]

Theorem 2.7. Let f:1 C (0,00) — (0,0) be a twice differentiable mapping on 1°, n € N and a,b € I° with a < b such that f" € L, [a, b
and | f"|? are an arithmetic-harmonically convex function on the interval [a,b] for some fixed q > 1, then the following inequalities hold:

DI | (Angeet) [T = [ (Ang) |* # 0, then

—a)?
6

B(p+1p+ 1) [

n )2 -1 2 1/ 1/
U (fra,b)| < Y (b2 ?) (é) G AL (A"”‘“)Dg (2.12)
S (1" (Anger) [ = |77 (Ang) ) *
1
‘f” ‘q |f” ni H)‘q) _ G? (|fN (Amk)|q7|f” (An,k+1)|q) !
L(1f" (i) [ 1" (Ang1)] )
i) I | 1" (An 1) | = [ 1" (An ) | = O, then
no(p_ 2
o (fra,b)| <Y ( 5 “3) |/ (Anss1)] (2.13)
k=1 1"
where %—i— é =1.
Proof. i) Let | f” (Apxs1) |q —|£" (Anx)|* # 0. From the Lemma 1.5 and the properties of modulus, the inequality can be written:
n
it < 3 Lo =01l e+ 0 -0aner) ] Q.14

Since | |7 is an arithmetic-harmonically convex function on the interval [a, b], the inequality

" (An) | 1" (Anger) |
17 (A ) [T (=) |77 (Ang) |

holds. By applying the last inequality and the well known power-mean integral inequality on (2.14), the inequality

|f" (tApi+ (1= 1) Ay i) |? <
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1

n =i/ Y
nann< 3O ([Tea=ota) ([0l s 0t )
- <b—a>2( v )1«5 =01 ()11 B )]

gkgl 53 /Ot(l t)dt /Ot|f//<An,k+1 I Enan )|th (2.15)

v (bfa)z 1" 1" 1 1= ! t(1—r)dt g
71;1 2n 17 Ans) 11 (An’k+])|<6) (/0 " (Angs) "+ (1=1) |f//(An,k)|q)

& beaP (1) G (A (Aasr) )
Zz*<a (17" (Ang )= £ (Ani) )

XPW%M%WWMW*igﬁﬁ%%&ﬁ%Wa

is obtained, where

: 1 d !
t(1—t)dt=—
| ra=na=¢.

/‘1 t(1—1) g 1
0 t]f" (Angrt) [T+ (T =0) | f" (Ani)|? (17" (Anget) |7 — | £ (Am,k)!q)z
G2 |f” n.k ‘q7|f” (Ank+1)‘q)
A " Ay q7 " Am ) - ’ : :
[0 0l sy - ST et ke

i) Let | £ (Apg+1)|" = | £ (Ang)|? = 0. Then, substituting | f” (A, x11)|? = | £ (Anx)|? in the inequality (2.15), the following inequality
is found:

o (f,a,b)| zn: 2n3 (/01 (l—z)dz)l; (/Olt(l—t)|f”(An,k+l)\4dt);

n
£ o1 (e

This completes the proof of theorem. O

Corollary 2.8. By choosing n =1 in Theorem 2.7, the following inequalities are obtained:
DI (Araen) "= |77 (Arx) |7 # 0 for k=1, then

fla i) 1 (b—a (1) G2/ (@]l (b))
- f(x)dx z 2
' il 2 (6) (7" @) =1 @I

<

)
GZ (|f” a |41 ‘f” |fI>
L{f" (@), 1f"p") |

’ {A(f"(a)\q7|f//(b>!q) -

i) If | " (Args1) [T = |7 (A1) [T = 0 for k=1, then

fl@+f®) 1 b (b a)?
5 _bfa/a f(x)dx

<

|7 )]

Corollary 2.9. By choosing n =2 in Theorem 2.7, the following Bullen type inequalities are obtained:
1

DIF|f" (Aagi) | T = | £ (A2p) | #0 for k= 1,2, then
[F@F0) (atb)] L] a1 G (" @[ (%Dz
217 ()] : <6) (|7 (=52)] =1 @)

e Slaemy [y G (@, £ (2) |1 @)
<l (50)]) - L@, 7 (432)[")"
) 2
_ e\ [ G2< (a-&-b)’ A ()] )
" _A<f (557)[ o) - Ll (=) @) |

g

i) If | 1" (A1) |7 = | £ (o) |! = 0 for k= 1,2, then
L[f(a)+f(b) a+b 1 b n(a+b "
[ (5505 o] 2 [ ()]

1

f”(“ﬁb)\q)_"+<b—a>2(1)“é &
(

6

CHIDE I b))

<=

=
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Corollary 2.10. Taking q =1 in the inequality (2.12), the following inequality is obtained:

a202 (1" An) [ 1" Anges ) )y g ’ G (|£" (Ani) [ /" (Anis1))
17" (o) |- 1 () {A(’f L Qo)) = T, )77 G )

U (Fr.)] s)": (b—

3. Applications for special means

If p € (—1,0) then the function f(x) =x”,x > 0 is an arithmetic harmonically-convex [2]. Using this function, the following propositions
are obtained:

Proposition 3.1. Let 0 < a < b and p € (—1,0). Then, the following inequality holds:
n

GTDGTT | ()4 )]~ )

- i (b—a)?  (Ani)’ (Anps1)” [A((An,k)p,(An7k+1)P)_ (Ank)” (A1)’

S22 [(Arn)’ — (A" L((Ans)" s (Ansxs1)")

Proof. It is known that if p € (—1,0) then the function f(x) = #@,x > 0 is an arithmetic harmonically-convex function. Therefore,
the assertion follows from the inequality (2.1) in the Theorem 2.1, for f: (0,00) = R, f(x) = L O

(p+1)(p+2)"

Corollary 3.2. Taking n = 1 in Proposition 3.1, the following inequality is obtained:

G (@ ™) e

(b—a)? (A1)’ (A12)" aPbP
< e G ) 02~
that is,
1 (b—a)*> alb? oo G*P(ab)
s () -] < B S8 e n - 2555

Proposition 3.3. Let a,b € (0,00) witha < b, ¢ > 1 and m € (—1,0). Then, the following inequality is obtained:

EE < § oo Bloe Ly (). )
21 (% +2 )y

L7 ((4n0)" (Angs1)")
Proof. The assertion follows from the inequality (2.6) in the Theorem 2.4. Let

™=

L 242 LEY mJr
; ( nk a(An,k+l)q >_L%

FO) = L e (0,0).
(% + 1) (% + 2)
Then
)] =
is an arithmetic harmonically-convex on (0,0) and the result follows directly from Theorem 2.4. O

Corollary 3.4. Taking n =1 in Proposition 3.3, the following inequality is obtained:

2m

m . mo 2 >
1 ‘A <a;+27b;+2> L,f 2(a b)‘ (b 261) [B(p+1, P+1)]' G (ab)
(z+1)(2+2) L (am,bm)
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