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Regularity of Linear Systems of Differential
Equations on the Axes and Pencils of Quadratic
Forms
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Abstract
It is considered linear systems of differential equations and investigated questions of regularity of these systems.
To explore the regularity it is comfortable to use quadratic form whose derivative with respect to the adjoint
system is positive definite. Sometimes it is possible to find such a quadratic form, the derivative of which with
respect to the system is non-negative. There are examples showing that in this case we can’t say anything about
the exponential dichotomy of this system (that is, its regularity). The question arises whether it is possible to
combine a certain set of quadratic forms to get such a form, the derivative of which with respect to the system is
positive definite. This question is similar to the question that arises in the theory of control: having a set of certain
data about an object, can one say something about this object as a whole. It turns out that this is possible, only a
set of these quadratic forms should be special, in some sense complete. In the presented article the authors
propose to write it with the help of some combination of specific symmetric matrices S1,S2, . . . . So we have a
quadratic form

Vp = p1 〈S1 (t)x,x〉+ p2 〈S2 (t)x,x〉+ · · ·+ pk−1 〈Sk−1 (t)x,x〉+ 〈Sk (t)x,x〉

It is proved that the derivative of this quadratic form is positive definite for sufficiently large parameters p1, . . . , pk−1.
The results are illustrated by examples.
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1. Introduction
In many interesting investigations [1]-[4] it is arisen linear systems of differential equations in which we have to find the strong
properties, i.e. such properties which arent changed under small perturbations. Such properties often are exponential dichotomy
and trichotomy of the solutions of linear systems of differential equations. As for non-stationary systems this question is opened
it is interesting to find something new in investigation of dichotomy of linear systems of differential equations. The investigation
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of sets of quadratic forms is a promising and relevant topic, since they provide an opportunity to answer the question of the
magnitude of perturbation, which does not disturb the property of the regularity of linear systems. Consequently, we consider
certain classes of systems of linear equations and try to find quadratic forms that will enable us to investigate these systems.

2. Main results
Let’s consider the homogeneous system of differential equations

dx
dt

= P(t)x, (2.1)

where x ∈ Rn and P(t) is n×n-dimensional matrix with scalar functions whose elements are real continuous and bounded on
R = (−∞,+∞). We will denote by C0 (R) the space of functions which are continuous and bounded on R and by C1 (R) – the
subspace of space C0 (R) of continuously differentiable functions with bounded derivative on R.

We will consider a norm of a vector x ∈ Rn as ‖x‖=
√
〈x,x〉, where 〈x,y〉= ∑

n
j=1 x jy j – scalar product in Rn. And we will

denote a norm of a matrix A as ‖A‖= max‖Ax‖, ‖x‖= 1, ‖A‖0 = sup‖A(t)‖, t ∈ R.
The important question about system (2.1) is its regularity on entire axis R. It is known the following definition of regularity

[1]:

Definition 2.1. The system (2.1) is called regular on R if corresponding non-homogeneous system dx
dt = P(t)x+ f (t) has

unique bounded solution on R with any fixed vector function f (t) ∈C0 (R). If it is only known that such system has at least one
solution bounded on R with any f (t) ∈C0 (R) then the system (2.1) is called weakly regular on R.

It is known that the system (2.1) is regular on R if and only if there exists a quadratic form V = 〈S (t)x,x〉where S (t)∈C1 (R)
– symmetric matrix whose derivative with respect to the system (2.1) is positive definite, i.e.

V̇ =

〈[
dS (t)

dt
+S (t)P(t)+PT (t)S (t)

]
x,x
〉
≥ ‖x‖2 (2.2)

and wherein the matrix S (t) is non-degenerated for any t ∈ R

detS (t) 6= 0 ∀t ∈ R. (2.3)

In case the matrix P(t) from the system (2.1) is a constant, from a weak regularity always follows the regularity. It can be if
and only if real parts of all eigenvalues of matrix P are non-zeroes. Therefore, if detP = 0 then the system (2.1) with constant
matrix P is not regular. It turns out that there exists variable matrix P(t) such that detP(t)≡ 0 ∀t ∈ R but the system (2.1) is
regular on R. The examples of such systems are:{ dx1

dt = x1 (p1 cos2ωt + p2 sin2ωt)+ x2 (−p2 cos2ωt + p1 sin2ωt−ω) ,
dx2
dt = x1 (−p2 cos2ωt + p1 sin2ωt +ω)− x2 (p1 cos2ωt + p2 sin2ωt) ,

where parameters p1, p2,ω ∈ R are non-zero, real and p2
1 + p2

2 = ω2.
In this case the derivative of non-degenerated quadratic form

V = x2
1 cos2ωt +2x1x2 sin2ωt− x2

2 cos2ωt

with respect to this system equals V̇ = 2p1
(
x2

1 + x2
2
)
.

Remark 2.2. For some systems (2.1) there exists symmetric matrices S (t) ∈ C1 (R) which satisfy inequality (2.2) but the
condition (2.3) is not satisfied. Then the system (2.1) is not regular but adjoint system dx

dt =−PT (t)x is weakly regular.

Linear operator S (t) ∈C1 (R) which affects on symmetric matrices we will denote L [S]:

L [S] =
dS (t)

dt
+S (t)P(t)+PT (t)S (t) (2.4)

Remark 2.3. If instead of the inequality (2.2) we write 〈L [S]x,x〉 ≥ ‖Nx‖2, where N – some constant non-generated matrix,
then we can’t say anything about regularity of the system (2.1). We can see this from the example:

dx1

dt
= x2,

dx2

dt
= 0.

The derivative of quadratic form V = x1x2 with respect to this system is V̇ = x2
2, but this system is not regular.
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The question arises: If we have not a single matrix S, but some set of matrices S1,S2, . . . , then is it possible to combine
these matrices to construct the matrix S that satisfy the inequality 〈L [S]x,x〉 ≥ ‖x‖2? This article is devoted to investigating this
question.

Theorem 2.4. Let there exists two matrices S1 (t) ,S2 (t) ∈C1 (R) which satisfy the following inequalities{
〈L [S1]Mx,Mx〉 ≥ ε1 ‖(M−N)x‖2 ,

〈L [S2]Nx,Nx〉 ≥ ε2 ‖Nx‖2 , ε1,ε2 = const > 0 ,
(2.5)

for some constant matrices M, N. Then the sum of these matrices S̄ = pS1 (t)+S2 (t) satisfies an inequality〈
L
[
S̄
]

Mx,Mx
〉
≥ σ (p)‖Mx‖2 , (2.6)

where σ (p) = (p−αε1)ε2−α2

2(p−αε1+ε2)
, (p−αε1)ε2−α2 > 0, constant α is chosen from inequality ‖L [S2]‖ ≤ α .

Proof. Taking into account the linearity of the operator (2.4), we can write the left side of the inequality (2.6) in the following
form:

〈
L
[
S̄
]

Mx,Mx
〉
= p〈L [S1]Mx,Mx〉+ 〈L [S2]Mx,Mx〉= p〈L [S1]Mx,Mx〉+ 〈L [S2]Nx,Nx〉+Q, (2.7)

where

Q = 〈L [S2]Mx,Mx〉−〈L [S2]Nx,Nx〉
= 〈L [S2]Mx,Mx〉−〈L [S2]Mx,Nx〉+ 〈L [S2]Mx,Nx〉−〈L [S2]Nx,Nx〉
= 〈L [S2]Mx,(M−N)x〉+ 〈L [S2]Nx,(M−N)x〉
= 〈L [S2] (M−N +N)x,(M−N)x〉+ 〈L [S2]Nx,(M−N)x〉
= 〈L [S2] (M−N)x,(M−N)x〉+2〈L [S2]Nx,(M−N)x〉 .

From this we obtain an estimation from below

Q≥−α ‖(M−N)x‖2−2α ‖Nx‖‖(M−N)x‖2 . (2.8)

Therefore using inequalities (2.5) and (2.8) from inequality (2.7), we get〈
L
[
S̄
]

Mx,Mx
〉
≥ (p−αε1)‖(M−N)x‖2−2α ‖Nx‖‖(M−N)x‖+ ε2 ‖Nx‖2 . (2.9)

Let us write the quadratic form corresponding to the right side of the inequality (2.9)

V (x1,x2) = (p−αε1)x2
1−2αx1x2 + ε2x2

2.

We should find its lowest value on a single circle x1 = cosy, x2 = siny. We obtain

V (cosy,siny) = (p−αε1)
1+cos2y

2 −α sin2y+ ε2
1−cos2y

2 ≥ p−αε1+ε2
2 −

√( p−αε1−ε2
2

)2
+α2 = (p−αε1)ε2−α2

p−αε1+ε2
2 +

√(
p−αε1−ε2

2

)2
+α2

.

Choosing sufficiently large the value of parameter p > 0, exactly p > αε1 +
α2

ε2
, we get

V (x1,x2)≥
(p−αε1)ε2−α2

p−αε1 + ε2

(
x2

1 + x2
2
)
.

Therefore, from (2.9) we obtain

〈
L
[
S̄
]

Mx,Mx
〉
≥ (p−αε1)ε2−α2

p−αε1 + ε2

(
‖(M−N)x‖2 +‖Nx‖2

)
. (2.10)

As for any matrices M and N of equal dimension the inequality

‖(M−N)x‖2 +‖Nx‖2 ≥ 1
2
‖Mx‖2
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is fulfilled then from (2.10) we get

〈
L
[
S̄
]

Mx,Mx
〉
≥ (p−αε1)ε2−α2

2(p−αε1 + ε2)
‖Mx‖2 .

Theorem 2.5. Let there exists symmetric matrices S j (t) ∈C1 (R), j = 1,k, n×n-dimensional and they satisfy the following
inequalities:〈

L [S j]M j (t)x,M j (t)x
〉
≥
∥∥[M j (t)−M j+1 (t)

]
x
∥∥2

, j = 1,(k−1) (2.11)

〈L [Sk]Mk (t)x,Mk (t)x〉 ≥ ‖Mk (t)x‖2 , (2.12)

with some n×n- dimensional continuous non-degenerated matrices M j (t). Then the derivative of a quadratic form

Vp = p1 〈S1 (t)x,x〉+ p2 〈S2 (t)x,x〉+ · · ·+ pk−1 〈Sk−1 (t)x,x〉+ 〈Sk (t)x,x〉

with respect to the system (2.1) will be positive definite for sufficiently large fixed values of parameters p1, p2, . . . , pk−1.

Proof. Let us choose and fix the constant α , that satisfy an inequalities
∥∥L [S j]

∥∥≤ α , j = 1,k. From the last of the inequalities
(2.11)

〈L [Sk−1]Mk−1 (t)x,Mk−1 (t)x〉 ≥ ‖[Mk−1 (t)−Mk (t)]x‖2

and (2.12) using Theorem 2.4 with ε1 = 1, ε2 = 1 we get an inequality〈
L
[
S̃
]

Mk−1 (t)x,Mk−1 (t)x
〉
≥ σ (pk−1)‖Mk−1 (t)x‖2 , (2.13)

where

S̃ = pk−1Sk−1 (t)+Sk (t) ,σ (pk−1) =
pk−1−α−α2

2(pk−1−α +1)
.

Then let us consider the penultimate of the inequalities (2.11)

〈L [Sk−2]Mk−2 (t)x,Mk−2 (t)x〉 ≥ ‖[Mk−2 (t)−Mk−1 (t)]x‖2 .

Together with the inequality (2.13), based on the Theorem 2.4 (ε1 = 1, ε2 = σ (pk−1)) for the sum of the matrices

S̄ = pk−2Sk−2 (t)+ S̃ = pk−2Sk−2 (t)+ pk−1Sk−1 (t)+Sk (t) ,

we get an inequality〈
L
[
S̄
]

Mk−2 (t)x,Mk−2 (t)x
〉
≥ σ (pk−2, pk−1) · ‖Mk−2 (t)x‖2 ,

where

σ (pk−2, pk−1) =
(pk−2−α)σ (pk−1)−α2

2(pk−2−α +σ (pk−1))
.

So we have the following estimation〈
L
[_

S
]

Mk−3 (t)x,Mk−3 (t)x
〉
≥ σ (pk−3, pk−2, pk−1)‖Mk−3 (t)x‖2 ,

σ (pk−3, pk−2, pk−1) =
(pk−3−α)σ (pk−2, pk−1)−α2

2(pk−2−α +σ (pk−2, pk−1))
.
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Continuing to receive similar estimates, in the end for the sum of the matrices

Sp = p1S1 (t)+ p2S2 (t)+ · · ·+ pk−1Sk−1 (t)+Sk (t) ,

we will get〈
L [Sp]M1 (t)x,M1 (t)x

〉
≥ σ (p1, p2, .., pk−2, pk−1)‖M1 (t)x‖2 , (2.14)

where

σ (p1, p2, .., pk−2, pk−1) =
(p1−α)σ (p2, .., pk−2, pk−1)−α2

2(p1−α +σ (p2, .., pk−2, pk−1))
.

Let us denote M1 (t)x= y. Since the matrix M1 (t) is non-degenerate then we get
〈
L [Sp]y,y

〉
≥σ (p1, p2, .., pk−2, pk−1)‖y‖2

from the inequality (2.14) for any y ∈ Rn with positive coefficient σ (p1, p2, .., pk−2, pk−1). That means the derivative of the
quadratic form Vp with respect to the system (2.1) at certain choices of the vector of parameters (p1, p2, .., pk−2, pk−1) = p will
be positive definite. The Theorem 2.5 is proved.

Let us consider an example of the application of the proved theorem.
Denote

a(t;λ ) =
λe−t − (1−λ )et

λe−t +(1−λ )et ,0≤ λ ≤ 1

and consider the system
dx1
dt = [a(t;λ1)+a(t;λ2)−1]x1 +[a(t;λ1)+a(t;λ2)]x2,

dx2
dt = [−a(t;λ2)+1]x1−a(t;λ2)x2,

dx3
dt = [a(t;λ2)+1]x1− [a(t;λ1)+a(t;λ2)]x2−a(t;λ1)x3,

(2.15)

where λ1,λ2 – independent parameters from the closed segment [0,1].
We choose the matrices Si, Mi in the following form

S1 =

 0 1 1
1 0 1
1 1 0

 , S2 =

 0 0 0
0 −a(t;λ2) 0
0 0 0

 , S3 =

 0 0 0
0 0 0
0 0 −a(t;λ1)

 ,

M1 =

 1 0 0
0 1 0
0 0 1

 , M2 =

 0 0 0
0 1 0
0 0 1

 , M3 =

 0 0 0
0 0 0
0 0 1

 .

Calculating the left sides of the inequalities (2.11) and (2.12) (k = 3), we get

L [S1] =

 2 0 0
0 0 0
0 0 0

 ,L [S2] =

 0
(
a2 (t;λ2)−a(t;λ2)

)
0(

a2 (t;λ2)−a(t;λ2)
) (

2a2 (t;λ2)− da(t;λ2)
dt

)
0

0 0 0

 ,

L [S3] =

 0 0 −a(t;λ1) [a(t;λ2)+1]
0 0 a(t;λ1) [a(t;λ1)+a(t;λ2)]

−a(t;λ1) [a(t;λ2)+1] a(t;λ1) [a(t;λ1)+a(t;λ2)]
(

2a2 (t;λ1)− da(t;λ1)
dt

)
 .

Hence it is already clear that the inequalities (2.11) and (2.12) are fulfilled. Thus, the derivative of the quadratic form
p1 (x1x2 + x1x3 + x2x3)− p2x2

2a(t;λ2)− x2
3a(t;λ1) with respect to the system (2.15) with the appropriate choice of parameters

p1, p2 will be positively defined. This implies that the system (2.15) is regular on R.
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