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Abstract
This paper mainly focuses on the recent advances in the semi-analytical approximated methods for solving
Fredholm Integro-Differential Equations (FIDEs) of the second kind by using Variational Iteration Method (VIM),
Homotopy Perturbation Method (HPM) and Direct Homotopy Analysis Method (DHAM). Convergence analysis of
the exact solution of the proposed methods is established. Moreover, we proved the uniqueness of the solution.
To illustrate the methods, an example is presented.
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1. Introduction
In this paper, we consider FIDE of the form:

k

∑
j=0

p j(x)∆( j)(x) = f (x)+λ

∫ b

a
W (x, t)G(∆(t))dt (1.1)

with the initial conditions

∆
(r)(a) = br, r = 0,1,2, · · · ,(k−1), (1.2)

where ∆( j)(x) is the jth derivative of the unknown function ∆(x) that will be determined, W (x, t) is the kernel of the equation,
f (x) and p j(x) are analytic functions, G is nonlinear function of ∆ and a,b,λ , and br are real finite constants.

The FIDEs arise in many scientific applications. It was also shown that these equations can be derived from boundary value
problems.

The application of homotopy techniques in linear and non-linear problems has been devoted by scientists and engineers,
because this method is to continuously deform a simple problem which is easy to solve into the under study problem which
is difficult to solve. This method was proposed first by He in 1997 and systematical description in 2000 which is, in fact,
a coupling of the traditional perturbation method and homotopy in topology [1]. This method was further developed and
improved by He and applied to non-linear oscillators with discontinuities [2]. After that many researchers applied the method to
various linear and non-linear problems. For example, it was applied to the quadratic Ricatti differential equation by Abbasbandy
[3], to the axisymmetric flow over a stretching sheet by Ariel et al. [4], to the Helmholtz equation and fifth-order KdV equation
by Rafei and Ganji [5], for the thin film flow of a fourth grade fluid down a vertical cylinder by Siddiqui et al. [6], to the
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non-linear Volterra-Fredholm integral equations by Hamoud and Ghadle [7], to FIDE [8], to system of Fredholm integral
equations [9], Alao et al. [10] studied the ADM and the VIM on various types of integro-differential equation. Moreover, many
methods for solving integro-differential equations have been studied by several authors [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

The main objective of the present paper is to study the behavior of the solution that can be formally determined by
semi-analytical approximated methods as the VIM, HPM and DHAM. Moreover, we proved the existence and uniqueness
results of the FIDEs.

2. Variational iteration method (VIM)
The main idea of this method is to construct a correction functional form using general Lagrange multipliers. To illustrate, we
consider the following general differential equation:

L∆(t)+N∆(t) = f (t),

where L is a linear operator, N is a nonlinear operator and f (t) is inhomogeneous term. According to variational iteration
method [7], the terms of a sequence ∆n are constructed such that this sequence converges to the exact solution. The terms ∆n
are calculated by a correction functional as follows:

∆n+1(t) = ∆n(t)+
∫ t

0
µ(τ)(L∆n(τ)+Nỹ(τ)− f (τ))dτ. (2.1)

The successive approximation ∆n(t),n ≥ 0 of the solution ∆(t) will be readily obtained upon using the obtained Lagrange
multiplier and by using any selective function ∆0. The zeroth approximation ∆0 may be selected using any function that
just satisfies at least the initial and boundary conditions. With µ determined, several approximations ∆n(t),n ≥ 0 follow
immediately.

The VIM has been shown to solve effectively, easily and accurately a large class of nonlinear problems with approximations
converging rapidly to accurate solutions.

To obtain the approximation solution of IVP (1.1)− (1.2), according to the VIM, the iteration formula (2.1) can be written
as follows:

∆n+1(x) = ∆n(x)+L−1
[
µ(x)

[ k

∑
j=0

p j(x)∆
( j)
n (x)− f (x)−λ

∫ b

a
W (x, t)G(∆n(t))dt

]]
,

where L−1 is the multiple integration operator given as follows:

L−1(·) =
∫ x

a

∫ x

a
· · ·
∫ x

a
(·)dxdx · · ·dx (k− times).

To find the optimal µ(x), we proceed as follows:

δ∆n+1(x) = δ∆n(x)+δL−1
[
µ(x)

[ k

∑
j=0

p j(x)∆
( j)
n (x)− f (x)−λ

∫ b

a
W (x, t)G(∆n(t))dt

]]
= δ∆n(x)+µ(x)δ∆n(x)−L−1

[
δ∆n(x)µ ′(x)

]
. (2.2)

From Eq. (2.2), the stationary conditions can be obtained as follows:

µ
′(x) = 0, and 1+µ(x)|x=t = 0.

As a result, the Lagrange multipliers can be identified as µ(x) =−1 and by substituting in Eq. (2.2), the following iteration
formula is obtained:

∆0(x) = L−1
[ f (x)

pk(x)

]
+

k−1

∑
r=0

(x−a)r

r!
br, (2.3)

∆n+1(x) = ∆n(x)−L−1
[ k

∑
j=0

p j(x)∆
( j)
n (x)− f (x)−λ

∫ b

a
W (x, t)G(∆n(t))dt

]
,n≥ 0.

The term ∑
k−1
r=0

(x−a)r

r! br is obtained from the initial conditions, pk(x) 6= 0. Relation (2.3) will enable us to determine the
components ∆n(x) recursively for n≥ 0. Consequently, the approximation solution may be obtained by using

∆(x) = lim
n→∞

∆n(x).
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3. Homotopy perturbation method (HPM)
The homotopy perturbation method first proposed by He [1, 2]. To illustrate the basic idea of this method, we consider the
following nonlinear differential equation

A(∆)− f (r) = 0, r ∈Ω, (3.1)

under the boundary conditions

B
(

∆,
∂∆

∂n

)
= 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator, f (r) is a known analytic function, Γ is the boundary of the
domain Ω.

In general, the operator A can be divided into two parts L and N, where L is linear, while N is nonlinear. Eq. (3.1) therefore can
be rewritten as follows [19]:

L(∆)+N(∆)− f (r) = 0.

By the homotopy technique, we will construct a homotopy v(r, p) : Ω× [0,1]−→ R which satisfies

H(v, p) = (1− p)[L(v)−L(∆0)]+ p[A(v)− f (r)] = 0, p ∈ [0,1]. (3.2)

or

H(v, p) = L(v)−L(∆0)+ pL(∆0)]+ p[N(v)− f (r)] = 0, (3.3)

where p ∈ [0,1] is an embedding parameter, ∆0 is an initial approximation of Eq.(3.1) which satisfies the boundary conditions.
From Eqs.(3.2), (3.3) we have

H(v,0) = L(v)−L(∆0) = 0,
H(v,1) = A(v)− f (r) = 0.

The changing in the process of p from zero to unity is just that of v(r, p) from ∆0(r) to ∆(r). In topology this is called
deformation, the L(v)−L(∆0), and A(v)− f (r) are called homotopic. Now, assume that the solution of Eqs. (3.2) and (3.3) can
be expressed as

v = v0 + pv1 + p2v2 + · · · .

The approximate solution of Eq.(3.1) can be obtained by setting p = 1.

∆ = lim
p→1

v = v0 + v1 + v2 + · · · .

Then equating the terms with identical power of P, we obtain the following series of linear equations:

P0 : ∆0(x) =
k−1

∑
r=0

1
r!
(x−a)rbr,

P1 : ∆1(x) = L−1
(

f (x)
pk(x)

)
+λL−1

(∫ b

a

W (x, t)
pk(x)

G(∆0(t))(t)dt
)
−

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
0 (x)

)
,

P2 : ∆2(x) = λL−1
(∫ b

a

W (x, t)
pk(x)

G(∆1(t))(t)dt
)
−

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
1 (x)

)
,

P3 : ∆3(x) = λL−1
(∫ b

a

W (x, t)
pk(x)

G(∆2(t))dt
)
−

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
2 (x)

)
,

.

.

.
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4. Direct homotopy analysis method (DHAM)

Consider FIDE (1.1) and substitute the kernel W (x, t) = g(x)h(t) we obtain

k

∑
j=0

p j(x)∆( j)(x) = f (x)+λg(x)
∫ b

a
h(t)G(∆(t))dt.

To obtain the approximate solution, we integrating (k)-times in the interval [a,x] with respect to x we obtain,

∆(x) = L−1
(

f (x)
pk(x)

)
+

k−1

∑
r=0

1
r!
(x−a)rbr +λL−1

(
g(x)
pk(x)

∫ b

a
h(t)G(∆(t))dt

)
−

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
n (x)

)
,

Setting

Q =
∫ b

a
h(t)G(∆(t))dt

F = L−1
(

f (x)
pk(x)

)
+

k−1

∑
r=0

1
r!
(x−a)rbr−

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
n (x)

)
.

Therefore, we can rewrite Eq. (4.1) as

∆(x) = F(x)+λL−1
(

g(x)
pk(x)

Q
)
,

we define the nonlinear homotopy operator as:

N[∆(x)] = ∆(x)−F(x)−λL−1
(

g(x)
pk(x)

Q
)
,

The corresponding mth-order deformation equation is as follows

L[∆m(x)−χm∆m−1(x)] = BH(x)Rm(
−−−−−→
∆m−1(x))

where

Rm(
−−−−−→
∆m−1(x)) = ∆m−1(x)−F(x)(1−χm)−λL−1

(
g(x)
pk(x)

Q
)
,

and

χm =

{
1, m > 1.
0, m≤ 1.

choosing the auxiliary linear operator L[∆] = ∆, we obtain

∆0(x) Choosing initial guess

∆1(x) = BH(x)
[
∆0(x)−L−1

(
f (x)

pk(x)

)
−

k−1

∑
r=0

1
r!
(x−a)rbr−λL−1

(
g(x)
pk(x)

∫ b

a
h(t)G(∆0(t))dt

)
+

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
0 (x)

)]
,

∆m(x) = χm∆m−1(x)+BH(x)
[
∆m−1(x)−λL−1

(
g(x)
pk(x)

∫ b

a
h(t)G(∆m−1(t))dt

)
+

k−1

∑
j=0

L−1
(

p j(x)
pk(x)

∆
( j)
m−1(x)

)]
,m > 1.

with auxiliary function H(x) and auxiliary parameter B.
Then, ∆(x) = ∑

m
i=0 ∆i as the approximate solution.
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5. Uniqueness results

In this section, we shall give an uniqueness results of Eq. (1.1), with the initial condition (1.2) and prove it [22, 23].
We can be written equation (1.1) in the form of:

∆(x) = L−1
[ f (x)

pk(x)

]
+

k−1

∑
r=0

(x−a)r

r!
br +λ1L−1

[∫ b

a

1
pk(x)

W (x, t)G(∆n(t))dt
]
−L−1

[ k−1

∑
j=0

p j(x)
pk(x)

∆
( j)(x)

]
.

we can write

L−1
[∫ b

a

1
pk(x)

W (x, t)G(∆n(t))dt
]
=
∫ b

a

(x− t)k

k!pk(x)
W (x, t)G(∆n(t))dt

k−1

∑
j=0

L−1
[ p j(x)

pk(x)

]
∆
( j)(x) =

k−1

∑
j=0

∫ b

a

(x− t)k−1 p j(t)
k−1!pk(t)

∆
( j)(t)dt.

We set,

Ψ(x) = L−1
[ f (x)

pk(x)

]
+

k−1

∑
r=0

(x−a)r

r!
br.

Before starting and proving the main results, we introduce the following hypotheses:

(H1) There exist two constants α and γ j > 0, j = 0,1, · · · ,k such that, for any ∆1,∆2 ∈C(J,R)

|G(∆1))−G(∆2))| ≤ α |∆1−∆2|

and ∣∣D j(∆1)−D j(∆2)
∣∣≤ γ j |∆1−∆2| ,

we suppose that the nonlinear terms G(∆(x)) and D j(∆) = ( d j

dx j )∆(x) = ∑
∞
i=0 γi j , (D j is a derivative operator), j =

0,1, · · · ,k, are Lipschitz continuous.

(H2) We suppose that for all a≤ t ≤ x≤ b, and j = 0,1, · · · ,k:∣∣∣∣λ (x− t)kW (x, t)
k!pk(x)

∣∣∣∣≤ θ1,

∣∣∣∣λ (x− t)kW (x, t)
k!

∣∣∣∣≤ θ2,

and ∣∣∣∣ (x− t)k−1 p j(t)
(k−1)!pk(t)

∣∣∣∣≤ θ3,

∣∣∣∣ (x− t)k−1 p j(t)
(k−1)!

∣∣∣∣≤ θ4,

(H3) There exist three functions θ ∗3 ,θ
∗
4 , and γ∗ ∈ C(D,R+), the set of all positive function continuous on D = {(x, t) ∈

R×R : 0≤ t ≤ x≤ 1} such that:

θ
∗
3 = max |θ3| , θ

∗
4 = max |θ4| , and γ

∗ = max
∣∣γ j
∣∣ .

(H4) Ψ(x) is bounded function for all x in J = [a,b].

Theorem 5.1. Assume that (H1)–(H4) hold. If

0 < ψ = (αθ1 + kγ
∗
θ
∗
3 )(b−a)< 1,

then there exists a unique solution ∆(x) ∈C(J) to IVP (1.1)− (1.2).
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Proof. Let ∆1 and ∆2 be two different solutions of IVP (1.1)− (1.2)., then∣∣∣∆1−∆2

∣∣∣ =
∣∣∣∫ b

a

λ (x− t)kW (x, t)
pk(x)k!

[G(∆1)−G(∆2))]dt

−
k−1

∑
j=0

∫ b

a

(x− t)k−1 p j(t)
pk(t)(k−1)!

[D j(∆1)−D j(∆2))]dt
∣∣∣

≤
∫ b

a

∣∣∣λ (x− t)kW (x, t)
pk(x)k!

∣∣∣∣∣∣G(∆1)−G(∆2))
∣∣∣dt

−
k−1

∑
j=0

∫ b

a

∣∣∣ (x− t)k−1 p j(t)
pk(t)(k−1)!

∣∣∣∣∣∣D j(∆1)−D j(∆2))
∣∣∣dt

≤ (αθ1 + kγ
∗
θ
∗
3 )(b−a)|∆1−∆2|,

we get (1−ψ)|∆1−∆2| ≤ 0. Since 0 < ψ < 1, so |∆1−∆2|= 0. Therefore, ∆1 = ∆2 and the proof is completed.

6. Example
In this section, we present the semi-analytical techniques based on VIM, HPM and DHAM to solve FIDEs. To show the
efficiency of the present methods for our problem in comparison with the exact solutions.

Example 6.1. Consider the following FIDE:

∆
′(x) = ex(1+ x)− x+

∫ 1

0
x∆(t)dt,

with the initial condition

∆(0) = 0,

and the the exact solution is ∆(x) = xex.

Table 1. Numerical Results of the Example 6.1
x Exact VIM HPM DHAM
0.1 0.1105170 0.1096837 0.1103782 0.1105170
0.2 0.2442805 0.2409472 0.2437249 0.2442805
0.3 0.4049576 0.3974576 0.4037076 0.4049576
0.4 0.5967298 0.5833965 0.5945076 0.5967298
0.5 0.8243606 0.8035273 0.8208884 0.8233606
0.6 1.0932712 1.0632712 1.0882712 1.0932712
0.7 1.4096268 1.3687935 1.4028213 1.4096268
0.8 1.7804327 1.7270994 1.7715438 1.7804327
0.9 2.2136428 2.1461428 2.2023928 2.2136428

7. Discussion and conclusion
We discussed the VIM, HPM and DHAM for solving FIDEs of the second kind. To assess the accuracy of each method, the test
example with known exact solution is used. In this work, the above methods have been successfully employed to obtain the
approximate solution of a FIDE. The results show that these methods are very efficient, convenient and can be adapted to fit a
larger class of problems. The comparison reveals that although the numerical results of these methods are similar approximately,
Table 1 shows that the numerical results obtained with DHAM agree with the exact solutions.
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