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Abstract
Some new closure operators in topological spaces with ideals are a part of this paper. A comparative study of a
new type of boundary point, which is defined with the help of the local function and the boundary points will be
discussed through this paper. Characterizations of Hayashi-Samuel spaces are also an object of this paper.
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1. Introduction and preliminaries

A modification of closure operator in topological space is the local function in ideal topological space. This study was
introduced by Kuratowski [1] and Vaidyanathswamy [2]. An ideal [1] I on a topological space (X ,τ) is a nonempty collection
of subsets of X which satisfies the following conditions:

(1) A ∈I and B⊆ A implies B ∈I ,
(2) A ∈I and B ∈I implies A∪B ∈I .
A topological space (X ,τ) with an ideal I on X is called an ideal topological space and is denoted by (X ,τ,I ). For a

subset A of an ideal topological space (X ,τ,I ), the local function A∗ is defined as: A∗ = {x ∈ X : Ux ∩A /∈I , Ux ∈ τ(x)}
(where τ(x) is the collection of all open sets which contains x) and it was defined by imposing extra condition on the closure
operator. As a result, the mathematicians like Samuel [3], Pavlović [4], Hayashi [5], Hashimoto [6], Janković and Hamlett
[7, 8], Ekici [9, 10, 11], Hatir [12], Noiri [11, 12, 13] have reached to obtain a new topology known as ∗-topology and it is
finer topology than the original topology. In an ideal topological space (X ,τ,I ), the structures-“topology” and“ideal” played
important roles simultaneously. The condition τ ∩I = { /0} is a remarkable part in ideal topological space and such ideal
topological space is called Hayashi-Samuel space [14]. Modak and his associates studied this ideal topological space and
introduced different types of generalized open sets and operators with the help of ideals (see [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26]). The complement operator of the local function is known as ψ-operator [8, 27] and it is defined
by: ψ(A) = X \ (X \A)∗, for a subset A of an ideal topological space (X ,τ,I ). ψ-operator is an important part for the study of
ideal topological space.

In this paper, we introduce a new type of boundary points in ideal topological spaces by using ∗ - operator. We consider a
comparative study of these boundary points with the boundary points in topological spaces. We also explore the characterizations
of Hayashi-Samuel space which was established in [18, 19, 24]. We also obtain more closure operators in ideal topological
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spaces through this paper.

2. ∗ boundary points
Boundary operator [28] is a set valued set-function and we may consider it by the following way:

Let (X ,τ) be a topological space and A ⊆ X . The boundary operator Bd : ℘(X)→C(τ) is defined as Bd(A) =Cl(A)∩
Cl(X \A), where C(τ) denotes the collection of all closed sets and Cl(A) denotes the closure of A in (X ,τ).

Thus boundary point of a set A⊆ X is a common point between closure of A and closure of (X \A).
We modify the boundary operator with the help of the local function and call it ∗-boundary operator.

Definition 2.1. Let (X ,τ,I ) be an ideal topological space. The operator Bd∗ : ℘(X)→ C(τ), defined by: Bd∗(A) =
A∗∩ (X \A)∗, for A ∈℘(X), is called ∗-boundary operator on (X ,τ,I ).

The point x ∈ Bd∗(A) is called ∗-boundary point of A and it is the common point of A∗ and (X \A)∗.
We start with the following example which shows that there is some common points in A∗ and (X \A)∗.

Example 2.2. Let X =R, Ru be the usual topology on R and I = { /0}. Then Q∗ =Cl(Q) =R and (R\Q)∗ =Cl(R\Q) =R.
This shows that there are common points between Q∗ and (R\Q)∗.

We know that boundary points of a set depends on the topology. For this, if we consider the indiscrete topology on R, then
Bd(Q) = R, where Q denotes the set of all rational numbers. But if we consider the discrete topology on R, then Bd(Q) = /0.
∗-boundary point of a set depends on not only the topology but the ideal also.
Followings examples show the role of ideal in ∗-boundary points:
Let (X ,τ,I ) be an ideal topological space and A⊆ X .
(i) If we take I = { /0}, then Bd∗(A) = Bd(A).
(ii) If the ideal I =℘(X), Bd∗(A) = /0.
Note that in discrete topological space, boundary points of any set is always empty. But in any ideal topological space, if

the ideal is the collection of all subsets of the set then ∗-boundary points of any set is always empty.
(iii) When the ideal I = I f , the ideal of finite subsets of X , then Bd∗(A) is the ω-accumulation points of A and X \A.
(iv) If one choose the ideal I = Ic, the ideal of countable subsets of X , then A∗ is precisely the set of condensation points

of A and boundary points accordingly.
(v) Let In be the collection of all nowhere dense subsets of (X ,τ), then In is an ideal on X . If we take I = In, then

A∗ =Cl(Int(Cl(A))) and Bd∗(A) =Cl(Int(Cl(A)))\ Int(Cl(Int(A))).
(vi) Let (X ,τ) be a topological space and Im be the collection of all meager sets (or sets of first category). Then it forms an

ideal on X and A∗ is set the points of second category of A.
Note that for a subset A⊆ X in a topological space (X ,τ) with an ideal I , x ∈ Bd∗(A) implies Ux /∈I for all Ux ∈ τ(x)

but converse statement is not true in general.

Example 2.3. Let X = {a,b,c}, τ = { /0,X ,{a},{a,b}} and I = { /0,{a}}. Then ({b})∗ = {b,c} and all open sets containing
a do not belongs to I but a /∈ Bd∗({b}).

One of the characterizations of ∗-boundary point is:

Theorem 2.4. Let (X ,τ,I ) be an ideal topological space and A⊆ X. Then x ∈ Bd∗(A) if and only if x ∈ A∗ \ψ(A).

Similar characterization of boundary point is:

Theorem 2.5. [28] Let (X ,τ) be a topological space and A ⊆ X. Then x ∈ Bd(A) if and only if x ∈Cl(A) \ Int(A), where
Int(A) denotes the interior of A.

Theorem 2.6. Let (X ,τ,I ) be an ideal topological space and A⊆ X. Then Bd∗(A) = /0 if and only if A∗ ⊆ ψ(A).

Similar characterization of boundary point is:

Theorem 2.7. [28] Let (X ,τ) be a topological space and A⊆ X. Then Bd(A) = /0 if and only if A is both open and closed.

Note that ()∗ is not a closure operator and ψ is not an interior operator, but both A∗ \ψ(A) and Cl(A)\ψ(A) are closed set.
In this regards, A∩ψ(A) is an interior operator [8] and A∪A∗ is a closure operator [7] and both the operators induce the same
topology which is above ∗-topology [7].

Corollary 2.8. Let (X ,τ,I ) be a Hayashi-Samuel space and A⊆ X. Then Bd∗(A) = /0 if and only if A∗ = ψ(A).



Characterizations of Hayashi-Samuel Spaces via Boundary Points — 221/226

Proof. Proof is obvious from Theorem 2.6 and the following lemma.

Lemma 2.9. [16] Let (X ,τ,I ) be A be a Hayashi-Samuel space and A⊆ X. Then ψ(A)⊆ A∗.

Theorem 2.10. Let (X ,τ,I ) be an ideal topological space and A⊆ X. Then Bd∗(A) = (X \A)∗ if and only if X \A∗ ⊆ ψ(A).

Proof. Suppose Bd∗(A) = (X \A)∗. Then A∗∩ (X \A)∗ = (X \A)∗ implies (X \A)∗ ⊆ A∗. Therefore X \A∗ ⊆ ψ(A).
Proof of the converse part is obvious.

Theorem 2.11. Let (X ,τ,I ) be an ideal topological space and A be a I -dense subset of X. Then Bd∗(A) = (X \A)∗.

Proof. Obvious from definition of I -dense set (A subset A of X is said to be I -dense [14] if A∗ = X).

Now we look how the ∗-boundary operator gives new closure operator:

Theorem 2.12. Let (X ,τ,I ) be an ideal topological space and A,B⊆ X. Then following statements hold:

1. Bd∗( /0) = /0.

2. Bd∗(X) = /0.

3. Bd∗(I) = /0, if I ∈I .

4. Bd∗(A) is a closed set in (X ,τ).

5. Bd∗(A∪B)⊆ Bd∗(A)∪Bd∗(B).

6. Bd∗(A)∪Bd∗(B) = [A∩Bd∗(B)]∪ [Bd∗(A∪B)]∪ [Bd∗(A)∩B].

7. Bd∗(A) = A∗ \ψ(A).

8. Cl∗(A) = Bd∗(A)∪ψ(A)∪A (Cl∗ denotes the closure operator of ∗-topology).

9. Bd∗(A) = /0 implies Int∗(A)⊇ A∩A∗ (Int∗ denotes the interior operator of ∗-topology).

10. Bd∗(Bd∗(A))⊆ Bd∗(A).

11. Bd∗(A) = (X \A)∗ \ψ(X \A).

12. Bd∗(X \A) = Bd∗(A).

13. Bd∗(A)⊆ Bdτ∗(I )(A)⊆ Bd(A) (Bdτ∗(I )(A) denotes the set of all boundary points of A with respect to ∗-topology ).

14. X \Bd∗(A) = ψ(X \A)∪ψ(A).

15. X = ψ(X \A)∪ψ(A)∪Bd∗(A) = ψ(X \A)∪ψ(A)∪Bd∗(X \A).

Proof. The proofs of 1., 2., 3. and 4. are obvious.
5. Bd∗(A∪B) = (A∪B)∗∩ (X \A∪B)∗ = (A∪B)∗∩ [(X \A)∩ (X \B)]∗ ⊆ (A∗∪B∗)∩ [(X \A)∗∩ (X \B)∗] = [[(X \A)∗∩

(X \B)∗]∩A∗]∪ [[(X \A)∗∩ (X \B)∗]∩B∗]⊆ [A∗∩ (X \A)∗]∪ [B∗∩ (X \B)∗] = Bd∗(A)∪Bd∗(B).
6. Note that [A∩Bd∗(B)]∪ [Bd∗(A)∩B]∪ [Bd∗(A∪B)]⊆ Bd∗(B)∪Bd∗(B)∪Bd∗(A∪B) = Bd∗(A)∪Bd∗(B) (from 4.).
Again Bd∗(A)∪Bd∗(B) ⊆ Bd∗(A)∪Bd∗(B)∪Bd∗(A∪B)∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)] = [(A∗ ∩ (X \A)∗ ∪ (B∗ ∩ (X \

B)∗]∪Bd∗(A∪B)∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)]⊆ [(A∗∪B∗)∪Bd∗(A∪B)]∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)] = [(A∪B)∗∩ (X \
(A∪B)∗]∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)] = Bd∗(A∪B)∪ [A∩Bd∗(B)]∪ [B∩Bd∗(A)].

7. Bd∗(A) = A∗∩ (X \A)∗ = A∗∩ (X \ψ(A)) = A∗ \ψ(A).
8. Bd∗(A)∪ψ(A)∪A = (A∗ \ψ(A))∪ψ(A)∪A = A∗∪A =Cl∗(A).
9. Given that Bd∗(A) = /0. Then A∗ ⊆ ψ(A) and hence A∩A∗ ⊆ Int∗(A).
10. Bd∗(Bd∗(A)) = Bd∗[A∗ ∩ (X \A)∗] = [A∗ ∩ (X \A)∗]∗ ∩ (X \ [A∗ ∩ (X \A)∗])∗ ⊆ A∗∗ ∩ (X \A)∗∗ ⊆ A∗ ∩ (X \A)∗ =

Bd∗(A).
11. Bd∗(A) = (X \A)∗∩A∗ = (X \A)∗∩ [X \ψ(X \A)] = (X \A)∗ \ψ(X \A).
12. The proof of 12. is obvious from definition.
13. The proof is obvious from the fact A∗ ⊆Cl∗(A)⊆Cl(A), for any subset A of X .
14. X \Bd∗(A) = (X \A∗)∪ [X \ (X \A)∗] = ψ(X \A)∪ψ(A).
15. The proof of 15. is obvious from definition.
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Definition 2.13. Let (X ,τ,I ) be an ideal topological space and A,B⊆ X. The operator k1 :℘(X)→℘(X) on X is defined by

k1(A) = A∪T1(A),

where T1 :℘(X)→℘(X) is an operator which satisfies the following conditions:
(i) T1( /0) = /0,
(ii) T1(A∪B)⊆ T1(A)∪T1(B),
(iii) Cl∗(A) = T1(A)∪ψ(A)∪A,
(iv) T1(T1(A))⊆ T1(A).

Then, k1 is a closure operator on X ,and T1(A) = Bd∗(A) for every subset A of X , in which the topology is induced by k.
The operator k1(A) = A∪T1(A), satisfies the following conditions:
(i) k1( /0) = /0∪T1( /0) = /0;
(ii) A⊆ A∪T1(A) = k1(A);
(iii) k1(k1(A)) = k1(A∪T1(A)) = A∪T1(A)∪T1(A∪T1(A))⊆ A∪T1(A)∪T1(A)∪T1(T1(A))⊆ A∪T1(A)∪T1(A) = k1(A);
(iv) k1(A∪B) = A∪B∪T1(A∪B)⊆ A∪B∪T1(A)∪T1(B) = k1(A)∪ k1(B) and k1(A)∪ k1(B) = A∪T1(A)∪B∪T1(B) =

A∪B∪ (A∩T1(B))∪T1(A∪B)∪ (B∩T1(A))⊆ A∪B∪T1(A∪B) = k1(A∪B).
Recall the following lemma:

Lemma 2.14. [20] An ideal topological space (X ,τ,I ) is Hayashi-Samuel if and only if, for each O ∈ τ , O∗ =Cl(O).

Theorem 2.15. Let (X ,τ,I ) be a Hayashi-Samuel space. Then for each open set U, Bd∗(U)⊆U∗ \U.

Proof. Bd∗(U) =U∗∩ (X \U)∗ ⊆Cl(U)∩Cl(X \U) =U∗∩ (X \ Int(U)) =U∗ \U , since the space is Hayashi-Samuel.

We recall the following theorem:

Theorem 2.16. [19] Let (X ,τ,I ) be an ideal topological space. Then, the following properties are equivalent:

1. τ ∩I = { /0};

2. I ∈I , then Int(I) = /0;

3. for every G ∈ τ , G⊆ G∗;

4. X = X∗;

5. if O ∈ τ , then O∗ =Cl(O).

Theorem 2.17. An ideal topological space (X ,τ,I ) is Hayashi-Samuel if and only if, for each closed set A⊆ X, Bd∗(A) =
A∗ \ Int(A).

Proof. Bd∗(A) = A∗∩ (X \A)∗ = A∗∩Cl(X \A) = A∗ \ Int(A), since the space is Hayashi-Samuel.
From the given condition, we have Bd∗(X) = X∗ \ Int(X). Then /0 = X∗ \ Int(X) (from Theorem 2.12) implies X∗ = X .

Thus, τ ∩I = { /0}.

Theorem 2.18. An ideal topological space (X ,τ,I ) is Hayashi-Samuel if and only if, for each open set U ⊆ X, Bd∗(U) =
Bd(U).

Proof. Suppose (X ,τ,I ) is Hayashi-Samuel. Then for U ∈ τ , Bd∗(U) =U∗∩ (X \U)∗ =Cl(U)∩Cl(X \U) = Bd(U).
Conversely suppose that Bd∗(U) = Bd(U). Then U∗∩(X \U)∗ =Cl(U)∩Cl(X \U) implies U∗∩(X \ψ(U)) =Cl(U)\U .

Thus U∗ \ψ(U) =Cl(U)\U implies Cl(U)\U . Thus U∗ \ψ(U) =Cl(U)\U implies Cl(U)\U ⊆U∗ \U (since for open
set U, U ⊆ ψ(U) [8]). This implies that Cl(U) ⊆U∗ and hence U ⊆Cl(U) ⊆U∗. Thus U ⊆U∗. Therefore, (X ,τ,I ) is
Hayashi-Samuel.

Corollary 2.19. Let (X ,τ,I ) be an ideal topological space. Then, the following properties are equivalent:

1. τ ∩I = { /0};

2. I ∈I , then Int(I) = /0;

3. for every G ∈ τ , G⊆ G∗;



Characterizations of Hayashi-Samuel Spaces via Boundary Points — 223/226

4. X = X∗;

5. if O ∈ τ , then O∗ =Cl(O);

6. Bd∗(A) = A∗ \ Int(A);

7. for each U ∈ τ , Bd∗(U) = Bd(U).

Theorem 2.20. Let (X ,τ,I ) be an ideal topological space. Then for A, B ⊆ X, Bd∗(A)∪Bd∗(B) = Bd∗(A\B)∪Bd∗(A∩
B)∪Bd∗(B\A).

Proof. We have:
(a) Bd∗(A∩B) = Bd∗(X \ (A∩B)) = Bd∗[(X \A)∪ (X \B)]⊆ Bd∗(X \A)∪Bd∗(X \B) = Bd∗(A)∪Bd∗(B).
(b) Bd∗(A\B) = Bd∗[A∩ (X \B)]⊆ Bd∗(A)∪Bd∗(X \B) = Bd∗(A)∪Bd∗(B).
(c) Bd∗(B\A)⊆ Bd∗(A)∪Bd∗(B).
Thus from (a), (b) and (c) Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A)⊆ Bd∗(A)∪Bd∗(B).
Further, we have Bd∗(A)∪Bd∗(B) =Bd∗[(A\B)∪(A∩B)]∪Bd∗[(B\A)∪(A∩B)]⊆Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A).
Therefore, Bd∗(A)∪Bd∗(B) = Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A).

Theorem 2.21. Let A and B be subsets of a topological space (X ,τ) with an ideal I . Then the following properties hold:
(1) Bd∗(A)∪Bd∗(B) = Bd∗(A∩B)∪Bd∗(A\B)∪Bd∗(A∪B).
(2) Bd∗(A)∪Bd∗(B) = Bd∗(A∪B)∪Bd∗(B\A)∪Bd∗(A∩B).
(3) Bd∗(A)∪Bd∗(B) = Bd∗(A\B)∪Bd∗(B\A)∪Bd∗(A∩B).
(4) Bd∗(A)∪Bd∗(A∆B) = Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A) (∆ denotes the symmetric difference).
(5) Bd∗(B)∪Bd∗(A∆B) = Bd∗(A\B)∪Bd∗(A∩B)∪Bd∗(B\A).

Proof. (1) If we put X \B in the relation of the Theorem 2.20 instead of B, then we get,

Bd∗(A)∪Bd∗(X \B) = Bd∗(A\ (X \B))∪Bd∗(A∩ (X \B))∪Bd∗((X \B)\A).

This implies that

Bd∗(A)∪Bd∗(B) = Bd∗(A∩B)∪Bd∗(A\B)∪Bd∗(A∪B).

(2) If we put X \A in the relation of the Theorem 2.20 instead of A, then we get,

Bd∗(X \A)∪Bd∗(B) = Bd∗((X \A)\B)∪Bd∗((X \A)∩B)∪Bd∗(B\ (X \A)).

This implies that

Bd∗(A)∪Bd∗(B) = Bd∗(A∪B)∪Bd∗(B\A)∪Bd∗(A∩B).

(3) If we put X \A instead of A and X \B instead of B in the relation of the Theorem 2.20 we get,
Bd∗(X \A)∪Bd∗(X \B) = Bd∗[(X \A)\ (X \B)]∪Bd∗[(X \A)∩ (X \B)]∪Bd∗[(X \B)\ (X \A)].
This implies that

Bd∗(A)∪Bd∗(B) = Bd∗(B\A)∪Bd∗(A∪B)∪Bd∗(A\B).

(4) From Theorem 2.20,
Bd∗(A)∪ Bd∗(A∆B) = Bd∗[A \ (A∆B)]∪ Bd∗[A∩ (A∆B)]∪ Bd∗[(A∆B) \ A] = Bd∗(A∩ B)∪ Bd∗(A \ B)∪ Bd∗(B \ A) =

Bd∗(B)∪Bd∗(A∆B).
(5) The proof of (5) is obvious from (4).

We have from Theorem 2.21, the union of any two distinct elements of {Bd∗(A), Bd∗(B), Bd∗(A∆B)} is equal to the union
of any three distinct elements of {Bd∗(A∪B), Bd∗(A∩B), Bd∗(A\B), Bd∗(B\A)}

Definition 2.22. Let (X ,τ,I ) be an ideal topological space. The operator ()∗− :℘(X)→℘(X) is defined as:

A∗− = A∗ \A, for A⊆ X .

Theorem 2.23. Let (X ,τ,I ) be an ideal topological space and A, B⊆ X, then following conditions hold:
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1. /0∗− = /0;

2. A∩A∗− = /0;

3. (A∪B)∗− = (A∗− \B)∪ (B∗− \A);

4. (A∗−)∗− ⊆ A.

Proof. The proof of 1. and 2. are obvious from definition.
3. (A∪B)∗− = (A∪B)∗ \ (A∪B) = (A∗∪B∗)\ (A∪B) = [(A∗ \A)\B]∪ [(B∗ \B)\A] = (A∗− \B)∪ (B∗− \A).
4. (A∗−)∗− = (A∗−)∗ \A∗− = (A∗ \A)∗ \ (A∗ \A)⊆ (A∗)∗ \ (A∗ \A)⊆ A∗ \ (A∗ \A)⊆ A.

Definition 2.24. Let (X ,τ,I ) be an ideal topological space and A,B⊆ X. The operator k2 :℘(X)→℘(X) on X is defined by

k2(A) = A∪T2(A),

where T2 :℘(X)→℘(X) is an operator which satisfies the following conditions:
(i) T2( /0) = /0,
(ii) A∩T2(A) = /0,
(iii) T2(A∪B) = (T2(A)\B)∪ (T2(B)\A),
(iv) T2(T2(A))⊆ A.

The operator k2 satisfies the following conditions:
(i) k2( /0) = /0∪T2( /0) = /0;
(ii) A⊆ A∪T2(A) = k2(A);
(iii) k2(A∪B) = (A∪B)∪T2(A∪B) = (A∪B)∪ (T2(A)\B)∪ (T2(B)\A) = A∪T2(A)∪B∪T2(B) = k2(A)∪ k2(B);
(iv) k2(k2(A)) = k2(A)∪T2(k2(A)) = k2(A)∪T2(A∪T2(A)) = k2(A)∪ (T2(A)\T2(A))∪ (T2(T2(A))\A) = k2(A).
Thus, the operator k2 is a closure operator on (X ,τ,I ).

Theorem 2.25. Let (X ,τ,I ) be an ideal topological space and A, B⊆ X. Then, the following conditions hold:

1. A∗−∪B∗− = (A∩B∗−)∪ (A∪B)∗−∪ (A∗−∩B);

2. (A∗)∗− = /0;

3. A is ∗-open [5] if and only if A∗− = Bd∗(A).

Proof. 1. Note that A∗ ⊆ (A∪B)∗ if and only if (A∗ \A)\B⊆ (A∪B)∗ \ (A∪B) if and only if A∗− \B⊆ (A∪B)∗−. Therefore,
(A∗− \B)∪ (A∗−∩B)⊆ (A∪B)∗−∪ (A∗−∩B) and A∗− ⊆ (A∪B)∗−∪ (A∗−∩B). Analogously, B∗− ⊆ (A∪B)∗−∪ (B∗−∩A).
So A∗−∪B∗− ⊆ (A∪B)∗−∪ (B∗−∩A)∪ (A∗−∩B).

For the reverse inclusion we will only show that (A∪B)∗− ⊆ A∗−∪B∗−. Note that (A∪B)∗ \ (A∪B)⊆ (A∗ \A)∪ (B∗ \B).
Thus (A∪B)∗− ⊆ A∗−∪B∗−. This implies that (A∪B)∗−∪ (A∩B∗−)∪ (B∩A∗−)⊆ A∗−∪B∗−.

2. Note that (A∗)∗− = (A∗)∗ \A∗ ⊆ A∗ \A∗ = /0.

Theorem 2.26. Let (X ,τ,I ) be an ideal topological space. Then a subset A of X is ∗-closed [5] if and only if A∗− = /0.

Proof. Suppose A is ∗-closed. Then A∪A∗ ⊆ A and hence A∗ ⊆ A. Now A∗− = A∗ \A = /0.
Conversely suppose that A∗− = /0. Then A∗ \A = /0 implies A∗ ⊆ A. Thus A∪A∗ = A. So A is ∗-closed.

Theorem 2.27. Let (X ,τ,I ) be an ideal topological space and A⊆ X. If A∗− = X, then A is I -dense.

Proof. Given that A∗− = X , then A∗ \A = X . Thus X ⊆ A∗.

Converse of the above theorem need not hold in general:

Example 2.28. Let X = {a,b,c}, τ = { /0,X ,{a}} and I = { /0,{c}}. Then ({a,c})∗ = X, but ({a,c})∗ \{a,c} 6= X.

Definition 2.29. We define the operator ()∗ψ on an ideal topological space (X ,τ,I ) in the following way: for a subset A of X,
A∗ψ = A\ψ(A).

Theorem 2.30. Let (X ,τ,I ) be an ideal topological space and A, B⊆ X. Then following conditions hold:

1. X∗ψ = /0;
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2. A∗ψ ⊆ A;

3. (A∩B)∗ψ = (A∗ψ ∩B)∪ (A∩B∗ψ);

4. (A∗ψ)∗ψ = A∗ψ , if the space is Hayashi-Samuel.

Proof. The proofs of 1. and 2. hold trivially.
3. (A∩B)∗ψ = (A∩B)\ψ(A∩B) = (A∩B)∩ [X \ψ(A)∩ψ(B)] = [A∩ (X \ψ(A))∩B]∪ [A∩B∩ (X \ψ(B))] = (A∗ψ ∩

B)∪ (A∩B∗ψ).
4. (A∗ψ)∗ψ = A∗ψ \ψ[A∗ψ ] = (A\ψ(A))\ψ[A\ψ(A)] = (A\ψ(A))\ψ(A\ [X \ (X \A)∗]) = (A\ψ(A))\ψ[A\X ∪ (X \

A)∗] = (A\ψ(A))\ /0 = A∗ψ .

Definition 2.31. Let (X ,τ,I ) be an ideal topological space and A,B⊆ X. The operator Intψ :℘(X)→℘(X) on X is defined
by

Intψ(A) = A\T3(A),

where T3 :℘(X)→℘(X) is an operator which satisfies the following conditions:
(i) T3(X) = /0,
(ii) T3(A)⊆ A,
(iii) T3(A∩B) = (T3(A)∩B)∪ (A∩T3(B)),
(iv) T3(T3(A)) = T3(A), if the space is Hayashi-Samuel.

The operator Intψ satisfies the following conditions:
(i) Intψ(X) = X \T3(X) = X ;
(ii) Intψ(A) = A\T3(A)⊆ A;
(iii) Intψ(A∩B) = (A∩B)\T3(A∩B) = (A∩B)\ [(T3(A)∩B)∪(T3(B)∩A)] = [A\T3(A)]∩(B\T3(B)) = Intψ(A)∩Intψ(B)

(from (ii));
(iv) Intψ(Intψ(A)) = Intψ [A \T3(A)] = [A \T3(A)] \T3[A \T3(A)] = [A \T3(A)] \T3(A∩T3(A)c) ⊇ (A \T3(A)) \T3(A)∩

T3(X \T3(A)) (from (iii)) ⊇ (A\T3(A))\ (T3(A)∩ (X \T3(A)) (from 3. of Theorem 2.30) = Intψ(A).
This shows that Intψ is an interior operator on X .
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