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1. Introduction 

Because of the properties such as low density, corrosion 

resistance, good strength and castability, aluminum (Al) 

alloys have been the most popular materials and found wide 

range of applications for decades. Components made of Al 

alloys are generally critical parts of aerospace and 

automobile industries in terms of high safety requirements. 

Therefore, the mechanical properties of Al alloys have to 

meet strict specifications and the keys to obtain them are the 

manufacturing and treatment processes [1-5] 

Pores in a cast may serve as crack initiators and affect the 

mechanical properties negatively [6]. Catastrophic failure is 

inevitable for a component with high porosity. It is clear that 

porosity of the cast is the major problem due to high 

solubility of hydrogen in molten aluminum [7-9]. Because of 

the reaction between aluminum and air humidity (Equation 

1), an oxide film is formed and entrained into the melt. It 

makes two non-wetting surfaces, known as bifilm, as shown 

in Fig. 1 [10-12]. 

HsolidOAlgasOHliquidAl 6)()(3)(2 322       (1) 

Therefore, degassing process and grain refinement 

treatment are the most important operations affecting the 

performance of casting process [1]. There are various 

processes to reduce hydrogen amount in molten aluminum, 

such as; hexachloroethane (C2Cl6) pellets, vacuum degassing 

[7] and ultrasonic degassing [13-15]. The first mentioned 

degassing process is harmful for the environment [16] due to 

the release of dangerous Cl2 gases into the atmosphere [17]. 

On the other hand, the vacuum degassing method is a high 

cost method for the initial installation [7]. But, ultrasonic 

degassing is an environmentally clean technique [6]. 

 

Fig. 1. Schematic representation of bifilm formation into the 

melt [10] 
 
In the ultrasonic degassing methods, high intensity 
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vibration is applied to molten aluminum to generate 

oscillating pressure fields which create large number of small 

cavities in the melt. These numerous cavities promote the 

hydrogen diffusion from molten aluminum to the developed 

bubbles which coagulate and float to melt surface [18-20]. In 

the literature, there are various studies investigating the 

effects of parameters of ultrasonic treatment on 

microstructure and mechanical properties of casting alloys. 

Xu et al [7] investigated the degassing effect of ultrasonic 

treatment at different temperature (620, 660, 700 and 740°C) 

for different amounts of molten A356 aluminum alloy (0.2, 

0.6 and 2 kg). They only used reduce pressure test (RPT) to 

evaluate the density of samples. They deduced that ultrasonic 

treatment has significant effect on degassing process 

especially at the higher temperatures such as between 700 

and 740 ℃. And additionally, the ultrasonic process was 

more effective on the smallest amount of melt. Jia et al [21] 

studied the effect of ultrasonic treatment on the grain 

refinement of A356 aluminum alloy. Tests were performed 

on 3 kg of molten alloy at 750°C for 15 min. To analyze the 

efficiency of ultrasonic vibration, they prepared samples 

with and without ultrasonic treatment. And they concluded 

that UTS, YS and elongation values increased from 228 

MPa,  180 MPa and 4% to 190 MPa, 250 MPa and 4.9%, 

respectively. Li et al [22] investigated the influence of 

ultrasonic treatment time (0, 60, 120, 180, 240 s) and the 

cooling condition on the gas content of aluminum alloy 

through the ingot density. In all studies, the results are 

evaluated by measuring gas content and density by using 

RPT test method. 

In addition to these related literatures, in this study the 

effects of ultrasonic treatment are investigated  at different 

temperatures with different duration. The higher amount of 

molten metal was also used in the experimental studies and 

the effects of all parameters on microstrucure and 

mechanical properties are examined together. Bifilm 

analysis was conducted and the relationship between bifilm 

content and mechanical properties was discussed. Ultimate 

tensile strength and elongation values were used to calculate 

the Quality Index (QI) of A356 alloy as shown in the 

Equation 2 [22,23,36]. 
 

)log(* elongationKUTSQI             (2) 
 
Abbreviations denoted by QI, UTS and K represent 

quality index, ultimate tensile strength and constant (150 

MPa for A356), respectively. 

QI is demanded by engineers to analyze if mechanical 

properties of alloys are suitable with working condition or 

not, especially in automotive and aerospace industry [24]. So 

this index can be used to evaluate alloys properties. 
 
 
 
 
 
 

2. Experimental Procedure 

Chemical analysis of the ingots used in this study was 

obtained with a commercial optical emission spectrometer. 

The chemical composition of A356 alloy ingots is given in 

Table 1.  
 

Table 1. Chemical composition of A356 alloy 

 
Two different crucibles were prepared with 2 kg and 4 kg 

of A356 ingot pieces to determine the effect of charge 

amount to the performance of ultrasonic degassing treatment.  

For each casting process, ingot pieces were weighed and held 

in a graphite crucible and melted in the electric furnace at 

different temperature (700, 720 and 740°C). After melting, a 

Rtul model ultrasonic equipment (Fig. 2) which consists of 

an ultrasonic generator, a transducer, a booster and a horn is 

submerged into the crucible for degassing process. This 

equipment is capable of converting 3 kW of electric energy 

at a constant resonant frequency of 19.8 kHz.  

 

Fig. 2. Ultrasonic degassing equipment 

Degassing process is performed at temperatures 

mentioned above during 60, 180 and 300 seconds. Casting 

samples without degassing were also prepared for 

comparison. Molten metal was poured into a bifilm mold 

(Fig. 3a) and a permanent mold (Fig. 3b) preheated to 340°C.   

 

 

 

 

 

Ele-

ment 

Al Cu Fe Mg Mn Si Ti Zn 

Content 

(wt %) 
92 0.1 0.1 0.3 0.05 7.3 0.1 0.05 
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Fig. 3. a) Bifilm test mold, b) permanent mold and c) bifilm test 

sample 

Bifilm test samples (one sample for each condition) were 

prepared under 80 mbar vacuum for 8 seconds by an Ideco 

reduced pressure test (RPT) equipment. Clemex Vision Lite 

software was used to measure bifilm index on sectioned 

bifilm test samples seen in Fig. 3c. T6 heat treatment process 

was applied to all samples at three steps; solutionizing step 

was applied at 540˚C for 4 hours, quenching step was 

addressed in water at 80˚C and all in all artificially aging step 

was studied at 155˚C for 3 hours. Samples for mechanical 

tests and microstructural examination were taken from 

permanent mold cast sample shown in Fig. 4a. For each test 

condition 5 different samples were prepared for tensile test. 

For microstructural examination, surfaces of the samples 

were prepared by grinding with SiC paper and polishing with 

diamond paste for microstructural analysis. For macro and 

micro examination, etching solution consisted of FeCl3 and 

0.5% HF were used, respectively. Tensile test samples (Fig. 

4b) were prepared in accordance with DIN EN ISO 6892-1. 

Tensile tests were performed by a Zwick Z100 Model tensile 

test machine with DIN EN 10002-1 test standard (as pre-

load: 5N/mm2, test speed: 4.2 mm/min.). 

 

 

Fig. 4. a) Cast sample mold and b) tensile test sample 

3. Results and Discussion 

Macrographs of the samples for 2 kg and 4 kg charged 

castings are given in Fig. 5 and Fig. 6.  

According to the macrostructure it can be said that grain 

size is getting smaller by increasing ultrasonic treatment 

duration. Linear intercept method was used to measure the 

grain size of samples. The grain sizes of the samples 

produced with 2 kg at 740˚C were measured as 1940,6 µm 

and 1125,6 µm for the samples without ultrasonic application 

and for 300 seconds ultrasonic application, respectively. The 

grain sizes of the samples produced with 4 kg at 740˚C were 

measured as 2062,6 µm and 906,2 µm for the samples 

without ultrasonic application and for 300 seconds ultrasonic 

application, respectively. Jian et al [25] investigated the 

effect of different types of power ultrasound on solidification 

of A356 alloy as continuous, intermittent and isothermal 

processing. They declared that the average grain size reduces 

by intermittent acoustic vibration. Because while the latent 

heat is being released during decreasing the melt 

temperature, ultrasonic vibration assists to prevent the local 

heating up and allow for occurring heterogeneous nucleation 

[26]. So, ultrasonic vibration is firstly to generate the initial 

crystallites and activation of potential nucleation sites in melt 

volume [27]. Reduction of grain size is described by two 

mechanisms that cause cavitation-enhanced nucleation and 

cavitation-induced dendrite-fragmentation [28,29]. Also 

cavitation promotes to wet of non-metallic inclusions and 

decrease porosities [30].  

 

 

 

 

Fig. 5. Macrostructure of the 2 kg casting samples after 

ultrasonic treatments 
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Fig. 6. Macrostructure of the 4 kg casting samples after 

ultrasonic treatments 

 

The grain size of the samples which were ultrasonically 

treated at 700˚C and 740˚C  for 300 seconds are 861,1µm 

and 1125,6 µm, respectively. This results show that low 

temperature has an additional effect on ultrasonic treatment 

in reducing grain size. 

Micrographs of the samples for 2 kg and 4 kg castings are 

given in Fig. 7 and 8. According to the microstructural 

examination and some studies in the literature, it can be said 

that porosity decreases by increasing the ultrasonic treatment 

duration [20,31]. It can be clearly seen in Fig. 7 that 

dendirites are getting smaller with decreasing temperature 

and increasing duration. This can be explained by the inverse 

relationship between temperature and viscosity. It can be 

calculated theoretically by using Arrhenius as Equation 3 

[32]. 

 











RT

E
exp0                            (3) 

 

η0: is a constant for a given liquid  

E: activation energy for viscous flow of the liquid 

R: universal gas constant 

T: absolute temperature 

 

In the literature, Dispinar has detailed how bifilm index 

could be calculated [9-12,33-35]. In this study, in order to 

determine the correlation between bifilm and mechanical test 

results, bifilm density was taken into account. Equation 4 

was used to calculate bifilm density: 

 

𝐵𝑖𝑓𝑖𝑙𝑚 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = (
𝑇𝑜𝑡𝑎𝑙 𝐵𝑖𝑓𝑖𝑙𝑚 𝐿𝑒𝑛𝑔ℎ𝑡

𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝐹𝑖𝑒𝑙𝑑
) ∗ 100     (4) 

In Fig. 9, the change of the bifilm density with the 

ultrasonic treatment duration for 2 kg and 4 kg casting is 

given respectively. According to Fig. 9a, it can be seen that 

the bifilm density values vary irregularly. Since the amount 

of liquid metal in 2 kg casting is small, it fluctuates during 

ultrasonic treatment. In Fig. 9b, the bifilm density values 

decrease at 720°C and 740°C whereas these values increase 

at 700°C with increasing ultrasonic treatment duration (from 

0 sec to 300 sec). 

 

 

           Fig. 7. Microstructure of the 2 kg casting samples 

after ultrasonic treatments 

 

 

         Fig. 8. Microstructure of the 4 kg casting samples 

after ultrasonic treatments 

 

The change in ultimate tensile strength (UTS) values is 

irregular as well as bifilm density values for 2 kg casting 

(Fig. 10a). At 720°C and 740°C UTS values increase with 

ultrasonic treatment duration for 4 kg casting (Fig. 10b). 

When Fig. 9 and 10 are evaluated it can be said that there is 

an inverse relationship between bifilm density and UTS. This 

results are supported  by the earlier researches [9, 11]. All 

the test results are considered to determine the main effect of 

temperature, amount of molten metal and ultrasonic 

treatment duration on UTS. “Main effect plot” in Minitab is 

generally used to examine differences between level means 

for one or more factors. The effects of three different 

parameter (melt temperature, amount of aluminium and 

ultrasonic application time) on UTS value are taken into 

consideration in the current study. According to the graphic 

in Fig. 10c, it can be said that decreasing temperature 

increases the UTS value. Additionally, the amount of molten 

metal has the most important effect on UTS results. Porosity 

density values are higher for 2 kg compared to 4 kg casting. 
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Because the amount of molten Al metal is low, for 2 kg 

casting molten metal is fluctuated by ultrasonic vibration and 

causes porosity formation. Also, with the increase in 

ultrasonic treatment duration, the inclusions at the bottom of 

the slag mix back into the melt even though the surface does 

not excessively fluctuate and the slag is not broken during 

the mixing process. For 4 kg, this situation is not seen. It can 

be seen in Fig. 9 that bifilm value of the sample taken from a 

2 kg casting mold is higher than that taken from a 4 kg 

casting mold. Mechanical test results affected negatively due 

to being of bifilm as discussed previously. The second 

significant effect is casting temperature and the last one is 

ultrasonic treatment duration. 

 

 

 

(a) 

 

 

(b) 

Fig. 9. Bifilm density values for a) 2 kg and b) 4 kg casting 

samples. 
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(b) 

 

(c) 

 

Fig. 10. Ultimate tensile strength values for a) 2 kg, b) 4 kg 

casting samples and (c) main effect of temperature, amount of 

molten metal and ultrasonic applying time on UTS. 

 

 

 

 

 

 

 

 

 

 

In Fig. 11, the change of elongation with time is given. The 

elongation value reaches its maximum value 7.59% at 720°C 

for 2 kg casting. For 4 kg casting, maximum elongation is 

9.07% at 720°C for 300 seconds ultrasonic time. The results 

show that the increase in bifilm density leads to decrease in 

UTS and elongation [11,37].  

Both ultimate tensile strength and elongation results were 

taken into account for the calculation of quality index (QI). 

These values are given in Fig. 12. It can be seen that ultra-

sonic treatment duration and temperature affect the mechan-

ical test results significantly. The maximum values for UTS 

and elongation were reached at 720oC after 300 seconds for 

4 kg casting. 
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(b) 

 

Fig. 11. Elongation values for a) 2 kg and b) 4 kg casting 

samples. 
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(b) 

Fig. 12. Quality index calculated for (a) 2 kg and (b) 4 kg 

casting samples. 

 

 

4. Conclusions 

The results of the study can be summarized as follows: 

 

 According to the macrostructures, grain size of the sam-

ple is getting smaller by increasing ultrasonic treatment 

duration at all temperature for both 2 kg and 4 kg casting 

samples. 

 Microstructural investigation of the 4 kg casting samples 

showed that porosity decreases by increasing the ultra-

sonic treatment duration. But the result is not clear for 2 

kg casting samples. 

 Base on the graphics, it can be said that change of the 

bifilm density, ultimate tensile strength and elongation 

values fluctuate with different ultrasonic durations at all 

temperatures for 2 kg casting samples. However, at 

720°C and 740°C ultimate tensile strength values in-

crease with ultrasonic treatment duration for 4 kg cast-

ings.  

 There is an inverse relationship between bifilm density 

and mechanical test results.  

 The maximum values for both ultimate tensile strength 

and elongation were obtained at 720°C after 300 seconds 

for 4 kg casting.  
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