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ABSTRACT

The paper is devoted to study quasi-para-Sasakian manifolds. Basic properties of such manifolds
are obtained and general curvature identities are investigated. Next it is proved that ifM is a quasi-
para-Sasakian manifold of constant curvature K. Then K ≤ 0 and (i) if K = 0, the manifold is
paracosymplectic, (ii) if K < 0, the quasi-para-Sasakian structure of M is obtained by a homothetic
deformation of a para-Sasakian structure. Finally, an example of a 3-dimensional proper quasi-
para-Sasakian manifold is constructed.
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1. Introduction

Almost paracontact metric structures are the natural odd-dimensional analogue to almost paraHermitian
structures, just like almost contact metric structures correspond to the almost Hermitian ones. The study of
almost paracontact geometry was introduced by Kaneyuki and Williams in [8] and then it was continued by
many other authors. A systematic study of almost paracontact metric manifolds was carried out in one of
Zamkovoy’s papers [17]. Comparing with the huge literature in almost contact geometry, it seems that there
are necessities for new studies in almost paracontact geometry. Therefore, paracontact metric manifolds have
been studied in recent years by many authors, emphasizing similarities and differences with respect to the
most well known contact case. Interesting papers connecting these fields are, for example, [5], [4], [15], [17],
and references therein.

Z. Olszak studied normal almost contact metric manifolds of dimension 3 [12]. He derived certain necessary
and sufficient conditions for an almost contact metric structure on manifold to be normal and curvature
properties of such structures and normal almost contact metric structures on a manifold of constant curvature
were studied. Recently, J. Wełyczko studied curvature and torsion of Frenet-Legendre curves in 3-dimensional
normal almost paracontact metric manifolds [16] and then normal almost paracontact metric manifolds were
studied in [1], [9], [10].

The notion of quasi-Sasakian manifolds, introduced by D. E. Blair in [2], unifies Sasakian and cosymplectic
manifolds. By definition, a quasi-Sasakian manifold is a normal almost contact metric manifold whose
fundamental 2-form Φ := g(·, φ·) is closed. Quasi-Sasakian manifolds can be viewed as an odd-dimensional
counterpart of Kaehler structures. These manifolds have been studied by several authors (e.g. [7], [11], [14]).

Although quasi-Sasakian manifolds were studied by several different authors and are considered a well-
established topic in contact Riemannian geometry, to the author’s knowledge, there do not exist any
comprehensive study about quasi-para-Sasakian manifolds.

Motivated by these considerations, in this paper we make the first contribution to investigate basic properties
and general curvature identities of quasi-para-Sasakian manifolds.

The paper is organized in the following way.
Section 2 is preliminary section, where we recall the definition of almost paracontact metric manifold and

quasi-para-Sasakian manifolds.
In Section 3, we study basic properties and curvature identities of such manifolds.
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In the short auxiliary Section 4, D-homothetic deformations of quasi-para-Sasakian structures are studied
and in Section 5, we characterize quasi-para-Sasakian manifolds of constant curvature. Finally, an example of
3-dimensional proper quasi-para-Sasakian manifold is given.

2. Preliminaries

Let M be a (2n+ 1)-dimensional differentiable manifold and φ is a (1, 1) tensor field, ξ is a vector field and η
is a one-form on M. Then (φ, ξ, η) is called an almost paracontact structure on M if

(i) φ2 = Id− η ⊗ ξ, η(ξ) = 1,
(ii) the tensor field φ induces an almost paracomplex structure on the distribution D = ker η, that is

the eigendistributions D±, corresponding to the eigenvalues ±1, have equal dimensions, dimD+ =
dimD− = n.

The manifold M is said to be an almost paracontact manifold if it is endowed with an almost paracontact
structure [17].

Let M be an almost paracontact manifold. M will be called an almost paracontact metric manifold if it is
additionally endowed with a pseudo-Riemannian metric g of a signature (n+ 1, n), i.e.

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ). (2.1)

For such manifold, we have
η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0. (2.2)

Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ by

Φ(X,Y ) = g(X,φY ), (2.3)

usually called fundamental form.
For an almost paracontact manifold, there exists an orthogonal basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} such that

g(Xi, Xj) = δij , g(Yi, Yj) = −δij and Yi = φXi, for any i, j ∈ {1, . . . , n}. Such basis is called a φ-basis.
On an almost paracontact manifold, one defines the (1, 2)-tensor field N (1) by

N (1)(X,Y ) = [φ, φ] (X,Y )− 2dη(X,Y )ξ, (2.4)

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X,Y ) = φ2 [X,Y ] + [φX, φY ]− φ [φX, Y ]− φ [X,φY ] .

If N (1) vanishes identically, then the almost paracontact manifold (structure) is said to be normal [17]. The
normality condition says that the almost paracomplex structure J defined on M ×R

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),

is integrable.
If dη(X,Y ) = g(X,φY ) = Φ(X,Y ), then (M,φ, ξ, η, g) is said to be paracontact metric manifold. In a paracontact

metric manifold one defines a symmetric, trace-free operator h = 1
2Lξφ, where Lξ, denotes the Lie derivative.

It is known [17] that h anti-commutes with φ and satisfies hξ = 0, trh =trhφ = 0 and ∇ξ = −φ+ φh, where ∇ is
the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).

Moreover h = 0 if and only if ξ is Killing vector field. In this case (M,φ, ξ, η, g) is said to be a K-paracontact
manifold. Similarly as in the class of almost contact metric manifolds [3], a normal almost paracontact metric
manifold will be called para-Sasakian if Φ = dη [6]. Also in this context the para-Sasakian condition implies the
K-paracontact condition and the converse holds only in dimension 3.

Definition 2.1. An almost paracontact metric manifold (M2n+1, φ, ξ, η, g) is called quasi-para-Sasakian if the
structure is normal and its fundamental 2-form Φ is closed.

The class of para-Sasakian manifolds is contained in the class of quasi-para-Sasakian manifolds. The converse
does not hold in general. A paracontact metric manifold will be called paracosymplectic if dΦ = 0, dη = 0 [5], also,
the class of paracosymplectic manifolds is contained in the class of quasi-para-Sasakian manifolds.
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3. Basic Structure and Curvature Identities

Definition 3.1. For a quasi-para-Sasakian manifold (M2n+1, φ, ξ, η, g), define the (1, 1) tensor field A by

AX = ∇Xξ. (3.1)

Remark 3.1. For the easy readability of the identities, we will use g(AX,Y ) = (∇Xη)Y .

Since the proof of the following Lemma is quite similar to Lemma 4.1 of [2], we don’t give the proof of it.

Lemma 3.1. Vector field ξ of a quasi-para-Sasakian structure (φ, ξ, η, g) is a Killing vector field.

g(AX,Y ) + g(X,AY ) = 0. (3.2)

Proposition 3.1. For a quasi-para-Sasakian manifold (M2n+1, φ, ξ, η, g), we have

(∇Xφ)Y = −g(AX,φY )ξ − η(Y )φAX, (3.3)

∇ξφ = 0, ∇ξξ = 0, ∇ξη = 0, (3.4)

AφX = φAX, (3.5)

g(AφX, φY ) = −g(AX,Y ), (3.6)

g(AφX, Y ) = −g(AX,φY ), (3.7)

where X , Y are arbitrary vector fields on M2n+1.

Proof. Using the Cartan magic formula
LξΦ = d(iξΦ) + iξ(dΦ),

we find LξΦ = 0, since dΦ = 0 and (iξΦ)X = Φ(ξ,X) = g(ξ, φX) = 0, where L indicates the operator of the Lie
differentiation. If we use the definition of quasi-para-Sasakian manifold, (3.2) and the well known equation
2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ]) in Proposition 2.4 of [17], we obtain (3.3).
LξΦ = 0, properties of φ and (3.4) follow

(LξΦ)(X,Y ) = LξΦ(X,Y )− Φ(LξX,Y )− Φ(X,LξY )

0 = g(φAY −AφY,X).

So we obtain (3.5). In virtue of (3.5), we obtain (3.6) and (3.7).

Lemma 3.2. For a quasi-para-Sasakian manifold (M2n+1, φ, ξ, η, g) with its curvature transformation RXY =
[∇X ,∇Y ]−∇[X,Y ], the following equations hold

R(ξ,X)Y = −(∇XA)Y, (3.8)

g(R(ξ,X)Y, ξ) = g(AX,AY ), (3.9)

g(R(ξ,X)φY, φZ) + g(R(ξ,X)Y,Z) = g(AX,AY )η(Z)− g(AX,AZ)η(Y ), (3.10)

S(ξ, ξ) = −trA2. (3.11)

Proof. Using the fact that ξ is Killing vector field and (3.2), one can easily get (3.8). If we take the inner product
of (3.8) with ξ and then use (3.2), we have (3.9). Using (3.3), we get

A∇XφY = −η(Y )φA2X + φA∇XY, (3.12)
A(∇Xφ)Y = −η(Y )φA2X.

From (3.5) and (3.3), we have

φ∇XAY −∇XAφY = −(∇Xφ)AY = g(AX,φAY )ξ. (3.13)

Taking into account (3.8), (3.12) and (3.13), we obtain

R(ξ,X)φY − φR(ξ,X)Y = −η(Y )φA2X + g(AX,φAY )ξ. (3.14)

On the other hand, if we take the inner product of (3.14) with φZ and use (3.2) and (3.9), we get (3.10). The
proof of (3.11) is a direct consequence of (3.9).
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Proposition 3.2. For a quasi-para-Sasakian manifold (M2n+1, φ, ξ, η, g), we also have

g(R(X,Y )φZ, φW ) + g(R(X,Y )Z,W ) = η(W )g(R(X,Y )Z, ξ) + η(Z)g(R(X,Y )ξ,W )

−g(AX,φW )g(AY, φZ) + g(AX,φZ)g(AY, φW )

+g(AX,Z)g(AY,W )− g(AX,W )g(AY, Z). (3.15)

Proof. The following formula is valid

(∇X∇Y φ)Z = ∇X(∇Y φ)Z − (∇∇XY
φ)Z − (∇Y φ)∇XZ.

Now we suppose that P is a fixed point of (M2n+1, φ, ξ, η, g) and X,Y, Z are vector fields such that (∇X)P =
(∇Y )P = (∇Z)P = 0. Hence the last identity at the point P , reduces to the form

(∇X∇Y φ)Z = ∇X(∇Y φ)Z − (∇Y φ)∇XZ. (3.16)

Now, after differentiating (3.3) covariantly and using (3.16), we find

(∇X∇Y φ)Z = −g(∇XAY, φZ)ξ − g(AY, φZ)AX − g(AX,Z)φAY − η(Z)φ∇XAY.

On the other hand, combining the last equation and (3.3), we obtain

(R(X,Y )φ)Z = (∇X∇Y φ)Z − (∇Y∇Xφ)Z − (∇[X,Y ]φ)Z

= −g(R(X,Y )ξ, φZ)ξ − η(Z)φR(X,Y )ξ

−g(AY, φZ)AX + g(AX,φZ)AY
−g(AX,Z)φAY + g(AY,Z)φAX. (3.17)

Taking into account (2.1), we deduce

g(R(X,Y )φZ, φW ) + g(R(X,Y )Z,W ) = g(R(X,Y )Z, ξ)η(W ) + g((R(X,Y )φ)Z, φW ).

Taking the inner product of (3.17) with φW , and using the above equation, we get (3.15).

Proposition 3.3. A quasi-para-Sasakian manifold (M2n+1, φ, ξ, η, g) satisfies followings

S∗(Y,Z) + S(Y,Z) = S(Y, ξ)η(Z) + g(AY, φZ)trace(φA) (3.18)
−g(AY,AZ),

r∗ + r = −tr2(φA), (3.19)

where S∗(X,Y ) =
2n+1∑
i=1

εig(R(ei, X)φY, φei) denotes the *-Ricci curvature tensor and r∗ =
2n+1∑
i=1

εiS
∗(ei, ei) denotes the

*-scalar curvature of the (M,φ, ξ, η, g), where {ei} , i ∈ {1, ..., 2n+ 1} be a local φ-basis.

Proof. One can show that
2n+1∑
i=1

g(Aei, ei) = 0. Using (3.2), (3.5) and (3.7), we get

2n+1∑
i=1

g(Aei, φZ)g(AY, φei) =

2n+1∑
i=1

g(AφY, ei)g(AφZ, ei)

= g(AφY,AφZ) = −g(AY,AZ). (3.20)

Using the fact that tr(φA) =
2n+1∑
i=1

εig(φAei, ei) = −
2n+1∑
i=1

g(Aei, φei), (3.9) and (3.20) after replacing X,W by ei in

(3.15) and taking summation over i, we find (3.18). For the proof of (3.19), after replacing Y, Z by ei in (3.18)
and taking the summation over i, and using (3.11), we obtain the requested equation.
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4. D-homothetic deformations

Let (M2n+1, φ, ξ, η, g) be an almost paracontact metric manifold and (φ, ξ, η, g) is an almost paracontact metric
structure on (M2n+1, φ, ξ, η, g). Tensor fields φ̃, ξ̃, η̃ and g̃ defined as

φ̃ = φ, ξ̃ =
1

α
ξ, η̃ = αη, g̃ = βg + (α2 − β)η ⊗ η, (4.1)

where α 6= 0 and β > 0.
Thus, (φ̃, ξ̃, η̃, g̃) is also an almost paracontact metric structure on (M2n+1, φ, ξ, η, g).

If the almost paracontact metric structures (φ, ξ, η, g) and (φ̃, ξ̃, η̃, g̃) are related with (4.1), then (φ̃, ξ̃, η̃, g̃) is
said to be D-homothetic to (φ, ξ, η, g), namely, the almost paracontact metric structure (φ̃, ξ̃, η̃, g̃) is obtained by
a D-homothetic deformation of the almost paracontact metric structure (φ, ξ, η, g). If α2 = β, then D-homothetic
deformation will be called homothetic deformation [13].

Proposition 4.1. If (φ, ξ, η, g) is a quasi-para-Sasakian structure, then the structure (φ̃, ξ̃, η̃, g̃) is also quasi-para-
Sasakian. If (φ, ξ, η, g) is para-Sasakian, then (φ̃, ξ̃, η̃, g̃) is para-Sasakian if and only if α = β.

Proof. By virtue of Definition 2.1 and (4.1), we obtain the assertion.

Lemma 4.1. Let (φ̃, ξ̃, η̃, g̃) be a quasi-para-Sasakian structure obtained from (φ, ξ, η, g) by a D-homothetic deformation.
Then we have the following relation between the Levi-Civita connections ∇̃ and ∇ with respect to g̃ and g.

∇̃XY = ∇XY +

(
α2

β
− 1

)
(η(Y )AX + η(X)AY ). (4.2)

Proof. By Koszul formula we have

2g̃(∇̃XY, Z) = Xg̃(Y, Z) + Y g̃(X,Z)− Zg̃(X,Y )

+g̃([X,Y ] , Z) + g̃([Z,X] , Y ) + g̃([Z, Y ] , X),

for any vector fields X,Y, Z. Using g̃ = βg + (α2 − β)η ⊗ η and (3.2) in the last equation, we obtain

2g̃(∇̃XY,Z) = 2βg(∇XY,Z) + 2(α2 − β) [η(∇XY )η(Z) + g(Z,AX)η(Y ) + g(Z,AY )η(X)] .

Since g(Z,AY ) = g(AY,Z), we get

2g̃(∇̃XY,Z) = 2βg(∇XY,Z) (4.3)
+2(α2 − β) [η(X)g(AY,Z) + η(Y )g(AX,Z) + η(Z)η(∇XY )] .

Moreover, g̃(∇̃XY, Z) is equal to
βg(∇̃XY,Z) + (α2 − β)η(∇̃XY )η(Z). (4.4)

Substituting (4.4) in (4.3), we obtain

βg(∇̃XY,Z) + (α2 − β)η(∇̃XY )η(Z)

= βg(∇XY,Z) + (α2 − β) [η(X)g(AY,Z) + η(Y )g(AX,Z) + η(Z)η(∇XY )] . (4.5)

Setting Z = ξ in (4.5) and using (3.2), we get

η(∇̃XY ) = η(∇XY ). (4.6)

(4.2) is a direct consequence of (4.5) and (4.6).

Proposition 4.2. Let (M2n+1, φ, ξ, η, g) and (M̃2n+1, φ̃, ξ̃, η̃, g̃) are locallyD-homothetic quasi-para-Sasakian manifolds.
Then following identities hold:

∼
AX =

α

β
AX, (4.7)

g̃(AX,Y ) = αg(AX,Y ), (4.8)
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R̃(X,Y )Z = R(X,Y )Z

−
(
α2

β
− 1

)
{g(AY, Z)AX − g(AX,Z)AY − 2g(AX,Y )AZ}

+

(
α2

β
− 1

)2 {
η(X)η(Z)A2Y − η(Y )η(Z)A2X

}
+

(
α2

β
− 1

)
{η(X)R(ξ, Y )Z + η(Y )R(X, ξ)Z + η(Z)R(X,Y )ξ} , (4.9)

for any vector fields X,Y, Z.

Proof. After setting Y = ξ in (4.2), if we use ξ̃ = 1
αξ and (3.4), we get (4.7). Using (4.1) and (4.2), after some

calculations one can obtain (4.8). From the curvature formula

R̃(X,Y )Z = [∇̃X , ∇̃Y ]Z − ∇̃[X,Y ]Z,

Eq. (3.2), (3.8) and (4.2), after a straightforward computation one can get (4.9).

Since the proof of the following proposition is quite similar to Proposition 4.4 of [11], we don’t give the proof
of it.

Proposition 4.3. Let (φ, ξ, η, g) be a quasi-para-Sasakian structure. Then the following assertions are equivalent to each
other:

i) (φ, ξ, η, g) can be obtained by a D-homothetic deformation of a para-Sasakian structure,
ii) (φ, ξ, η, g) can be obtained by a homothetic deformation of a para-Sasakian structure,
iii) AX = λφX , for λ = const.6= 0.

5. Quasi-Para-Sasakian manifolds of constant curvature

Theorem 5.1. Let (M2n+1, φ, ξ, η, g) be a quasi-para-Sasakian manifold of constant curvature K. Then K ≤ 0.
Furthermore,

•If K = 0, the manifold is paracosymplectic,
•If K < 0, the structure (φ, ξ, η, g) is obtained by a homothetic deformation of a para-Sasakian structure onM2n+1.

Proof. One can see that K ≤ 0 from Lemma 3.2. If K = 0, by (3.11), we get A = 0. Hence, from (3.3), we
have ∇φ = 0. This means the manifold is paracosymplectic. Assume that K < 0. The claim follows from
Proposition 4.3. So, we should obtain AX = λφX , for α = const.6= 0. After straightforward calculations, we
have r = 2n(2n+ 1)K and r∗ = −2nK. If we use these equations in (3.19), we obtain

tr(φA) = 2nλ, so K = −λ2. (5.1)

By direct calculations, we get

S(Y,Z) = 2nKg(Y,Z) and (5.2)

S∗(Y,Z) = K(−g(Y,Z) + η(Y )η(Z))
(3.9)
= −g(AY,AZ).

Making use of (5.1) and (5.2) in (3.18), we deduce

g(AY, φZ) = −λ(g(Y, Z)− η(Y )η(Z)). (5.3)

Putting φY for Y in (5.3) and using (3.6), we have AY = λφY . This completes the proof.

6. Example

Now, we will give an example of 3-dimensional proper quasi-para-Sasakian manifold.
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Example 6.1. We consider the 3-dimensional manifold

M3 = {(x, y, z) ∈ R3, z 6= 0}

and the vector fields

φe2 = e1 = −4y
∂

∂x
+ z

∂

∂z
, φe1 = e2 =

∂

∂y
, ξ = e3 =

∂

∂x
.

The 1-form η = dx+ 4y
z dz defines an almost paracontact structure on M with characteristic vector field

ξ = ∂
∂x . Let g, φ be the semi-Riemannian metric (g(e1, e1) = −g(e2, e2) = g(ξ, ξ) = 1) and the (1, 1)-tensor field

respectively given by

g =

 1 0 2y
z

0 −1 0
2y
z 0 1+28y2

z2

 ,

φ =

 0 −4y 0
0 0 1

z
0 z 0

 ,

with respect to the basis ∂
∂x ,

∂
∂y ,

∂
∂z .

Using ∇Xξ = βφX (see [16]) we have

∇e1e1 = 0, ∇e2e1 = −2ξ, ∇ξe1 = 2e2,
∇e1e2 = 2ξ, ∇e2e2 = 0, ∇ξe2 = 2e1,
∇e1ξ = 2e2, ∇e2ξ = 2e1, ∇ξξ = 0.

Hence the manifold is a 3-dimensional quasi-para-Sasakian manifold with β= 2 . Using the above equations, we obtain

R(e1, e2)ξ = 0, R(e2, ξ)ξ = −4e2, R(e1, ξ)ξ = −4e1,
R(e1, e2)e2 = −12e1, R(e2, ξ)e2 = −4ξ, R(e1, ξ)e2 = 0,
R(e1, e2)e1 = −12e2, R(e2, ξ)e1 = 0, R(e1, ξ)e1 = 4ξ.

(6.1)

Using (6.1), we have constant scalar curvature as follows, r = S(e1, e1)− S(e2, e2) + S(ξ, ξ) = 8. We want to remark
that this example is neither the paracosymplectic manifold nor the para-Sasakian manifold example.
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