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ABSTRACT

In this article, we construct a new metric
^

G = R∇+
m∑

i,j=1

ajiδpjδpi in the cotangent bundle, where R∇

is the Riemannian extension and aji is a symmetric (2,0)-tensor field on a differentiable manifold.
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1. Introduction

Cotangent bundle of differentiable manifold with a Riemannian extension, which was introduced by Patterson
and Walker [11], was investigated by many authors [2, 3, 4, 7, 12, 17]. Riemannian extension has been developed
in several ways. Calviño-Louzao et.al [5] introduced the modified Riemannian extension using a symmetric
tensor field of type (0, 2) and studied some geometric applications. Gezer and his collaborators studied the
curvature properties and the Kähler- Norden structure with respect to the modified Riemannian extension
[8]. Aslanci and Cakan [1] discussed the curvature properties of the deformed Riemannian extension in the
cotangent bundle by means of musical isomorphism between tangent and cotangent bundle. Then Salimov
and Cakan [13] investigated the deformed Riemannian extension using twin Norden metric.

In this paper, after the introduction and preliminaries, in section 3, we construct a new metric on the

cotangent bundle using the Riemannian extension and quadratic differential form
m∑

i,j=1

ajiδpjδpi, where δpj =

dpj − phΓhijdx
j . Then we calculate Levi-Civita connection and components of the curvature tensor for this

metric. In section 4, we get the necessary condition for the horizontal lift of any connection on the cotangent
bundle to be a metric connection. In section 5, we investigate the geodesics on the cotangent bundle with
respect to the new metric. Then we obtain the horizontal lift of a geodesic on (M, g) that does not need to be

a geodesic on (T ∗M,
^

G). In section 6, we investigate the almost para-Nordenian, the para- Kählerian and the
para-Nordenian properties of the new metric in the cotangent bundle.

2. Preliminaries

Let M be an m-dimensional C∞-manifold with torsion-free connection ∇ , T ∗M be the cotangent bundle of
M and π : T ∗M →M be the natural projection. For any local coordinates

(
U, xi

)
, i = 1, ...,m on M , we denote

by
(
π−1 (U) , xi, xī = pi

)
, ī = m+ 1, ..., 2m the corresponding local coordinates on T ∗M , where xī = pi are the

components of the covector p in each cotangent space T ∗xM,x ∈ U with respect to the natural coframe
{
dxi
}

. Let
F (M) (F (T ∗M)) be the ring of real-valued C∞ functions on M(T ∗M) and =rs (M) (=rs (T ∗M)) be the module
over F (M) (F (T ∗M)) of C∞ tensor fields of type (r,s).

The local expression of a vector and covector field is given byZ = Zi ∂
∂xi and θ = θidx

i inU ⊂M , respectively.
With respect to the natural frame

{
∂
∂xi ,

∂
∂xī

}
, then the vertical lift V θ ∈ =1

0 (T ∗M) of θ ∈ =0
1 (M), the horizontal
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and complete lifts HZ,CZ ∈ =1
0 (T ∗M) of Z ∈ =1

0 (M) are given by

V θ =
∑
i

θi
∂

∂xī
, (2.1)

HZ = Zi
∂

∂xi
+
∑
i

phΓhijZ
j ∂

∂xī
, (2.2)

CZ = Zi
∂

∂xi
−
∑
i

ph∂iZ
h ∂

∂xī
, (2.3)

where the coefficients Γhij are the Christoffel symbols of the Levi-Civita connection ∇ on M (for details, see
[17]).

In [17], the adapted frame {ẽ(α)} = {ẽ(j), ẽ(j̄)} is given by

ẽ(j) = HZ(j) =
∂

∂xj
+
∑
h

paΓahj
∂

∂xh̄
,

ẽ(j̄) = V ω
(j)

=
∂

∂xj̄
. (2.4)

From (2.1), (2.2), (2.3) and (2.4), in the the adapted frame {ẽ(α)}, we see that V θ, HZ and CZ have the following
components

V θ =
∑
i

θiẽ(̄i),
V θ = (V θα) =

(
0
θi

)
(2.5)

HZ = Ziẽ(i),
HZ = (HZα) =

(
Zi

0

)
, (2.6)

CZ = Ziẽ(i) − ph∇iZhẽ(̄i),
CZ =

(
CZα

)
=

(
Zi

−ph∇iZh
)
. (2.7)

By (2.4), we consider local 1-forms η̃α and vector field ẽβ in π−1 (U) given by

η̃α = Āα
Bdx

B , ẽβ = Aβ
A∂A

where

A−1 = (ĀαB) =

(
Āi j Āi

j̄

Āī j Āī
j̄

)
=

(
δij 0

−paΓaij δji

)
(2.8)

and

A = (Aβ
A) =

(
Aj

i Aj̄
i

Aj
ī Aj̄

ī

)
=

(
δij 0

paΓaij δji

)
. (2.9)

Also, the set {η̃α} is the coframe dual to the adapted frame {ẽ(β)}, i.e. η̃α(ẽ(β)) = ĀαBAβ
B = δαβ .

The Lie bracket of the adapted frame {ẽ(α)} on T ∗M is given by

[ẽγ , ẽβ ] = Ωγβ
αẽα,

where

Ωγβ
α = (ẽγAβ

A − ẽβAγA)ĀαA.

Using (2.4), (2.8) and (2.9), we have the non-zero components of Ωγβ
α as follows{

Ωlj̄
ī = −Ωj̄l

ī = −Γjli,

Ωlj
ī = paRlji

a,
(2.10)

where Rljia is the local components of the curvature tensor R of ∇.
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3. New metric
^

G on T ∗M

The Riemannian extension R∇ ∈ =0
2 (T ∗M) describes a pseudo-Riemannian metric in T ∗M . The line element

of the Riemannian extension R∇ is determined by

ds2 = 2dxiδpi,

where δpi = dpi − phΓhjidx
i (see [11, 17] for details).

Using the Riemannian extension and the quadratic differential form
m∑

i,j=1

ajiδpjδpi, where δpi = dpi −

phΓhjidx
i and aji denote the components of a symmetric tensor field of type (2,0) on M , we have a new metric

^

G = 2dxjδpi +

m∑
i,j=1

ajiδpjδpi (3.1)

on T ∗M (for aji = gij , see [10]).
From (2.9) and (3.1), in the adapted frame {ẽ(α)}, the metric

^

G has the following components

^

G =

(
^

Gji
^

Gjī
^

Gj̄i
^

Gj̄ī

)
=

(
0 δij
δji aji

)
. (3.2)

By (2.1),(2.2) and (3.2), we have

^

G
(
HV,HZ

)
= 0,

^

G
(
HZ, V β

)
=V (β(Z)) = β(Z) ◦ π, (3.3)

^

G(V ω,V β) = V (ã (ω, β)) = ã (ω, β) ◦ π

for any V,Z ∈ =1
0 (M) and ω, β ∈ =0

1 (M), where ã is a symmetric tensor field of type (2,0) on M . The (0,2)-

tensor field on T ∗M is entirely detected by action on the vector fields of type HZ and V β (see [17, p.280]). So
^

G
is completely determined by the equation (3.3).

From (2.2) and (2.3), we see that the complete lift CZ of Z ∈ =1
0(M) is expressed by

CZ = HZ − V (p (∇Z)) , (3.4)

where p (∇Z) = pk
(
∇iZk

)
dxi. Using (3.3) and (3.4), we get

G̃
(
CV,CZ

)
= −V [(p (∇V )) (Z) + (p (∇Z)) (V ) + ã (p (∇V ) , p (∇Z))] , (3.5)

where ã (p (∇V ) , p (∇Z)) = aij (pt∇iV t) (pm∇jZm). Then we say that this metric is completely determined with
vector fields of type CV and CZ on T ∗M (see [17, p.237]).

From (3.5), we obtain the following theorem:

Theorem 3.1. The complete lifts CV , CZ of two vector fields V,Z to T ∗M with metric
^

G are orthogonal if V,Z are
parallel.

In [17, p.238 and p.277], we know that the Lie bracket for the horizontal, vertical and complete lifts of vector
fields on the cotangent bundle T ∗M of M satisfies the following:[

HV,HZ
]

= H [V,Z] + γR (V,Z) = H [V,Z] + V (pR (V,Z)) ,[
HZ, V θ

]
= V (∇Zθ) ,[

V ω, V θ
]

= 0,[
CV,HZ

]
= H [V,Z] + V (p (LV∇)Z) ,[

CZ, V θ
]

= V (LZθ)

(3.6)

for any V,Z ∈ =1
0 (M) and ω, θ ∈ =0

1 (M).
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Theorem 3.2. Given an m-dimensional manifold (M, g) and its cotangent bundle (T ∗M,
^

G). In the adapted frame{
ẽ(α)

}
, the Levi-Civita connection

^

∇ of the metric
^

G satisfies the following equations:

i)
^

∇ẽi ẽj =
(
Γlij + 1

2psRijt
salt
)
ẽl + (psRlji

s) ẽl̄,

ii)
^

∇ẽi ẽj̄ =
(

1
2∇ia

jl − Γlita
lt
)
ẽl +

(
−Γjil + psRlit

sajt
)
ẽl̄,

iii)
^

∇ẽī ẽj =
(

1
2∇ja

li
)
ẽl +

(
1
2psRljt

sait
)
ẽl̄,

iv)
^

∇ẽī ẽj̄ =
(
− 1

2∇la
ij
)
ẽl̄,

(3.7)

where Rljis and Γlij denote the components of the curvature tensor and coefficients of ∇, respectively.

Proof. It is known that the Koszul formula for
^

∇ is given by

2
^

G
(
^

∇ZY, V
)

= Z
(
^

G (Y, V )
)

+ Y
(
^

G (V,Z)
)
− V

(
^

G (Z, Y )
)

−
^

G (Z, [Y, V ]) +
^

G (Y, [V,Z]) +
^

G (V, [Z, Y ])

for any V, Y, Z ∈ =1
0 (T ∗M). In the Koszul formula, we substitute Z = ẽi, ẽī, Y = ẽj , ẽj̄ , V = ẽk, ẽk̄. Using

(2.10), (3.2) and the first Bianchi identity for the curvature tensor R, we do standard calculations.

Now we use
^

∇eαeβ =
^

Γδαβeδ with respect to the adapted frame
{
ẽ(α)

}
of T ∗M , where the coefficients of the

Levi-Civita connection
^

∇ of the metric
^

G are denoted by
^

Γδαβ . By using Theorem 3.2, we obtain

Corollary 3.1. Given an m-dimensional manifold (M, g) and its cotangent bundle (T ∗M,
^

G). In the adapted frame{
ẽ(α)

}
, then the Christoffel symbols

^

Γδαβ of
^

∇ are found as follows:

^

Γkij = Γkij + 1
2psRijt

satk
^

Γk̄ij = psRkji
s,

^

Γk
ij̄

= 1
2∇ia

jk − Γjita
tk,

^

Γk
īj

= 1
2∇ja

ik,
^

Γk̄
ij̄

= −Γjik + 1
2psRkit

sajt,
^

Γk̄
īj

= 1
2psRkjt

sati,
^

Γk̄
īj̄

= − 1
2∇ka

ij ,
^

Γk
īj̄

= 0.

(3.8)

Let V̂ , Ẑ ∈ =1
0 (T ∗M) and V̂ = V̂ αẽα, Ẑ = Ẑβ ẽβ . In the adapted frame

{
ẽ(α)

}
, the covariant derivative

^

∇Ẑ V̂
is given by

^

∇Ẑ V̂
α = Ẑγ ẽγ V̂

α +
^

ΓαγβV̂
βẐγ . (3.9)

Using (2.4), (2.5), (2.6), (3.8) and (3.9), we obtain

Proposition 3.1. Given an m-dimensional manifold (M, g) and its cotangent bundle (T ∗M,
^

G). In the following, the
Levi-Civita connection

^

∇ of the metic
^

G provides
i)
^

∇HZ
HV = H (∇ZV ) + 1

2
H (ã ◦ pR (Z, V )) +V

(
Ṽ R (Z, p̃)

)
,

ii)
^

∇HZ
V ω = 1

2
H ((∇Z ã) (ω, )) + H (ã ◦ ∇Zω) + V (∇Zω) + 1

2
V (ã (pR (, Z) , ω)) ,

iii)
^

∇V ω
HZ = 1

2
H ((∇Z ã) (ω, )) + 1

2

V (
Z̃R (ω̃, p̃)

)
,

iv)
^

∇V ω
V θ = − 1

2
V ((∇ã) (ω, θ))

for all V,Z ∈ =1
0 (M), ω, θ ∈ =0

1 (M), where (∇Z ã) (ω, ) = ωiZ
j∇jali,

V (ã (pR (, Z) , ω)) = ajtpsRlit
sZiωj , Z̃ = g ◦ Z ∈ =0

1 (Mn) , Z̃R (Y, p̃) ∈ =0
1 (Mn).

3.1. Curvature tensor of
^

∇

Now, we investigate the curvature tensor
^

R of (T ∗M,
^

G). We get

^

R
(
ẽ(α), ẽ(β)

)
ẽ(γ) =

^

∇α
^

∇β ẽ(γ) −
^

∇β
^

∇αẽ(γ) − Ωαβ
ε
^

∇εẽ(γ),
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where
^

∇β =
^

∇ẽ(β)
. The components of the curvature tensor

^

R are defined by

^

Rαβγ
σ = ẽα

^

Γσβγ − ẽβ
^

Γσαγ +
^

Γσαε
^

Γεβγ −
^

Γσβε
^

Γεαγ − Ωαβ
ε
^

Γσεγ

with respect to the adapted frame
{
ẽ(α)

}
.

From (2.10) and (3.8), we find the components of
^

R as follows:
^

Rkij
l = Rkij

l + 1
4pspma

nlaft (Rktn
sRijf

m −RitnsRkjfm)
+ 1

2psa
lt (∇kRijts −∇iRkjts)− psaml (RtjkaΓtim −Rtji

aΓtkm)
+ 1

2ps
(
Rijt

s∇katl +Rtkj
s∇iatl +Rtji

s∇katl −Rkits∇jatl
)
,

^

Rk̄ij
l = 1

2Rijt
katl − 1

2∇i∇ja
kl + 1

2psΓ
t
ima

mlRtjf
safk

+ 1
4ps
(
Rijm

samt∇takl −Ritmsaml∇jakt −Rtjf safk∇iatl
)
,

^

Rkij̄
l = Rikt

jatl − ΓjktΓ
t
ifa

fl + ΓjitΓ
t
kfa

fl − Γjit∇katl
+ Γtim∇iatl + 1

2

(
∇k∇iajl −∇i∇kajl

)
+ 1

4ps
(
Rktm

s
(
aml∇iajt + amj∇iatl

)
+Rtim

s
(
amj∇katl + aml∇kajt

))
+ 1

2ps

(
Rtkm

saml
(

Γtifa
fl + Γjifa

ft
)

+Ritm
saml

(
Γjkfa

ft + Γtkfa
fl
))

,
^

Rkij̄
l̄ = Rikl

j + 1
4pspm

(
Rlkf

sRtin
saftanj −Rlif sRtknmatfajn

)
+ 1

2ps
(
amj∇kRlims − atj∇iRlkts

)
− paamt

(
Rltk

aΓjim −Rlti
aΓjkm

)
+ 1

2ps
(
Rlim

s∇kamj −Rlkms∇iamj −Rltks∇iajt
)

+ 1
2ps
(
Rkit

s∇latj −Rltis∇kajt
)
,

^

Rkij
l̄ = ps (∇kRljis −∇iRljks) + 1

2pspma
ft (Rltk

mRijf
s +Rlkf

mRtji
s)

− 1
2pspma

ft (Ritl
mRkjf

s +Rlif
mRtjk

s +Rkit
mRljm

s) ,
^

Rk̄ij
l̄ = Rlji

k − 1
2psa

tk∇iRljts
+ 1

4pspm
(
Rltf

sRijn
mafkant −Rlif sRtjnmankaft

)
− 1

2ps
(
Rljm

s∇iamk +Rtji
s∇lakt −Rltis∇jakt

)
,

^

Rk̄īj
l̄ = 1

2Rljt
kati − 1

2Rljt
iatk + 1

4psRltm
s
(
amk∇jait − ami∇jatk

)
+ 1

4psRtjm
s
(
amk∇lait − ami∇lakt

)
,

^

Rk̄ij̄
l̄ = 1

2Rlit
kajt + 1

2∇i∇la
kj − 1

2psRltm
sΓjifa

mkaft

+ 1
4ps
(
Rlif

safm∇takj −Rtimsajm∇lakt +Rltm
samk∇iajt

)
,

^

Rk̄īj̄
l̄ = 1

4

(
∇lakt∇taij −∇lait∇takj

)
,

^

Rkīj̄
l = − 1

4

(
∇katl∇taij +∇tail∇kajt

)
+ 1

2

(
Γtkma

ml∇taij + Γjkma
mt∇tail

)
,

^

Rk̄īj
l = 1

4

(
∇takl∇jait −∇tali∇jakt

)
,

^

Rk̄īj̄
l = 0.

We have

Theorem 3.3. Given an m-dimensional manifold (M, g) and its cotangent bundle (T ∗M,
^

G). Then (T ∗M,
^

G) is flat if
M is flat and ∇ã = 0.

Proof. It immediately follows from last equations.

4. The metric connection with respect to the metric
^

G

We know that the metric connection satisfies ∇̄
^

G = 0 and has non-trivial torsion tensor. By the definition of the
horizontal lift H∇ of any connection ∇ on T ∗M , we write{

H∇V β
V ω = 0, H∇V β

HZ = 0,
H∇HZ

V ω = V (∇Zω) , H∇HZ
HV = H (∇ZV )

(4.1)

for any V,Z ∈ =1
0 (M) and ω, β ∈ =0

1 (M). The torsion tensor T of H∇ determined by
T
(
V ω, V β

)
= 0, T

(
HZ, V ω

)
= 0, T

(
HV,HZ

)
= −γR (V,Z),
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where R denote the curvature tensor of ∇ and γR (V,Z) =
∑
i

phRkli
hV kZl ∂

∂xī
[17, p.287].

Using (3.3) and (4.1), we have(
H∇HZ

^

G
) (

V β, V ε
)

= H∇HZ

^

G
(
V β, V ε

)
−

^

G
(
H∇HZ

V β, V ε
)
−

^

G
(
V β,H∇HZ

V ε
)

= H∇HZ
V (ã (β, ε))−

^

G
(
V (∇Zβ) , V ε

)
−

^

G
(
V β, V (∇Zε)

)
= V (∇Z (ã (β, ε)))− V (ã (∇Zβ, ε))− V (ã (β,∇Zε))
= V (Zã (β, ε))− V (ã (∇Zβ, ε))− V (ã (β,∇Zε))
= V ((∇Z ã) (β, ε))

and the others are zero. Then we have the following theorem:

Theorem 4.1. The horizontal lift H∇ of∇ is a metric connection of the metric
^

G if and only if the symmetric (2,0)-tensor
field ã on (M, g) is parallel with respect to ∇.

5. Geodesics on (T ∗M,
^

G)

Now, let us investigate the geodesics of the (T ∗M,
^

G). Firstly, let C : xh = xh (t) be a curve in M and ωh (t) be a
covector field along C. We suppose that C̃ is a curve on T ∗M and locally given by

xh = xh (t) , xh̄
def
= ph = ωh (t) . (5.1)

The horizontal lift of the curve C in M satisfies the equation

δωh
dt = dωh

dt − Γijh
dxj

dt ωi = 0.

Hence, if the initial condition ωh = ω0
h for ωh = ω0

h is offered, then there exists a unique horizontal lift given by
(5.1).

The differential equation of the geodesic in (T ∗M,
^

G) is expressed by the form

δ2xA

dt2
=
d2xA

dt2
+

^

ΓACB
dxC

dt

dxB

dt
= 0 (5.2)

with respect to the induced coordinates
(
xi, xī

)
=
(
xi, pi

)
in T ∗M , where t is the arc length of a curve

xB = xB (t) , B = (h, h̄) in T ∗M and
^

ΓACB are components of
^

∇ defined by (3.8).
By using the adapted frame

{
ẽ(α)

}
, we can easily write the equation (5.2). Using (2.8), we get

ηα = ĀαAdx
A,

i.e.

ηh = ĀhAdx
A = δhi dx

i = dxh

for α = h and

ηh̄ = Āh̄Adx
A = −paΓahjdx

j + δhj dx
j = δph

for α = h̄. Also we put

ηh

dt = ĀhA
dxA

dt = dxh

dt ,
ηh̄

dt = Āh̄A
dxA

dt = δph
dt

along a curve xB = xB (t) in T ∗M . So, we get the equation (5.2) which is equal to the following

d
dt

(
ηα

dt

)
+

^

Γαγβ
ηγ

dt
ηβ

dt = 0

with respect to adapted frame
{
ẽ(α)

}
. From (3.8), we obtain

a) δ
2xh

dt2 + 1
2pmRijt

math dx
i

dt
dxj

dt + 1
2∇ja

ih δpi
dt

dxj

dt + 1
2

(
∇iajh − Γjita

th
)
dxi

dt
δpj
dt = 0,

b) δ
2ph
dt2 + pmRhji

m dxi

dt
dxj

dt + 1
2pmRhjt

mait δpidt
dxj

dt + pmRhit
satj dx

i

dt
δpj
dt

− 1
2∇ha

ij δpi
dt

δpj
dt = 0.
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Taking account of the local components of the curvature tensor R, i.e. Rijkt = ∂iΓ
t
jk − ∂jΓtik + ΓtimΓmjk − ΓtjmΓmik

and antisymmetry with respect to i and j, we find R(ij)t
m = 0. Since R(ij)t

m = 0, we have Rijtm dxi

dt
dxj

dt = 0. So,
we obtain

a) δ
2xh

dt2 + 1
2∇ja

ih δpi
dt

dxj

dt + 1
2

(
∇iajh − Γjita

th
)
dxi

dt
δpj
dt = 0,

b) δ
2ph
dt2 + pmRhji

m dxi

dt
dxj

dt + 1
2pmRhjt

mait δpidt
dxj

dt + pmRhit
satj dx

i

dt
δpj
dt

− 1
2∇ha

ij δpi
dt

δpj
dt = 0.

(5.3)

Theorem 5.1. Let C̃ be a curve in T ∗M expressed locally by xh = xh (t), ph = ωh (t) with respect to the induced
coordinates

(
xi, xī

)
=
(
xi, pi

)
in T ∗M . The curve C̃ is a geodesic of

^

G, if it satisfies the equation (5.3).

Let now C̃ : xh = xh (t) , xh̄ = ph(t) = ωh (t) be a horizontal lift(
δph
dt = δωh

dt = dωh
dt − Γijh

dxj

dt ωi = 0
)

of the geodesic C : xh = xh (t) ( δ
2xh

dt2 = 0) in M of ∇. Due to the non-
vanishing second term of equation (5.3,b), the geodesic equation (5.2) does not provide.

Theorem 5.2. The horizontal lift of a geodesic on (M, g) needs not be a geodesic on T ∗M with respect to the connection
^

∇.

6. Para-Nordenian structures on (T ∗M,
^

G)

An almost product structure P ∈ =1
1 (M) is defined by P 2 = I . Therefore, the pair (M, g) is called an almost

product manifold. An almost paracomplex manifold is an almost product manifold (M,P ) , P 2 = I , such that
the two eigenbundles T+M and T−M associated to the two eigenvalues +1 and -1 of P , respectively, have
the same rank. We know that the dimension of an almost paracomplex manifold has to be even. Using the
paracomplex structure F , we get the set {I, P} on M , which is an isomorphic representation of the algebra of
order 2, which is defined the algebra of paracomplex (or double) numbers and is given by R (j) , j2 = 1 [6].

If a tensor field ϑ ∈ =0
q

(
M2m

)
satisfies

ϑ (PZ1, Z2, ..., Zq) = ϑ (Z1, PZ2, ..., Zq) = ... = ϑ (Z1, Z2, ..., PZq)

for all Z1, Z2, ..., Zq ∈ =1
0

(
M2m

)
, then ϑ is called pure with respect to the paracomplex structure P .

By means of the paracomplex structure P and the pure tensor field ϑ, the operator ΦP defined in [16] is

(ΦPϑ) (Y, Z1, ..., Zq) = (PY ) (ϑ (Z1, ..., Zq))− Y (ϑ (PZ1, Z2, ..., Zq))
+ ϑ ((LZ1

P )Y, Z2, ..., Zq) + ...+ ϑ
(
Z1, Z2, ...,

(
LZqP

)
Y
)
,

where LY is the Lie derivative with respect to Y and ΦPϑ ∈ =0
q+1

(
M2m

)
.

A tensor field ϑ is called an almost paraholomorphic with respect to the paracomplex algebra R (j), if
ΦPϑ = 0 ( see [9, 15]).

The pair (P, g) is a para-Nordenian structure where P is an almost paracomplex structure and g is a pure
tensor field with respect to P , i.e. g (PV,Z) = g (V, PZ). Then a 2m-dimensional pseudo-Riemannian manifold
M with an almost para-Nordenian structure is called to be an almost para-Nordenian manifold. Furthermore,
the almost para-Nordenian manifold is para-Kähler (∇gP = 0) if and only if g is paraholomorphic (ΦP g = 0)
(see [14, 15]).

Given the cotangent bundle T ∗M with the metric
^

G. A tensor field P ∈ =1
1 (T ∗M) is expressed by{

PHZ = −HZ,
PV θ = −V θ (6.1)

for any Z ∈ =1
0 (M) and θ ∈ =0

1 (M). By virtue of (6.1), we have

P 2
(
HZ
)

= P
(
PHZ

)
= P

(
−HZ

)
= HZ

P 2
(
V θ
)

= P
(
PV θ

)
= P

(
−V θ

)
= V θ

for any Z ∈ =1
0 (M) and θ ∈ =0

1 (M), i.e. P 2 = I .

Theorem 6.1. The triple
(
T ∗M,

^

G,P
)

is an almost para-Nordenian manifold.
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Proof. Using purity condition

W (V,Z) =
^

G (PV,Z)−
^

G (V, PZ)

for any V,Z ∈ =1
0 (T ∗M), from (3.3) and (6.1) we have

W
(
V ω, V θ

)
=

^

G
(
PV ω, V θ

)
−

^

G
(
V ω, PV θ

)
= 0,

W
(
HZ, V θ

)
=

^

G
(
PHZ, V θ

)
−

^

G
(
HZ,PV θ

)
= −

^

G
(
HZ, V θ

)
+

^

G
(
HZ, V θ

)
= 0,

W
(
V θ,HZ

)
= −W

(
HZ, V θ

)
= 0,

W
(
HV,HZ

)
=

^

G
(
PHV,HZ

)
−

^

G
(
HV, PHZ

)
= −

^

G
(
HV,HZ

)
+

^

G
(
HV,HZ

)
= 0

i.e.
^

G is pure with respect to P as defined by (6.1). Hence, Theorem 6.1 is proved.

In view of Proposition 3.1 and (6.1), the covariant derivative of P with respect to the metric
^

G is(
^

∇HV P
) (

V θ
)

=
^

∇HV

(
PV θ

)
− P

(
^

∇HV
V θ
)

= −
^

∇HV

(
V θ
)
− P

(
^

∇HV
V θ
)

= − 1
2
H ((∇V ã) (ω, ))− H (ã ◦ ∇V ω)− V (∇V ω)− 1

2
V (ã (pR (, V ) , ω))

−
(
− 1

2
H ((∇V ã) (ω, ))− H (ã ◦ ∇V ω)− V (∇Y ω)− 1

2
V (ã (pR (, V ) , ω))

)
= 0,(

^

∇HV P
) (

HZ
)

=
^

∇HV

(
PHZ

)
− P

(
^

∇HV
HZ
)

= −
^

∇HV
HZ − P

(
^

∇HV
HZ
)

= −
(
H (∇V Z) + 1

2
H (ã ◦ pR (V,Z)) +V

(
Z̃R (V, p̃)

))
−
(
−H (∇V Z)− 1

2
H (ã ◦ pR (V,Z))−V

(
Z̃R (V, p̃)

))
= 0,(

^

∇V ωP
) (

HZ
)

=
^

∇V ω

(
PHZ

)
− P

(
^

∇V ω
HZ
)

=
^

∇V ω

(
−HZ

)
− P

(
^

∇V ω
HZ
)

= − 1
2
H ((∇Z ã) (ω, ))− 1

2

V (
Z̃R (ω̃, p̃)

)
+ 1

2
H ((∇Z ã) (ω, )) + 1

2

V (
Z̃R (ω̃, p̃)

)
= 0,(

^

∇V ωP
) (

V θ
)

=
^

∇V ω

(
PV θ

)
− P

(
^

∇V ω
V θ
)

= 1
2
V ((∇ã) (ω, θ))

− 1
2
V ((∇ã) (ω, θ)) = 0.

Theorem 6.2. The triple
(
T ∗M,

^

G,P
)

is a para-Kählerian manifold.

The Nijenhuis tensor is given by the formula

NP (V,Z) = [PV, PZ]− P [PV,Z]− P [V, PZ] + P 2 [V,Z] (6.2)

and the vanishing of the Nijenhuis tensor is characterized integrability of the almost paracomplex structure. If
P is integrable, we say that the almost para-Nordenian manifold is a para-Nordenian manifold (see [14]).
Using (3.6), (6.1) and (6.2), we find

NP
(
HV,HZ

)
= NP

(
HV, V θ

)
= NP

(
V ω,HZ

)
= NP

(
V ω, V θ

)
= 0

i.e.
(
T ∗M,

^

G,P
)

is integrable. Then we have the following theorem:

Theorem 6.3. The triple
(
T ∗M,

^

G,P
)

is a para-Nordenian manifold.

If the Lie derivative of a vector field Z̃ ∈ =1
0 (T ∗M) satisfies the condition LZ̃P = 0, then the vector field is

said to be an almost paraholomorphic (see [9]).
Taking account of (3.6) and (6.1), we have

(LCZP ) V θ = LCZP
V θ − P

(
LCZ

V θ
)

= −LCZV θ − P
(
V (LZθ)

)
= −V (LZθ) +

(
V (LZθ)

)
= 0,

(LCZP )HV = LCZP
HV − P

(
LCZ

HV
)

= −LCZHV − P
(
LCZ

HV
)

= −
(
H [Z, V ] + V (p (LZ∇)Y )

)
− P

(
H [Z, V ] + V (p (LZ∇)Y )

)
= 0,

(LV ωP ) V θ = LV ωP
V θ − P

(
LV ω

V θ
)

= 0,

(LV ωP )HZ = LV ωP
HZ − P

(
LV ω

HZ
)

= −LV ωHZ − P
(
LV ω

HZ
)

= V (∇Zω)− V (∇Zω) = 0,

(LHZP ) V θ = LHZP
V θ − P

(
LHZ

V θ
)

= −
[
HZ, V ω

]
− P

([
HZ, V ω

])
= −V (∇Zω)− P

(
V (∇Zω)

)
= 0,

(LHZP )HV = LHZP
HV − P

(
LHZ

HV
)

= −
[
HZ,HV

]
− P

([
HZ,HV

])
= −

(
H [Z, V ] + V (pR (Z, V ))

)
− P

(
H [Z, V ] + V (pR (Z, V ))

)
= 0.

Hence, we can conclude the following theorem:
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Theorem 6.4. The complete and horizontal lifts CZ,HZ ∈ =1
0 (T ∗M) of Z ∈ =1

0 (M) and the vertical lift V ω ∈
=1

0 (T ∗M) of ω ∈ =0
1 (M) are the almost paraholomorphic vector fields with respect to the almost para-Nordenian

structure
(
P,

^

G
)

.
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