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ABSTRACT

In this article, we construct anew metricG = #V + " a/'0p;ép; in the cotangent bundle, where 'V
i,j=1
is the Riemannian extension and o/’ is a symmetric (2,0)-tensor field on a differentiable manifold.
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1. Introduction

Cotangent bundle of differentiable manifold with a Riemannian extension, which was introduced by Patterson
and Walker [11], was investigated by many authors [2, 3,4, 7, 12, 17]. Riemannian extension has been developed
in several ways. Calvifio-Louzao et.al [5] introduced the modified Riemannian extension using a symmetric
tensor field of type (0, 2) and studied some geometric applications. Gezer and his collaborators studied the
curvature properties and the Kahler- Norden structure with respect to the modified Riemannian extension
[8]. Aslanci and Cakan [1] discussed the curvature properties of the deformed Riemannian extension in the
cotangent bundle by means of musical isomorphism between tangent and cotangent bundle. Then Salimov
and Cakan [13] investigated the deformed Riemannian extension using twin Norden metric.

In this paper, after the introduction and preliminaries, in section 3, we construct a new metric on the

m ..
cotangent bundle using the Riemannian extension and quadratic differential form % a’*dp;dp;, where dp; =
ij=1
dp; — phI‘fjd:cj. Then we calculate Levi-Civita connection and components of the curvature tensor for this
metric. In section 4, we get the necessary condition for the horizontal lift of any connection on the cotangent
bundle to be a metric connection. In section 5, we investigate the geodesics on the cotangent bundle with
respect to the new metric. Then we obtain the horizontal lift of a geodesic on (1, g) that does not need to be

a geodesic on (T* M, G). In section 6, we investigate the almost para-Nordenian, the para- Kihlerian and the
para-Nordenian properties of the new metric in the cotangent bundle.

2. Preliminaries

Let M be an m-dimensional C'*°-manifold with torsion-free connection V , T* M be the cotangent bundle of
M and 7 : T*M — M be the natural projection. For any local coordinates (U, ac’) ,1=1,...,mon M, we denote
by (7= (U),2%,2" =p;), i = m+1,...,2m the corresponding local coordinates on T* M, where z* = p; are the
components of the covector p in each cotangent space T M, = € U with respect to the natural coframe {dxz"}. Let
F (M) (F(T*M)) be the ring of real-valued C'* functions on M (T*M) and 37, (M) (37, (T*M)) be the module
over F' (M) (F(T*M)) of C* tensor fields of type (1,s).

The local expression of a vector and covector field is givenby Z = Z' 22; and 6 = §;dz* in U C M, respectively.
With respect to the natural frame { %, -2 }, then the vertical lift V' € ¢ (T*M) of § € 9 (M), the horizontal
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and complete lifts # 7, Z € S} (T*M) of Z € S} (M) are given by

d
Vo=> 0, —, 2.1
Z ox* @1
d d
Hy _ Z%7+thrh238 (2.2)
Cz = ZZ tha i (2.3)
Dl

where the coefficients I‘?j are the Christoffel symbols of the Levi-Civita connection V on M (for details, see

[17]).
In [17], the adapted frame {€.,)} = {é(;), )} is given by

¢ ="26)= 55 +Zpa hja s
. j 0
€G) = Vo = 9 (2.4)
From (2.1), (2.2), (2.3) and (2.4), in the the adapted frame {é,)}, we see that V¢, 7/ Z and © Z have the following
components
N N 0

Vo = Zeie(z)v Vo = (Ve )= ( 0, ) (2.5)
H iz Hy_ (Hgay_ [ 2 2.6
Z2=7%y "z=0"z")=(§ ), (2.6)
“z=12'% Vizhéq, “Z=(2")= z 2.7
= 2 €@i) — PhViZ (i), _( )_ —on vzt ) 2.7)

By (2.4), we consider local 1-forms 7j* and vector field ég in 7! (U) given by

77“ = AaBdl‘B, é@ = AgAaA

_ A Al 5i 0
-1 _ «a _ _J _ J .
A - (A B) - ( Azj Az > < _pa:[wizj (Si ) (28)

A A & 0
_ Ay J_ J. .
A= (AB ) - ( Ajz AJ ) < para (5'3 ) . (29)

J

where

and

Also, the set {7}*} is the coframe dual to the adapted frame {&3)}, i.e. 1*(ép)) = A AP = o5
The Lie bracket of the adapted frame {é(,)} on T* M is given by

€, €p] = Q5 €Ea,
where
Q5% = (&, 45" — 854, 1) A%,

Using (2.4), (2.8) and (2.9), we have the non-zero components of Q2,3 as follows

{ QE; = Qg = —Iv,, (2.10)
Q" = pallyi®,

where R;;;“ is the local components of the curvature tensor R of V.
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3. New metric G on T* M

The Riemannian extension #V € S (T* M) describes a pseudo-Riemannian metric in 7 M. The line element
of the Riemannian extension #V is determined by

ds® = 2dx"Sp;,
where dp; = dp; — ppI'!l;da’ (see [11, 17] for details).
Using the Riemannian extension and the quadratic differential form Y a/'dp;dp;, where dp; = dp; —

ij=1
prI'™ dz? and a7 denote the components of a symmetric tensor field of type (2,0) on M, we have a new metric
i p y YP

G = 2dx? 6p; + Z ajiépj(Spi (3.1)
ij=1

on T*M (for a’* = g%, see [10]).
From (2.9) and (3.1), in the adapted frame {é(,) }, the metric G has the following components

= Gji Gji\_ (0 &
GZ(éji éji>_(6g aﬁ) (32)
By (2.1),(2.2) and (3.2), we have
G (HV’ HZ) =0,
G("2,V8)="(8(2))=B(Z)om, (3.3)

G(VwB) =" (a(w,B) =a(w,B)or

for any V,Z € S (M) and w, 8 € 39 (M), where a is a symmetric tensor field of type (2,0) on M. The (0,2)-

tensor field on T* M is entirely detected by action on the vector fields of type 7 Z and v 3 (see [17, p.280]). So G
is completely determined by the equation (3.3).
From (2.2) and (2.3), we see that the complete lift ©Z of Z € 3} (M) is expressed by

“z="72-V(p(V2), (34)
where p (VZ) = pi (V;2¥) da'. Using (3.3) and (3.4), we get
G(V,Z) =Y (VV)(2)+ ®(VZ) (V) +a(p(VV),p(VZ))], (3.5)

wherea (p(VV),p(VZ)) = a" (p:ViV?) (p,,V;Z™). Then we say that this metric is completely determined with
vector fields of type “V and ©Z on T* M (see [17, p.237]).
From (3.5), we obtain the following theorem:

Theorem 3.1. The complete lifts °V, © Z of two vector fields V, Z to T*M with metric G are orthogonal if V, Z are
parallel.

In [17, p.238 and p.277], we know that the Lie bracket for the horizontal, vertical and complete lifts of vector
fields on the cotangent bundle 7% M of M satisfies the following:

By Rzl =5V, Z)+vR(V,Z2) =7 [V, Z] +V (pR(V, Z)),
Vi, Vel =0, (3.6)
CZVG] =V (L)

forany V,Z € S{ (M) and w, 6 € S (M).
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Theorem 3.2. Given an m-dimensional manifold (M, g) and its cotangent bundle (T*M,G). In the adapted frame

{é(a)}, the Levi-Civita connection V of the metric G satisfies the following equations:

WVe € = (T + 3psRiji*a') & + (paRizi®) ey,

ii)Velej = (Ve —Tla") 6 + (_FZl —&—psRlitsajt) €,
i1)Ve 65 = (8V;a) & + (LpsRiyea) &,

W)Ve, &5 = (—1Via¥) ¢,

(3.7)

where Ry;;° and T'.; denote the components of the curvature tensor and coefficients of V, respectively.
Proof. Tt is known that the Koszul formula for V is given by
2°G (%K V) —7 (é v, V)) LY (é \z Z)) v (é 2, Y))
~G(Z,[Y.V]) + G (Y. [V.2]) + G (V,[2,Y])

for any V,Y,Z € 3§ (T*M). In the Koszul formula, we substitute Z = ¢&;,é;, Y =¢é;,é;, V = é,é;. Using
(2.10), (3.2) and the first Bianchi identity for the curvature tensor R, we do standard calculations. O

Now we use V., eg = fi ses with respect to the adapted frame {é(a)} of T*M, where the coefficients of the

Levi-Civita connection V of the metric G are denoted by I' - By using Theorem 3.2, we obtain

Corollary 3.1. Given an m-dimensional manifold (M, g) and its cotangent bundle (T*M,G). In the adapted frame
{(a)}, then the Christoffel symbols T ; of V are found as follows:

Fk = Fk %psRijtsatk ]-—‘r]fj = pstjisv
I‘% = 1V a’k — Fi tk u@ = lvla““
Tk J jt k 1 s ti (3.8)
FZE =-I4 ik T stszt a’’, F = QPSRkjt a,
Tk _ Tk _
IE = 1V, rﬁ 0.

LetV,Z € S§(T*M)and V = Vé,, Z = ZPés.Inthe adapted frame {é,}, the covariant derivative v,V
is given by

ViV =278, Ve +To,VPZ0, 3.9)
Using (2.4), (2.5), (2.6), (3.8) and (3.9), we obtain

Proposition 3.1. Given an m-dimensional manifold (M, g) and its cotangent bundle (T* M, G). In the following, the
Levi-Civita connection ¥V of the metic G provides
IV BV =H (V4V) + L8 (GopR(Z,V)) +V (VR(Z ),

/\

i)V w = 1 ((Vza) ( )+ (&0 Vzw)+V (Vzw) + 3V (@(pR(, 2),w)),
i)V, A7 = VH (V4a) (0,) + 3 (ZR(@,5))
i0) Vv,V = *% ((Va) (w, ))
forall V. Z € 3¢ (M), w,0 € Y (M), where (V za) (w,) = wi Z/V ;a",
Via(pR(,Z),w)) = a’ps Ry’ Z'wj,Z:gOZE%?(M"),ZR(Y,ﬁ)EQQ(M”).

3.1. Curvature tensor of V

Now, we investigate the curvature tensor Rof (T*M,G). We get

R (8(a), () €(y) = VaV5é(y) = VVal(y) = Qag Vel(y),
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where V4 = V¢, , . The components of the curvature tensor R are defined by

€p)"

RCYB’YG = éarg’y - éﬁrg'y + Fgce %’y 1 Be 37 - Qaﬂsrg'y

with respect to the adapted frame {&(,) }.
From (2.10) and (3.8), we find the components of R as follows:
Riij' = Ruij' + 1DsPma™ alt (R Rij 5™ — Ritn” Rijs™)
+ 505’ (Vi Riji® = ViRgji®) = psa™ (Rij T}, — Riji"Th,,)
+ §ps (RijtSVkatl + Rtkjsviatl + Rtﬁsvka” — Rkitsvj'atl) y
Rl = 3Ry a' — 1V, Vak + Ip Tt a™ Ry poaf®
+ ips (Rijmsamtvtakl _ Ritmsamlvjakt _ Rtjfsafkviatl) ,
Ryij' = R’ a!! =T}, T al! + TY T pal! — T, Vya!
+ Fﬁmvia“ + % (Vkviqﬂ — V_,»Vkaﬂl) ‘ _
+ 595 (Biem® (a™Via?" + a™Va") + Ry ® (a™ Via! + a™Va'?))
+ 5Ds (Rtkmsaml (Fgfafl + Fgfaft> + Ripm"a™ <Fifaft + chfafl)> ,
Ryt = Rid® + 1pspim (Ring® Rein®a’*a™ — Ryzp® Ryn™a'l a?™)
+ 304 ("9 ViRiim™ = a9V Rige”) = paa™ (Run T, = Rui"TY,, )
+ 305 (Riim"Vka™ — Ry *Via™ — Ry, *Vial')
+ 5D (Rrit"Via" — Ry *Vial?)
Riij' = ps (ViRiji® — ViRii®) + 5pspma’’ (Rue™ Rijs® + Rug™ Riji®)
— 2pspma?t (Rit™ Rygjs° + Riif ™ Rejie® + Ryt ™ Rijm®)
Rkijl = leik - %psatkvilets
+ ipspm (thstijnmafkant _ Rlisttjnmankaft)
— 5Ps (Rijm°Via™ + Ryji°*Via™ — Ryy°V;akt)
R,;;jl = %sztkati — %letzqtk + %'psthmS (amkvja“ — amivjatk‘)
4 ipthij (amkvlazt _ amzvlakt) ,
Ryj' = §Rua?t + 3ViVia*) — 5psRin T a"™ al! 4
ips (Rlifsafmvtakj - Rti’rnsajmvlakt + thmsamkviaﬁ) )
Ry’ =1 (V1a"'V,a" — V,1aV,ak7) |
Rii' = —1 (Vea"'Via + Va0V ial?)
+1 (F};mamlvtaij + Fimamtvta“> ,

(vtaklvj ait o vtalivj akt) ,

=1

+

Theorem 3.3. Given an m-dimensional manifold (M, g) and its cotangent bundle (T* M, G). Then (T* M, G) is flat if
M is flat and Va = 0.

Proof. It immediately follows from last equations. O

4. The metric connection with respect to the metric G

We know that the metric connection satisfies VG = 0 and has non-trivial torsion tensor. By the definition of the
horizontal lift #V of any connection V on T* M, we write

{ ATy Vw =0, By g7 =0, 1)

HVHZVCU =V (Vzw) s HVHZHV =1H (VZV)

M) and w, B € 39 (M). The torsion tensor T of ¥V determined b
1 y

forany V,Z € S}
=0, T"zVYw)=0, THV,HZ)=—-yR(V.2),

T (Vw, Vﬁ)
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where R denote the curvature tensor of V and vR (V, Z) Z pnRy,"VEZ! 2 (17, p.287].
Using (3.3) and (4.1), we have
(192G (VB.Ve) = HVu,G (VB,Ve) = G (V" 8, e) = G (V8,1 Vu5"e)

HVHZV(& B.6) —G(V(VzB),Ve 2/ G (Y8, (Vze))
Y (Vz(a(B, ) - V(a(Vzp,e) =V (a(B,Vze))

= (Za(@ e)) =V (a(Vzp.e) =V (@(B, Vze))

Y ((Vza) (B.¢))

and the others are zero. Then we have the following theorem:

Theorem 4.1. The horizontal lift 'V of V is a metric connection of the metric G if and only if the symmetric (2,0)-tensor
field a on (M, g) is parallel with respect to V.

5. Geodesics on (7% M, G)

Now, let us investigate the geodesics of the (71, Q). Firstly, let C' : 2" = 2" (¢) be a curve in M and wy, (t) be a
covector field along C. We suppose that C' is a curve on T*M and locally given by

e =t (1), 2" = wn (1) . (5.1)

The horizontal lift of the curve C in M satisfies the equation

dwp _ dwp 1‘\1 dz’?

dt . dt Jhdtwl_o

Hence, if the initial condition wj;, = wf) for w;, = w} is offered, then there exists a unique horizontal lift given by
(5.1).
The differential equation of the geodesic in (T* M, G) is expressed by the form
&%zt dPxh LA @ dzP
a2 dt2 P dt dt

=0 (5.2)

with respect to the induced coordinates (z%,27) = (z7,p;) in T*M, where ¢ is the arc length of a curve

@B = 2B (t), B = (h,h) in T*M and T4, are components of V defined by (3.8).
By using the adapted frame {é,) }, we can easily write the equation (5.2). Using (2.8), we get

n = A 4dz4,
ie.
n" = AP ydz? = §hdat = dah
fora = hand
= AP ydat = —p,I'§ da? + 6ldx = bpy,

for a = h. Also we put

h

ih  dz? _ dx
dt - A dt o dt
/) _ Opn

= A" A5 dt — Tdt

along a curve ¥ = 2B (t) in T* M. So, we get the equation (5.2) which is equal to the following

'v (

d _
E( >+F'yﬂdt dt_o

with respect to adapted frame {é(,) }. From (3.8), we obtain

8z 1 - m _thdz® dxﬂ 1 méplg jh _ ath dz' opj __
a) g + 3pmBije"a dt dt 5 Vo™ T G Via S ai =0,
52ph m dz’ dx’ it 0pi dx? s _tj dz’ 51’]
b) a2 + meh]l dt dt + §mehjt a T;W + mehit a dt dt

op; OD;
zg opi OP; __
2V dt dt — 0.
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Taking account of the local components of the curvature tensor R, i.e. R;jx" = 0; I — 0Ty, + Fﬁml“;}c - re, o
and antisymmetry with respect to i and j, we find R;;;”™ = 0. Since R(;;);"" = 0, we have R;;;"™ 9% 4= — (. So,

. dr di
we obtain

2_h ih 6p; dad . . 2 Op
a)o 4 %Vjalh pi dol 4 % (Vz-ajh — thath> da” O3 _ (),

dt2 dt dt Tdt dt
52 m dz* da’ 1 m it 6p; dx’ s _tjdxt Opj 5.3
b) gz + PmBnji™ G G + 3Pm R 0" G G pm B G T (5:3)
1 ij 0pi 0Pj _
5 Vha g = 0.

Theorem 5.1. Let C be a curve in T*M expressed locally by z" = 2" (t), pr, = wy, (t) with respect to the induced
coordinates (z*,z") = (z*,p;) in T* M. The curve C is a geodesic of G, if it satisfies the equation (5.3).

Letnow C : 2" = 2" (t) , #" = pj,(t) = wy, (t) be a horizontal lift
(% =%n —don i, do, — 0) of the geodesic C: " =z (t) (5% =0) in M of V. Due to the non-
vanishing second term of equation (5.3,b), the geodesic equation (5.2) does not provide.

Theorem 5.2. The horizontal lift of a geodesic on (M, g) needs not be a geodesic on T* M with respect to the connection

V.

6. Para-Nordenian structures on (T*M, G)

An almost product structure P € 3} (M) is defined by P? = I. Therefore, the pair (M, g) is called an almost
product manifold. An almost paracomplex manifold is an almost product manifold (M, P), P? = I, such that
the two eigenbundles 7" M and T~ M associated to the two eigenvalues +1 and -1 of P, respectively, have
the same rank. We know that the dimension of an almost paracomplex manifold has to be even. Using the
paracomplex structure F', we get the set {1, P} on M, which is an isomorphic representation of the algebra of
order 2, which is defined the algebra of paracomplex (or double) numbers and is given by R (5), j% = 1 [6].

If a tensor field ¥ € SY (M?™) satisfies

0 (PZy, Zo, .., Zg) = (21, PZs, ..., Zg) = ... = 0 (Z1, Zs, ..., PZ,)

forall Z1, Zs, ..., Zg € S§ (M?™), then ¥ is called pure with respect to the paracomplex structure P.
By means of the paracomplex structure P and the pure tensor field ¥, the operator ®p defined in [16] is

(@p9) (Y, Z1,...s Zg) = (PY) (9 (Z1, .., Zg)) — Y (9 (PZ1, Zay .y Zy))
+9((Lz,P)Y, Z2,y s Zg) + .. 4+ 9 (21, Za, ..., (Lz,P) Y)

where Ly is the Lie derivative with respect to Y and ®p1 € SY (M2m).

A tensor field ¥ is called an almost paraholomorphic with respect to the paracomplex algebra R (j), if
dp =0 (seel9, 15]).

The pair (P, g) is a para-Nordenian structure where P is an almost paracomplex structure and g is a pure
tensor field with respect to P, i.e. g (PV, Z) = g(V, PZ). Then a 2m-dimensional pseudo-Riemannian manifold
M with an almost para-Nordenian structure is called to be an almost para-Nordenian manifold. Furthermore,
the almost para-Nordenian manifold is para-Kahler (VP = 0) if and only if g is paraholomorphic (®pg = 0)
(see [14, 15]).

Given the cotangent bundle T* M with the metric G. A tensor field P € $1 (T* M) is expressed by

{ Pz =_Hz

PV =_Vg (61)

forany Z € S (M) and 6 € S9 (M). By virtue of (6.1), we have

P2Hz)y=pPPHZ)=P(-"Z)="Z
P2(Vo)=pP(PY9) =P (-V0)="0

forany Z € §¢ (M) and 0 € S9 (M), i.e. P? = I.

Theorem 6.1. The triple (T* M,G, P) is an almost para-Nordenian manifold.
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Proof. Using purity condition

W (V,Z) =G (PV,Z) - G(V,PZ)
forany V, Z € S (T*M), from (3.3) and (6.1) we have
W (Yw,V0) =G (PYw,V ) — G( w, PV9) =0,
W (72,V0) =G (P"2,V0) -G ("2,PV0) = -G ("2,V0) + G ("2,V) =0,
w (Y6,%z)=-w (72,Y6) =0,
W (HV,HZ) =G (PIV,HZ) -G ("V,PTZ) = -G ("V,"2) + G ("V,"Z) =0
i.e. G is pure with respect to P as defined by (6.1). Hence, Theorem 6.1 is proved. O

In view of Proposition 3.1 and (6.1), the covariant derivative of P with respect to the metric G is
(mvp) (V0) = Vay (PV6) — P (%V‘fe) - —mv (Ve) P (mv‘fe)
=3 (Vva) (w,)) = (a0 Vyw) - (va) ~3 ( (PR(,V),w))
= (=37 (Vva) (w,)) =7 (a0 Vyw) =V (Vyw) = 5" (a(pR(, V) ,w))) =0,
(Vi P) (72) = Vuy (P2) = P (V" 2) = vaVHZ - P (VarH2)
= ( (VvZ) + 1H(aOpR(V Z))+V (ZR(V.9)))
= (-"(Vv2) - 5" (@opR(V.2)) - (ZR(V p))) 0,
(VvuP) (72) = 6% (PHZ) P (V7)) = Vv, HZ) P(Vv,12)
1 ((V28) @)~ " (ZR(@,5)) + 57 (V2d) (w )) Y (ZR@,p) =0,
(ﬁva) (V0) = Vv, (Pva P (vvw vV ((Va ))
=37 ((Va) (w,0)) =

Theorem 6.2. The triple (T*M , é, P) is a para-Kihlerian manifold.

N

v
l\)\»—t

The Nijenhuis tensor is given by the formula
Np(V,Z)=[PV,PZ] - P[PV,Z] — P|V,PZ] + P*[V, Z] (6.2)

and the vanishing of the Nijenhuis tensor is characterized integrability of the almost paracomplex structure. If
P is integrable, we say that the almost para-Nordenian manifold is a para-Nordenian manifold (see [14]).
Using (3.6), (6.1) and (6.2), we find

Np ("V,"Z) = Np ("V,V0) = Np (Yw,"Z) = Np (Yw,"0) =0
ie. (T*M .G, P) is integrable. Then we have the following theorem:

Theorem 6.3. The triple (T*M .G, P) is a para-Nordenian manifold.

If the Lie derivative of a vector field Z € 3} (T* M) satisfies the condition L ;P = 0, then the vector field is
said to be an almost paraholomorphic (see [9]).
Taking account of (3.6) and (6.1), we have
(LezP)V0 = LczPV0 — P (Le;V0)
=—LoyV0—P(V(Lz0) =-V (Lz0) + (V (Lz0)) =0,
(LezP)HV = Lez PRV — P (Lo z7V) = —Le 27V — P (Le z7V)
— —(T1Z2.V]+V (p(LzV) V) < P (T 1Z.V]+7 (p(
(Lv,P)V0 = Lv,PY6— P (Lv,"0) =0,
(Lv,P)Z =Lv,PPZ - P(Lv, Z) = ~Lv ,%Z - P (Lv " Z)
=V (Vzw) -V (Vzw) = 0,
(LugP)V0=LuzPV0—P(LugV0)=—["ZVw| - P(["Z,Vw])
=V (Vzw) =P (Y (Vzw)) =0,
(LugP)HV = Luz PRV — P (Luz®V) = - [HZ, HV] - P (["Z,7V])
=—H[ZVI+V Rz V) -P ("2, V]+"V (pR(Z,V))) =0.
Hence, we can conclude the following theorem:
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Theorem 6.4. The complete and horizontal lifts ©Z, 57 € S} (T*M) of Z € S{ (M) and the vertical lift Vw €
S (T*M) of we Y (M) are the almost paraholomorphic vector fields with respect to the almost para-Nordenian

structure (P, é) .
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