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FURTHER INEQUALITIES FOR THE GENERALIZED
k-g-FRACTIONAL INTEGRALS OF FUNCTIONS WITH
BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR

ABSTRACT. Let g be a strictly increasing function on (a,b), having a continu-
ous derivative g’ on (a,b) . For the Lebesgue integrable function f : (a,b) — C,
we define the k-g-left-sided fractional integral of f by

Staard @ = [ k@ -g0)g O Odt, 2 € (0,1

and the k-g-right-sided fractional integral of f by

b
Stan-1 @) = [ K@) =g @) 011 O dt, 2 € [a,b)

where the kernel k is defined either on (0, 00) or on [0, co) with complex values
and integrable on any finite subinterval.

In this paper we establish some new inequalities for the k-g-fractional inte-
grals of functions of bounded variation.Examples for the generalized left- and
right-sided Riemann-Liouville fractional integrals of a function f with respect
to another function g and a general exponential fractional integral are also
provided.

1. INTRODUCTION

Assume that the kernel % is defined either on (0, 00) or on [0, c0) with complex
values and integrable on any finite subinterval. We define the function K : [0, 00) —

C by

fotk(s)ds if 0 < t,
K(t):=
0ift=0.
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As a simple example, if k (t) = t*~1 then for o € (0,1) the function k is defined on
(0,00) and K (t) := 1¢™ for t € [0,00). If & > 1, then k is defined on [0,00) and
K (t) :== 1t* for t € [0,00).

Let g be a strictly increasing function on (a,b), having a continuous derivative
g’ on (a,b). For the Lebesgue integrable function f : (a,b) — C, we define the

k-g-left-sided fractional integral of f by

Sk.gatf (€) = /m k(g(x) —g(®)g' (t) f(t)dt, = € (a,b] (1)

and the k-g-right-sided fractional integral of f by
b

Segof (@) = / k(g () — g () g (1) f (t)dt, = € [a,b). @)
If we take k (t) = ﬁt“_l, where I is the Gamma function, then
St @) = s | (@) — g ()" (1) £ (1) e (3)
=I5, f(z), a<x <D
and
b
Stgo_f (@) = ﬁ / () — g (@) g (1) £ (t) (4)

= It g f(2), a <z <,

which are the generalized left- and right-sided Riemann-Liouville fractional integrals
of a function f with respect to another function ¢ on [a, b] as defined in [23] p. 100].

For g (t) =t in we have the classical Riemann-Liouville fractional integrals
while for the logarithmic function ¢ (¢t) = Int we have the Hadamard fractional
integrals [23, p. 111]

1 [ (xy1e-t f(t)dt
@ — = < <
H, f(=) F(a)/a [m(tﬂ = 0<a<az<) (5)
and
H f(x)'—l/b In 2 BRI 0<a<z<b (6)
b= T (a) /, T t T )
One can consider the function g (¢t) = —t~! and define the "Harmonic fractional
integrals” by
L f@t)dt
o = < <
Re f(z) =g @ /a G 0<a<z<b (7)

and

-« b d
Ry f(z):= /w v _];)(f)attaﬂ’ 0<a<z<b. (8)
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Also, for ¢g(t) = exp (Bt), 8 > 0, we can consider the "S-Ezponential fractional
integrals”

o, o f(2) = Ffa) / " fexp (B2) — exp (B0 exp (B0) F () dt,  (9)

for a < x <band

. G
P ol@) = o / lexp (Bt) — exp (8)]" " exp (B1) f () dt,  (10)

for a <z <b.
If we take g (t) =t in and , then we can consider the following k-fractional
integrals

Stard (1) = [ K@=0) f(0)dt 2 € (b (11)
and ab
Sk f () :/ kE({t—z)f(t)dt, =€ la,b). (12)
In [26], Raina studied a class ofw functions defined formally by

x) ,;:0 T (ks + )\)x , |z| < R, with R >0 (13)

for p, A > 0 where the coefficients o (k) generate a bounded sequence of positive real
numbers. With the help of (13), Raina defined the following left-sided fractional
integral operator

Tonasud @)= [ =0 F =) Ot 2> (19

where p, A > 0, w € R and f is such that the integral on the right side exists.
In [, the right-sided fractional operator was also introduced as

b
Tgab—wl (@) ::/ (t=2) " Fs (w(t—a)) f () dt, @ <b (15)

where p, A > 0, w € R and f is such that the integral on the right side exists.
Several Ostrowski type inequalities were also established.
We observe that for k(t) = t>"1.7-"g’)\ (wt?) we re-obtain the definitions of
and . ) from and .
n [24], Klrane and Torebek introduced the following exponential fractional in-
tegmls

T (:c):—i/;exp{l;a(:rt)}f(t)dt,a:>a (16)

and

baf(:v):z;/:exp{—l;a(t—m)}f(t)dt,m<b (17)
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where o € (0,1).
We observe that for k (t) = X exp (~1=%¢) , t € R we re-obtain the definitions of
and from and .
Let g be a strictly increasing function on (a,b), having a continuous derivative
g’ on (a,b). We can define the more general exponential fractional integrals
l-«a

Tt @= 1 [ew {122 G@ s }s OOt s>a  (8)

and

[e%

b -«
Tt @3 [en{ -t 00 -y O fOd o <b (9

xr

where o € (0,1).
Let g be a strictly increasing function on (a,b) , having a continuous derivative g’
on (a,b) . Assume that o > 0. We can also define the logarithmic fractional integrals

Ly @)= [ @) -9 @ -9 ) O F Ot (20)

for0 <a<x<band
b

Ly [ (z) ::/ (9(t) =g (@) " In(g(t) =g () g (t) f(¢)dt, (21)

for 0 < a < x < b, where a > 0. These are obtained from and for the
kernel k (t) = t*"1lnt, t > 0.
For a =1 we get

x

Lowef @)= [ (g(a) =g @)g OF Ot 0<a<z<y  (22)

a

and
b
Loyp—f(z) = / In(g(t)—g(z)g () f(t)dt, 0<a<z<b. (23)
For g (t) = t, we have the simple forms
Lo f(x):= /m (z—t)* 'In(z—t)f(t)dt, 0<a<az<b, (24)
ab
Lo f(z) = / (t—2)* VIn(t—2) f () dt, 0<a<z<b (25)
£a+f(x)::/zln(x—t)f(t)dt,0<a<x§b (26)
and ab
Eb_f(:c)::/ln(t—z)f(t)dt,0<a§z<b. (27)

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [2)-[17], [21]-[34] and the references therein.
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For k£ and g as at the beginning of Introduction, we consider the mixed operator

Sk)g,a+7b7f(x) (28)
— % [Sk.g.atf (x) + Sk f (2)]

z b
=§[/ E@) ~ g0 07 Ods [ kO - g@)g 070 a

for the Lebesgue integrable function f : (a,b) — C and z € (a,b).
We also define the function K : [0, 00) — [0, 00) by

{ [ |k (s)| ds if 0 < ¢,
K(t):=

0ift=0.

In the recent paper [19] we obtained the following result for functions of bounded
variation:

Theorem 1. Assume that the kernel k is defined either on (0,00) or on [0,00)
with complex values and integrable on any finite subinterval. Let f : [a,b] — C be
a function of bounded variation on [a,b] and g be a strictly increasing function on
(a,b) , having a continuous derivative g’ on (a,b). Then we have the Ostrowski type
inequality

1

Stga+d-f (@) = 5K (9(0) —g(2)) + K (9(z) - g(a))] f (2)

t

b x
Sél/ k(g () — g @) \/ (£ g (t)dt + |k(g(x)g(t))|V(f)gl(t)dt]

<

N
=~
—
Q
—~
>
S~—
|
Q
—~
8
N~—
S—

s <=
—
~
S~—
+
—~
Q
—
8
=
|
Q
—
IS
=
N—

m<a
—
~
N—

| S|

max {K (g (b) - g (¢)) . K (g (2) — g (@)} V; (/)

IN
DN | =

K? (90— @) + K (9 0) g ()] (V2 ()" + (V2. 0) ")
1

with p, q > 1,

and the trapezoid type inequality

Sk.g.a+p—f (€)= % (K (g(b) —g(x)) f(b) + K (9 () — g(a)) f(a)]
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IN
N —

(
< (Ve + (Vo)
+1=1

with p, ¢ > 1,

K (g()—g(z)+K(g(z)—yg(a))]
SEAGERIHAGEAGH

for any x € (a,b), where \/f (f) denoted the total variation on the interval [c,d] .

Observe that

Sk.ga+f (b) = [b k(g(®)—g(t)g (t) f(t)dt, x € la,b) (31)
and 1
Scoot @)= [ KGO -g@)d O Od s @l (2
We can define also the mixed operator
Sk.gati—f (z) (33)

— % [Sk,g.a+f (0) + Sk.g.a—f (a)]

b xX
-3 l/ ’“<9<b>—9<f>>g’<t>f<t)dt+/a k(g(t)—g(a))g’(t)f(t)dt]

for any x € (a,b).

In this paper we establish some inequalities for the k-g-fractional integrals of
functions with bounded variation f : [a,b] — C that provide error bounds in ap-
proximating the composite operators Sk g o+,p—f and Sk g.a+p—f in terms of the
double trapezoid rule
L[ f(z)+f(b) fla)+ f(x)
5 [N k00 - o)+ PO Dk g0 - g @) e @,
Examples for the generalized left- and right-sided Riemann-Liouville fractional in-
tegrals of a function f with respect to another function g and a general exponential
fractional integral are also provided.
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2. FURTHER INEQUALITIES FOR FUNCTIONS OF BV
The following two parameters representation for the operators Sj g.q+.— and

»Su'k,g7a+7b_ hold [20]:

Lemma 2. Assume that the kernel k is defined either on (0,00) or on [0,00) with
complex values and integrable on any finite subinterval. Let f : [a,b] — C be an
integrable function on [a,b] and g be a strictly increasing function on (a,b), having
a continuous derivative g’ on (a,b). Then

Stgarsf (£) = 2 VK (g(b) — g (2)) + AK (9 (z) — g (a))] (34)

2
+3 [ @ -s®)g O - Aa
1 b

+7/ k(g(0) — g () g () [F (£) — ) dt

x

and

Skgatb-f () = % AK (g (b) —g(2)) + 7K (9 (x) — g(a))] (35)

3 [ KO -s@)g O © -

b
*%/ k(g (b) =g (8) g (8)[f (1) = Al dt

for x € (a,b) and for any A\, v € C.
Proof. We have, by taking the derivative over ¢t and using the chain rule, that

(K (g(z)—g @) =K' (g(z)—g(t) (g(x) —g (1) =—k(g(z) —g(t) g (t)
for t € (a,z) and

K(gt)—g @) =K (g(t)—g (@) (g(t) —g (@) =k(g(t) —g(z)) g (t)

for t € (z,b).
Therefore, for any A, v € C we have
[ k@ -g@ng @ ©-Na (30)

= [ Ha@-g@)d O d-A [ Ko@) -9 @) (1)
= St @)+ [T (g (@)~ g )]

a

= Skgatf (@) + MK (9(z) =g W)y = Skg.atf (x) = AK (9(2) — g(a))
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and
b
/ k(g(t)—g(@)g @)[f () —]dt (37)
b b
— [blg@) -9 @) g OF Od~y [ ko0 - 9@ B
b

— Stga-f @) =7 [ 1K ()~ g ()]

= Skgp—f (@) =7 [K (g(t) = g (@))]]; = Skgpf (x) = vK (g (b) — g ()
for x € (a,b).

If we add the equalities and and divide by 2 then we get the desired

result .

Moreover, by taking the derivative over ¢ and using the chain rule, we have that
[K (9(0) =g @) = K" (g(b) =g (1) (9 (0) =g (1)) = ~k (g(b) =g () ' (¢)
for ¢t € (x,b) and
[K (9(t) =g (a)] =K' (g(t) — g () (g(t) — g () =k(g(t) —g(a)) g (1)

for t € (a,z).
For any A, v € C we have
b
/ k(g (b) — g (£) g () [F (t) — Ndt (38)
b b

/k(g(b)—g(t))g’(t)f(t)dt—A/ k(g () — g (1) g (t) dt

xT b xT
= g f (B) £ A / K (g (b) — g ()] dt
= Skgatrf () = AK (g (b) — g (x))

and

[ B -g@)g OO -la (30)
=/mk<g<t>—g(a))g’(t)f(t)dt—w/l’k(gos)—g(a))g'(t)dt

a

/xk(g(t)—g(a))g’(t)f(t)dt—v/ K (g (t) — g ()] dt
xk

[ Ea®-5@) g OF Od— 7K (g(&) - g ()

for z € (a,b).
If we add the equalities and and divide by 2 then we get the desired
result . (]
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If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can define the g-mean of two numbers

a,bel as
M, (ah) = ! (g(a) +9(b) ) |

If I =R and g (t) = t is the identity function, then M, (a,b) = A(a,b) := £,
the arithmetic mean. If I = (0,00) and g (t) = Int, then M, (a,b) = G(a,b) := \F
the geometric mean. If I = (0,00) and g (t) = then M,y (a,b) = H (a,

b) =
2ab " the harmonic mean. If I = (0,00) and g (t ) = tP, p # 0, then M, (a,b) =
+b? g

M, (a,b) := (#)UP7 the power mean with exponent p. Finally, if I = R and
g (t) = expt, then

M, (a,b) = LME (a,b) := In (expa%pr> |

2

the LogMeanEzxp function.
Using the g-mean of two numbers we can introduce

Pigat+o—f = Sk.gatp-f (Mg (a,b)) (40)

Mgy (a,b) a
S5 [T ) g0 wa

1 b gla)+g(®)\ |,
Tz /M.q(a,b) : (g ®) - ) g (t) f (t)dt.

Using the representation we have

2 2
L _g<a>+g<b>> , )
e /Mg(a,b) g (g ®) B g @) [f () —~]dt
for any A, v € C.
Also, if
Pk,g,a+,b—f = S’k,g,a+,b_f (M, (a,b)) (42)
b
), oy FOO) —9 )5 (0 f (1) dt

Mgy (a,b)
+ %/a k(g (t)—g(a) g (t) f (t)dt.
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then by we get

for any A, v € C.

Theorem 3. Assume that the kernel k is defined either on (0,00) or on [0,00)
with complex values and integrable on any finite subinterval. Let f : [a,b] — C
be a function of bounded variation on [a,b] and g be a strictly increasing function
on (a,b), having a continuous derivative g’ on (a,b). Then we have the double
trapezoid inequalities

|Sk‘,g,a+7bff (m)

1 {f(w) + /()
2

max {K (g (b) — ¢ («)), K (g (z) — g (a))} Vo (f);
1) K ) g @)+ K2 (g ) — g @) (Vi 00+ (Ve n))
4| withp, g>1, 1+1=1;
K (9 (8) = 9(@) + Ko (@) =g @) [V2 () + 3 [Vi () = V2 1)
(1)
and
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max {K (9 (0) = g (#)) K (9 (2) =g (@)} Vo ()
a\ 1/q
1) K0~ g @)+ K2 (g (@) — g @) (Vi () + (Vo (N))
4 withp,q>1,%+é:1;
K (9(b) — 9 (2)) + K (9 (2) — g (@)] [EV5 () +3|VE (1) = V2 (£)]]
for x € (a,b).

roof. Using the identity or A = ——4—=> an = ——>=——= we have
Proof. Usi he identi for \ f(a);f(l’) d~ f(I);‘f(b) h
Sk,g.a+b—1f ()

3 [P ke ) - g o+ L O (g ) - )
w5 [ Fa@-s0)g 010 - 1O
b
+3 [ Ra®-g@d 0|10 - 12T g
for x € (a,b).
Since f is of bounded variation, then
RER{CES{CIMECESCES R E
<SP - F@I+IF @ - F o< 3V ()
and
- {020 101 eI 0-10)
1 1\’
< IO~ F@I+1F ) - F Ol < 5V ()
for x € (a,b).

Using the equality we have

|Sk,g,a+,0—f ()
RYHCEIOR
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b
t3| [ a0 -g@)gw|ro- 1O 4
<3 [ @ -gl]ro- T g g a
b
w5 [ a0 -g@l|f0 - H O g 6y a

I v ’ ’
<4lVLﬂ/‘W@@ﬂ—gwﬂdﬁwﬁ+Vtﬂ/Ik@@%—ﬂwﬂdaw%

=:B(z) (47)
for z € (a,b).
We have, by taking the derivative over ¢ and using the chain rule, that

K (g(z)—g@®)) =K (g(z) =g (1) (g(z) =g (1)) =~ k(g(x) =g ()¢ (t)

for t € (a,z) and

K (g(t) =g @) =K (g(t) —g(=) (g(t) =g (=) = |k(g(t) = g ()] g (t)
for t € (x,b).
Then

lf%@uwmumy@wz—/ﬂme—g@Wﬁ:me—g@>

and

b b
/Mwawn@mywﬁzijw@—mmWﬁ=K@@—gm»

Therefore

The last part of is obvious by making use of the elementary Holder type
inequalities for positive real numbers ¢, d, m, n > 0

max {m,n} (c+d);
me+ nd <

(m? +nP) P (¢t + d))Y with p, ¢ > 1, % + % =1.
Using the identity for A = w and v = w we also have

gk,g,a—hb—f (z)
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T O - g + L O 0 g )]

S;Lﬂmgtgaﬂftf@if“>ymﬁ
b
+3/\Mg |& A—liﬂlg<ww
i\a/ /G|k dt+ /|k g (t)dt

=:C(x).
We also have, by taking the derivative over ¢t and using the chain rule, that
K (gb) =g @) =K' (g(b) —g(1)(g(®) —g(®) =~k (g(®) =g ()¢ (t)
for t € (x,b) and
(K (g(t) —g (@) =K' (g(t) —g(a) (g(t) —g(a) =k(g(t) —g(a))lg (1)
fort € (a,z).

Therefore .

k(g (t) —g(a)lg (t)dt = K(g(z) - g(a))

and

b
/ [k (g (0) =g (t)]g' () dt =K (g (b) — g (z))

giving that

b
1 1
C(Jf):Z\/(f)K(g( 1\/ g(x))
for « € (a,b), and the inequality (45)) is thus proved. ([l

Corollary 4. With the assumptions of Theorem[3 we have

Pt = 35 (2052 D) [ty o + ZOTLO]

and

Prgara-t = 55 (B2 [1 0y o) + HEOTLO] oo

<ix(“”5“®)?ﬁ»
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If we take z = 2£2 in and , then we get

and
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max {K (9 () — g (42)) . K (9 (*42) —9(a))} Vo (f

IN
=

(51)

for z € (a,b).
We use the classical Lebesgue p-norms defined as

12/l ¢,a1,00 = essup |h (s)]
s€le,d]

P
Vol = (/ Ih (s |pds> L p>1.

Using Holder’s integral inequality we have for ¢ > 0 that
¢ tlIEl10,,00 1 F € Loo [0,2]
0= [ IkGs)lds <
0 Pkl R €Ly [0,2], pg>1, T+ 2 =1
Therefore by the first inequality in and we get for p, g > 1, % + % =1

|Sk.g,ato—f ()

and

(9 () = g(@) [1Fllo.g(@)—ga)).00

(9@) = g(@) """ 1Elli0.y(2)—g(a)1.0

b (9 (0) = g(@)) 1Ell10, () —g ()00
\ () . (52)
z (9 (0) = g @) """ 1Ell0.g0) g0

e

and




64 SILVESTRU SEVER DRAGOMIR

(9(z) —g(a)) Hk”[O,g(w)fg(a)],oo
<

\V ()

==

(9(=@) = g(@) """ 1Elli0.y(2)—g(a)1.0

b (9(0) = g (@)) 1Ell10,(6)—g (2,00
V) 1 (53)
z (9 (0) = g @) [Ell o g0)— g0

_|_

Ry

for « € (a,b).
From and we also have for p, ¢ > 1, % + % =1 that

Piga+rbo—f— %K (W) [f (M, (a,b)) + f(‘:‘)*'f(b)} ’

2
<hyo (42542 1l o o, (54)
=Y /
a (M)l P Hk”[ﬂ,w}’q
and
H%H#j;K<mw;gwg[fu@mﬁ»+fwﬁ;ﬂwﬂ
o[ () i
< Z\/(f) %)

@)
(M) 1Ellfo, 2220t -

3. APPLICATIONS FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL
INTEGRALS

If we take k (t) = ﬁto‘*l, where I' is the Gamma function, then

Sugar] () = 1240 f@) = s / o) — g ()" (1) £ (1) e

fora < x <band

I 1

— t) — TG @) f(t)at

7o [ b -s@ 010

for a < & < b, which are the generalized left- and right-sided Riemann-Liouville
fractional integrals of a function f with respect to another function g on [a,b] as

defined in [23] p. 100].
We consider the mixed operators

Iarof (@) = 3 [ F () + I o7 (@) (56)

Skguf (2) = I, f(x) =
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and
Iarof (@) = 3 (18, F () + I, f(a)] (57

for x € (a,b).
‘We observe that for @ > 0 we have

1 ¢ e 1
K(t) = —— a—lgs — = t>0.
®) 1"(0[)/0S § ol () T(a+1) "~

If we use the inequalities and we get

|I;]1,a+,b—f (LE)

2I' (a+ 1)
T b
T | 0@ 9@ VD + 6o -s@)rV (f)]
1
ST ety
2052 4 g (@) — S0P ()

a\ 1/a
4 G0 =g @)+ (g @)~ g @) T (Vo + (Ve ()) T (s

with p, ¢ > 1, %Jr%

and
A C)
s [P e - s+ H D @) - g ]
T | 0@ @) \/ () + (9 () — g ()" \/ (f)]
1
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b)— b
{g( )2g(a) + ‘g () — gl );g(a)

IAGE

N
00 =@ + @) g @ (Ve + (Vi) ) s9)

with p, ¢ > 1, %-i—%

(9 (®) = g (@) + (g (@) = g (@)*] [ Vo (N + 3| Vi (1) = V2 ()]

for z € (a,b).

From and we get

a1 0y aot) — S IO )+

and

Baraf O (0,0) - SR OO 7 0, )+

—_

b
< - — o ) 1
< prErE OO @V 6
4. EXAMPLE FOR AN EXPONENTIAL KERNEL
For a, 8 € R we consider the kernel k& (t) := exp [(a + (i) t], t € R. We have
exp [(a+ Bi)t] — 1
(o + Bi)

K (t) = ,ifteR
for a;, B # 0.
Also, we have

|k (s)] := |exp [(a + B7) s]| = exp (as) for s € R

and

exp (at) —

¢
K(t):/oexp(as)ds: lif0<t,

et
for v # 0.

Let f : [a,b] — C be a function of bounded variation on [a,b] and g be a
strictly increasing function on (a,b), having a continuous derivative ¢’ on (a,b).
We consider the operator

ol @)= g [ ewllat 5 6@ -9 0)g 05 Oa (62
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1 /b , ,
+5/I exp [(a + Bi) (g (t) — g (@) ¢’ (t) f () dt

for z € (a,b).

If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then we can consider the following
operator as well

:Ziz f(z) (63)
= H&Jfﬁ b ()

[ G S | () Sr0e]

for x € (a,b).
Using the inequality we have for z € (a,b)

‘Ha—i-[% F@) -1+ 1f(z)+ f(b) exp(a+pi)(g(b) —g(x)] -1

et 2 2 (a+ Bi)
_f(a) + f(x) exp[(a+ Bi) (9 (z) — g(a))]—1’
2 (o + i)
1 |exp(a(g(z) —g(a)) -1\ exp (a(g(b) —g(x) -1,
§4l - Vin+ - ygﬂ

s { exp(a(g()—g(a))=1 exp(alg(b)—g(x)))-1 } Ve ()

a ’ [} a

[(exp(a(g(r) g(a)))— 1) i (exp(a(g(b) 9(2)))— ) }1/p
i)
’ p T 1 ;

exp(a(g(z)—g(a)))+exp(a(g(b)—g(z)))—2
SEAGEEIADEAGH

and if we take g = Inh where h : [a,b] — (0,00) is a strictly increasing function on
(a,b) , having a continuous derivative h’ on (a,b), then we get

(h(b) > a+pB1 B
a+,6'z f ( ) 1 f (l‘) + f (b) h(z)
Fhoat b 2 2 (o + Bi)
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- a+B1
f@ s (5)
2 (a + Bi)

IN
e~ =

If we take if we take @y := 7~ ( h(a) h (b)) = (G (h(a),h (D)) € (a,b),
where G is the geometric mean, then from we get

o G [ (a)+ £ (b)
] = e [0 G @ h0) + }

where R?Jgf_lb_f = /@%Ilf_’;b_f (zp) .
Let f : [a,b] — C be an integrable function on [a, b] and ¢ be a strictly increasing

function on (a,b), having a continuous derivative ¢’ on (a,b). Also define

H oo f (1) (67)
1

b
=5 | eolala®) 9@l ®F O

+;/:eXp[a(g(t)_g(a))}gl(t)f(t)dt

for any z € (a,b).
If g = Inh where h : [a,b] — (0,00) is a strictly increasing function on (a,b),
having a continuous derivative h’ on (a,b), then we can consider the following
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operator as well

Bhatb—f (@) (68)
= Hip h,a-hb—f ()

_ L (N ) ")) ()
E V (v) ww oo [ (i) th} 7
for any x € (a,b).

Using the inequality (45| @ we have for € (a,b) that

HOO ) — 2{f()+f()e><p[(<%+6i)(g(b)—g(a?))]—1

Moot 2 ( + i)
L) @ el ot s @1
2 (a4 Bi)
e (alo(@) g (@) =1\, explalo®)—g@) -1’
<1 E Vi - Vo)

max { exp(a(g(z)—g(a)))—1 exp(a(g(b)—g(z)))—1 } \/b (f):

a ? a

1/p

Kexp(aw)a 9(a))— 1) (exp(am(b)a—g(x)))—l)”}

. (( ( ):) (69)

with p, q>1 l—|—%= ;

IA
| =

exp(a(g(w)—g(a)))+exp(a(g(b)—g(w)))—2}

SRVATISTY |

VE() = Vo (f)

and if we take g = Inh where h : [a,b] — (0, 00) is a strictly increasing function on
(a,b) , having a continuous derivative h’ on (a,b), then we get

a+pBi
s o] fw (i) !
ha+b 2 2 (Oz—l—ﬁl)
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< [ (BT e ()
with p, ¢ > 1, %+5:1;

D2 Vi + 3 vam - Ve o).

If we take if we take z, =h 1 (G (h(a),h (b)) € (a,b), where G is the geometric

mean, then from we get

a+pBi

(i) ~ -1 fla)+ £ 0)
Gl - S [ (7 G @ no) + L0

+Bi Lot Bi
where@fl‘aﬁb f= ,O:(H_Zb fzp).
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