A Note on f-biharmonic Legendre Curves in \mathcal{S}-space Forms

Şaban Güvenç*

(Communicated by Kazım İlarslan)

Abstract

In this paper, we study f-biharmonic Legendre curves in \mathcal{S}-space forms. Our aim is to find curvature conditions for these curves and determine their types, i.e., a geodesic, a circle, a helix or a Frenet curve of osculating order r with specific curvature equations. We also give a proper example of f-biharmonic Legendre curves in the \mathcal{S}-space form $\mathbb{R}^{2 m+s}(-3 s)$, with $m=2$ and $s=2$.

Keywords: \mathcal{S}-space form; Legendre curve; f-biharmonic curve; Frenet curve.
AMS Subject Classification (2010): Primary: 53C25 ; Secondary: 53C40; 53A04.

1. Introduction

Let us consider a smooth map $\phi:(M, g) \rightarrow(N, h)$, where (M, g) and (N, h) are Riemannian manifolds. If ϕ is a critical point of the f-bienergy functional

$$
E_{2, f}(\phi)=\frac{1}{2} \int_{M} f|\tau(\phi)|^{2} v_{g},
$$

then it is called an f-biharmonic map. Here, $f \in C(M, \mathbb{R}), v_{g}$ is the volume element and $\tau(\phi)$ is the first tension field of ϕ defined as $\tau(\phi)=\operatorname{trace} \nabla d \phi$, (for further details, please refer to [15]). Using this definition, Y. L. Ou calculated f-biharmonic equation given by (3.2) in Section 3, which gives opportunity to study f-biharmonic curves in a variety of manifolds. The present author and Cihan Özgür studied f-biharmonic Legendre curves in Sasakian space forms in [11]. This paper generalizes these results to \mathcal{S}-space forms.
The paper is organised as follows. In Section 2, we give fundamentals of \mathcal{S}-manifolds. We give main results in Section 3, considering four different cases. At the end of this last section, we give a non-trivial example in $\mathbb{R}^{6}(-6)$, which satisfies our results.

2. \mathcal{S}-space forms

Let (M, g) be a $(2 m+s)$-dimensional framed metric manifold [21] with a framed metric structure $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, that is, φ is a (1,1) tensor field defining a φ-structure of rank $2 m ; \xi_{1}, \ldots, \xi_{s}$ are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1 -forms and g is a Riemannian metric on M such that for all $X, Y \in T M$ and $\alpha, \beta \in\{1, \ldots, s\}$,

$$
\begin{gather*}
\varphi^{2} X=-X+\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \xi_{\alpha}, \quad \eta^{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}, \quad \varphi\left(\xi_{\alpha}\right)=0, \quad \eta^{\alpha} \circ \varphi=0 \tag{2.1}\\
g(\varphi X, \varphi Y)=g(X, Y)-\sum_{\alpha=1}^{s} \eta^{\alpha}(X) \eta^{\alpha}(Y), \tag{2.2}\\
d \eta^{\alpha}(X, Y)=g(X, \varphi Y)=-d \eta^{\alpha}(Y, X), \quad \eta^{\alpha}(X)=g(X, \xi) . \tag{2.3}
\end{gather*}
$$

[^0]$\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is also called framed φ-manifold [16] or almost r-contact metric manifold [20]. If the Nijenhuis tensor of φ equals $-2 d \eta^{\alpha} \otimes \xi_{\alpha}$ for all $\alpha \in\{1, \ldots, s\}$, then $\left(\varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called \mathcal{S}-structure [1].

For $s=1$, a framed metric structure becomes an almost contact metric structure and an \mathcal{S}-structure becomes a Sasakian structure. If a framed metric structure on M is an \mathcal{S}-structure, then we have [1]:

$$
\begin{gather*}
\left(\nabla_{X} \varphi\right) Y=\sum_{\alpha=1}^{s}\left\{g(\varphi X, \varphi Y) \xi_{\alpha}+\eta^{\alpha}(Y) \varphi^{2} X\right\} \tag{2.4}\\
\nabla \xi_{\alpha}=-\varphi, \alpha \in\{1, \ldots, s\} \tag{2.5}
\end{gather*}
$$

In Sasakian case $(s=1),(2.5)$ can directly be calculated from (2.4).
A plane section in $T_{p} M$ is a φ-section if there exist a vector $X \in T_{p} M$ orthogonal to ξ_{1}, \ldots, ξ_{s} such that $\{X, \varphi X\}$ span the section. The sectional curvature of a φ-section is called φ-sectional curvature. In an \mathcal{S}-manifold of constant φ-sectional curvature, the curvature tensor R of M is calculated as

$$
\begin{align*}
& R(X, Y) Z=\sum_{\alpha, \beta}\left\{\eta^{\alpha}(X) \eta^{\beta}(Z) \varphi^{2} Y-\eta^{\alpha}(Y) \eta^{\beta}(Z) \varphi^{2} X\right. \\
&\left.-g(\varphi X, \varphi Z) \eta^{\alpha}(Y) \xi_{\beta}+g(\varphi Y, \varphi Z) \eta^{\alpha}(X) \xi_{\beta}\right\} \tag{2.6}\\
&+\frac{c+3 s}{4}\left\{-g(\varphi Y, \varphi Z) \varphi^{2} X+g(\varphi X, \varphi Z) \varphi^{2} Y\right\} \\
& \frac{c-s}{4}\{g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z\}
\end{align*}
$$

for all $X, Y, Z \in T M$ [3]. An \mathcal{S}-manifold of constant φ-sectional curvature c is called an \mathcal{S}-space form and it is denoted by $M(c)$. For $s=1$, an \mathcal{S}-space form transforms into a Sasakian space form [2].

A submanifold of an \mathcal{S}-manifold is called an integral submanifold if $\eta^{\alpha}(X)=0, \alpha=1, \ldots, s$, for every tangent vector X [14]. A 1-dimensional integral submanifold of an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called a Legendre curve of M. Equally, a curve $\gamma: I \rightarrow M=\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ is called a Legendre curve if $\eta^{\alpha}(T)=0$, for every $\alpha=1, \ldots s$, where T denotes the tangent vector field of γ.

3. f-biharmonic Legendre curves in \mathcal{S}-space forms

Let us consider an arc-length curve $\gamma: I \rightarrow M$ in an n-dimensional Riemannian manifold (M, g). If there exists orthonormal vector fields $E_{1}, E_{2}, \ldots, E_{r}$ along γ satisfying

$$
\begin{align*}
E_{1}= & \gamma^{\prime}=T, \\
\nabla_{T} E_{1}= & \kappa_{1} E_{2}, \\
\nabla_{T} E_{2}= & -\kappa_{1} E_{1}+\kappa_{2} E_{3}, \tag{3.1}\\
& \cdots \\
\nabla_{T} E_{r}= & -\kappa_{r-1} E_{r-1},
\end{align*}
$$

then γ is called a Frenet curve of osculating order r, where $\kappa_{1}, \ldots, \kappa_{r-1}$ are positive functions on I and $1 \leq r \leq n$.
A Frenet curve of osculating order 1 is a called geodesic. A Frenet curve of osculating order 2 is a circle if κ_{1} is a non-zero positive constant. A Frenet curve of osculating order $r \geq 3$ is called a helix of order r, when $\kappa_{1}, \ldots, \kappa_{r-1}$ are non-zero positive constants; a helix of order 3 is simply called a helix.

An arclength parametrized curve $\gamma:(a, b) \rightarrow(M, g)$ is called an f-biharmonic curve with a function f : $(a, b) \rightarrow(0, \infty)$ if the following equation is satisfied [17]:

$$
\begin{equation*}
f\left(\nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T\right)+2 f^{\prime} \nabla_{T} \nabla_{T} T+f^{\prime \prime} \nabla_{T} T=0 \tag{3.2}
\end{equation*}
$$

Now let $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-space form and $\gamma: I \rightarrow M$ a Legendre Frenet curve of osculating order r. If we differentiate

$$
\begin{equation*}
\eta^{\alpha}(T)=0 \tag{3.3}
\end{equation*}
$$

and use (3.1), we find

$$
\begin{equation*}
\eta^{\alpha}\left(E_{2}\right)=0, \alpha \in\{1, \ldots, s\} \tag{3.4}
\end{equation*}
$$

Using equations (2.1), (2.2), (2.3), (2.6), (3.1) and (3.4), we calculate

$$
\nabla_{T} \nabla_{T} T=-\kappa_{1}^{2} E_{1}+\kappa_{1}^{\prime} E_{2}+\kappa_{1} \kappa_{2} E_{3}
$$

$$
\begin{aligned}
& \nabla_{T} \nabla_{T} \nabla_{T} T=-3 \kappa_{1} \kappa_{1}^{\prime} E_{1}+\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) E_{2} \\
&+\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
& R\left(T, \nabla_{T} T\right) T=-\kappa_{1} \frac{(c+3 s)}{4} E_{2}-3 \kappa_{1} \frac{(c-s)}{4} g\left(\varphi T, E_{2}\right) \varphi T
\end{aligned}
$$

(see [19]). If the left-hand side of (3.2) is denoted by $f . \tau_{3}$, we find that

$$
\begin{align*}
\tau_{3}= & \nabla_{T} \nabla_{T} \nabla_{T} T-R\left(T, \nabla_{T} T\right) T+2 \frac{f^{\prime}}{f} \nabla_{T} \nabla_{T} T+\frac{f^{\prime \prime}}{f} \nabla_{T} T \\
= & \left(-3 \kappa_{1} \kappa_{1}^{\prime}-2 \kappa_{1}^{2} \frac{f^{\prime}}{f}\right) E_{1} \\
& +\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}+\kappa_{1} \frac{(c+3 s)}{4}+2 \kappa_{1}^{\prime} \frac{f^{\prime}}{f}+\kappa_{1} \frac{f^{\prime \prime}}{f}\right) E_{2} \tag{3.5}\\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}+2 \kappa_{1} \kappa_{2} \frac{f^{\prime}}{f}\right) E_{3}+\kappa_{1} \kappa_{2} \kappa_{3} E_{4} \\
& +3 \kappa_{1} \frac{(c-s)}{4} g\left(\varphi T, E_{2}\right) \varphi T
\end{align*}
$$

Let $k=\min \{r, 4\}$. From (3.5), the curve γ is f-biharmonic if and only if $\tau_{3}=0$, i.e.,
(1) $c=s$ or $\varphi T \perp E_{2}$ or $\varphi T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) $g\left(\tau_{3}, E_{i}\right)=0$, for all $i=\overline{1, k}$.

Thus, we can state the following main theorem:
Theorem 3.1. Let γ be a non-geodesic Legendre Frenet curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}$ and $k=\min \{r, 4\}$. Then γ is f-biharmonic if and only if
(1) $c=s$ or $\varphi T \perp E_{2}$ or $\varphi T \in \operatorname{span}\left\{E_{2}, \ldots, E_{k}\right\}$; and
(2) the first k of the following equations are satisfied (replacing $\kappa_{k}=0$):

$$
\begin{gathered}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0 \\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{4}\left[g\left(\varphi T, E_{2}\right)\right]^{2}+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{3}\right)+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} g\left(\varphi T, E_{2}\right) g\left(\varphi T, E_{4}\right)=0 .
\end{gathered}
$$

From Theorem 3.1, one can easily see that a curve γ with constant geodesic curvature κ_{1} is f-biharmonic if and only if it is biharmonic. Since we studied biharmonic curves in \mathcal{S}-space forms in [19], we study curves with non-constant κ_{1} in this paper. We call non-biharmonic f-biharmonic curves proper f-biharmonic.

Now we investigate results of Theorem 3.1 in four cases.

Case I. $c=s$.
In this case γ is proper biharmonic if and only if

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0, \tag{3.6}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=s+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f}, \\
\kappa_{2}^{\prime}+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}=0 .
\end{gather*}
$$

Theorem 3.2. Let γ be a Legendre Frenet curve in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}, c=s$ and $(2 m+s)>3$. Then γ is proper f-biharmonic if and only if either
(i) γ is of osculating order $r=2$ with $f=c_{1} \kappa_{1}^{-3 / 2}$ and κ_{1} satisfies

$$
\begin{equation*}
t \pm \frac{1}{2 \sqrt{s}} \arctan \left(\frac{2 s+c_{3} \kappa_{1}}{2 \sqrt{s} \sqrt{-\kappa_{1}^{2}-c_{3} \kappa_{1}-s}}\right)+c_{4}=0 \tag{3.7}
\end{equation*}
$$

where $c_{1}>0, c_{3}<-2 \sqrt{s}$ and c_{4} are arbitrary constants, t is the arc-length parameter and

$$
\begin{equation*}
\frac{1}{2}\left(-\sqrt{c_{3}^{2}-4 s}-c_{3}\right)<\kappa_{1}(t)<\frac{1}{2}\left(\sqrt{c_{3}^{2}-4 s}-c_{3}\right) ; \text { or } \tag{3.8}
\end{equation*}
$$

(ii) γ is of osculating order $r=3$ with $f=c_{1} \kappa_{1}^{-3 / 2}, \frac{\kappa_{2}}{\kappa_{1}}=c_{2}$ and κ_{1} satisfies

$$
\begin{equation*}
t \pm \frac{1}{2 \sqrt{s}} \arctan \left(\frac{2 s+c_{3} \kappa_{1}}{2 \sqrt{s} \sqrt{-\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-c_{3} \kappa_{1}-s}}\right)+c_{4}=0 \tag{3.9}
\end{equation*}
$$

where $c_{1}>0, c_{2}>0, c_{3}<-2 \sqrt{s\left(1+c_{2}^{2}\right)}$ and c_{4} are arbitrary constants, t is the arc-length parameter and

$$
\begin{equation*}
\frac{1}{2\left(1+c_{2}^{2}\right)}\left(-\sqrt{c_{3}^{2}-4 s\left(1+c_{2}^{2}\right)}-c_{3}\right)<\kappa_{1}(t)<\frac{1}{2\left(1+c_{2}^{2}\right)}\left(\sqrt{c_{3}^{2}-4 s\left(1+c_{2}^{2}\right)}-c_{3}\right) . \tag{3.10}
\end{equation*}
$$

Proof. From the first equation of (3.6), it is easy to see that $f=c_{1} \kappa_{1}^{-3 / 2}$ for an arbitrary constant $c_{1}>0$. So, we find

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\frac{-3}{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}, \frac{f^{\prime \prime}}{f}=\frac{15}{4}\left(\frac{\kappa_{1}^{\prime}}{\kappa_{1}}\right)^{2}-\frac{3}{2} \frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}} \tag{3.11}
\end{equation*}
$$

If $\kappa_{2}=0$, then γ is of osculating order $r=2$ and the first two of equations (3.6) must be satisfied. Hence the second equation and (3.11) give us the ODE

$$
\begin{equation*}
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left(\kappa_{1}^{2}-s\right) \tag{3.12}
\end{equation*}
$$

Let $\kappa_{1}=\kappa_{1}(t)$, where t denotes the arc-length parameter. If we solve (3.12) considering s is a positive integer, we find (3.7). Since (3.7) must be well-defined, $-\kappa_{1}^{2}-c_{3} \kappa_{1}-s>0$. Since $\kappa_{1}>0$, we have $c_{3}<-2 \sqrt{s}$ and (3.8).

If $\kappa_{2}=$ constant $\neq 0$, we find f is a constant. Hence γ is not proper f-biharmonic in this case. Let $\kappa_{2} \neq$ constant. From the fourth equation, we have $\kappa_{3}=0$. So, γ is of osculating order $r=3$. The third equation of (3.6) gives us $\frac{\kappa_{2}}{\kappa_{1}}=c_{2}$, where $c_{2}>0$ is a constant. If we write these equations in the second equation of (3.6), we have the ODE ${ }^{1}$

$$
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-s\right]
$$

which has the general solution (3.9) under the condition $c_{3}<-2 \sqrt{s\left(1+c_{2}^{2}\right)}$ and (3.10) must be satisfied.
If we take $s=1$, we obtain Theorem 3.2 in [11].
Remark 3.1. If $2 m+s=3$, then $m=s=1$. So M is a 3-dimensional Sasakian space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see [2]), we can write $\kappa_{1}>0$ and $\kappa_{2}=1$. The first and the third equations of (3.6) give us f is a constant. Hence γ cannot be proper f-biharmonic. Previously, in [19], we claimed that γ cannot be proper biharmonic either.

Case II. $c \neq s, \varphi T \perp E_{2}$.
In this case, $g\left(\varphi T, E_{2}\right)=0$. From Theorem 3.1, we obtain

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0, \tag{3.13}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}+\frac{\kappa_{1}^{\prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \\
\kappa_{2}^{\prime}+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

Firstly, we need the following proposition:
Proposition 3.1. [19] Let γ be a Legendre Frenet curve of osculating order 3 in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$ and $\varphi T \perp E_{2}$. Then $\left\{T=E_{1}, E_{2}, E_{3}, \varphi T, \nabla_{T} \varphi T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent at any point of γ. Therefore $m \geq 3$.

Now we have the following Theorem:
Theorem 3.3. Let γ be a Legendre Frenet curve in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right), \alpha \in\{1, \ldots, s\}, c \neq s$ and $\varphi T \perp E_{2}$. Then γ is proper biharmonic if and only if
(1) γ is of osculating order $r=2$ with $f=c_{1} \kappa_{1}^{-3 / 2}, m \geq 2,\left\{T=E_{1}, E_{2}, \varphi T, \nabla_{T} \varphi T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent and
(a) if $c>-3 s$, then κ_{1} satisfies

$$
t \pm \frac{1}{\sqrt{c+3 s}} \arctan \left(\frac{c+3 s+2 c_{3} \kappa_{1}}{\sqrt{c+3 s} \sqrt{-4 \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3 s}}\right)+c_{4}=0
$$

(b) if $c=-3 s$, then κ_{1} satisfies

$$
t \pm \frac{\sqrt{-\kappa_{1}\left(\kappa_{1}+c_{3}\right)}}{c_{3} \kappa_{1}}+c_{4}=0
$$

(c) if $c<-3 s$, then κ_{1} satisfies

$$
t \pm \frac{1}{\sqrt{-c-3 s}} \ln \left(\frac{c+3 s+2 c_{3} \kappa_{1}-\sqrt{-c-3 s} \sqrt{-4 \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3 s}}{(c+3 s) \kappa_{1}}\right)+c_{4}=0 ; \text { or }
$$

(2) $\gamma \quad$ is of osculating order $\quad r=3$ with $f=c_{1} \kappa_{1}^{-3 / 2}, \quad \frac{\kappa_{2}}{\kappa_{1}}=c_{2}=$ constant $>0, \quad m \geq 3$, $\left\{T=E_{1}, E_{2}, E_{3}, \varphi T, \nabla_{T} \varphi T, \xi_{1}, \ldots, \xi_{s}\right\}$ is linearly independent and
(a) if $c>-3 s$, then κ_{1} satisfies

$$
t \pm \frac{1}{\sqrt{c+3 s}} \arctan \left(\frac{c+3 s+2 c_{3} \kappa_{1}}{\sqrt{c+3 s} \sqrt{-4\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3 s}}\right)+c_{4}=0
$$

(b) if $c=-3 s$, then κ_{1} satisfies

$$
t \pm \frac{\sqrt{-\kappa_{1}\left[\left(1+c_{2}^{2}\right) \kappa_{1}+c_{3}\right]}}{c_{3} \kappa_{1}}+c_{4}=0
$$

(c) if $c<-3 s$, then κ_{1} satisfies

$$
t \pm \frac{1}{\sqrt{-c-3 s}} \ln \left(\frac{c+3 s+2 c_{3} \kappa_{1}-\sqrt{-c-3 s} \sqrt{-4\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-4 c_{3} \kappa_{1}-c-3 s}}{(c+3 s) \kappa_{1}}\right)+c_{4}=0
$$

where $c_{1}>0, c_{2}>0, c_{3}$ and c_{4} are convenient arbitrary constants, t is the arc-length parameter $\kappa_{1}(t)$ is in convenient open interval.

Proof. The proof is similar to the proof of Theorem 3.2.
Case III. $c \neq s, \varphi T \| E_{2}$.
In this case, $\varphi T= \pm E_{2}, g\left(\varphi T, E_{2}\right)= \pm 1, g\left(\varphi T, E_{3}\right)=g\left(\pm E_{2}, E_{3}\right)=0$ and $g\left(\varphi T, E_{4}\right)=g\left(\pm E_{2}, E_{4}\right)=0$. From Theorem 3.1, γ is biharmonic if and only if

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0, \tag{3.14}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=c+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \\
\kappa_{2}^{\prime}+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0, \\
\kappa_{2} \kappa_{3}=0
\end{gather*}
$$

In [19], we have proved that $\kappa_{2}=\sqrt{s}$, that is, κ_{2} is a constant. Then, the first and the third equations of (3.14) give us f is a constant. Hence, we give the following result:

Theorem 3.4. There does not exist any proper f-biharmonic Legendre curve in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$ with $c \neq s$ and $\varphi T \| E_{2}$.

Case IV. $c \neq s$ and $g\left(\varphi T, E_{2}\right)$ is not constant 0,1 or -1 .
In this final case, let $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$ be an \mathcal{S}-space form, $\alpha \in\{1, \ldots, s\}$ and $\gamma: I \rightarrow M$ a Legendre curve of osculating order r, where $4 \leq r \leq 2 m+s$ and $m \geq 2$. If γ is biharmonic, then $\varphi T \in \operatorname{span}\left\{E_{2}, E_{3}, E_{4}\right\}$. Let $\theta(t)$ denote the angle function between φT and E_{2}, that is, $g\left(\varphi T, E_{2}\right)=\cos \theta(t)$. If we differentiate $g\left(\varphi T, E_{2}\right)$ along γ and use equations (2.1), (2.3), (3.1) and (2.4), we get

$$
\begin{align*}
-\theta^{\prime}(t) \sin \theta(t) & =\nabla_{T} g\left(\varphi T, E_{2}\right)=g\left(\nabla_{T} \varphi T, E_{2}\right)+g\left(\varphi T, \nabla_{T} E_{2}\right) \\
& =g\left(\sum_{\alpha=1}^{s} \xi_{\alpha}+\kappa_{1} \varphi E_{2}, E_{2}\right)+g\left(\varphi T,-\kappa_{1} T+\kappa_{2} E_{3}\right) \tag{3.15}\\
& =\kappa_{2} g\left(\varphi T, E_{3}\right)
\end{align*}
$$

If we write $\varphi T=g\left(\varphi T, E_{2}\right) E_{2}+g\left(\varphi T, E_{3}\right) E_{3}+g\left(\varphi T, E_{4}\right) E_{4}$, Theorem 3.1 gives us

$$
\begin{gather*}
3 \kappa_{1}^{\prime}+2 \kappa_{1} \frac{f^{\prime}}{f}=0 \tag{3.16}\\
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{4} \cos ^{2} \theta+\frac{\kappa_{1}^{\prime \prime}}{\kappa_{1}}+\frac{f^{\prime \prime}}{f}+2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \frac{f^{\prime}}{f} \tag{3.17}\\
\kappa_{2}^{\prime}+\frac{3(c-s)}{4} \cos \theta g\left(\varphi T, E_{3}\right)+2 \kappa_{2} \frac{f^{\prime}}{f}+2 \kappa_{2} \frac{\kappa_{1}^{\prime}}{\kappa_{1}}=0 \tag{3.18}\\
\kappa_{2} \kappa_{3}+\frac{3(c-s)}{4} \cos \theta g\left(\varphi T, E_{4}\right)=0 \tag{3.19}
\end{gather*}
$$

If we put (3.11) in (3.17) and (3.18) respectively, we find

$$
\begin{gather*}
\kappa_{1}^{2}+\kappa_{2}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{4} \cos ^{2} \theta-\frac{\kappa_{1}^{\prime \prime}}{2 \kappa_{1}}+\frac{3}{4}\left(\frac{\kappa_{1}^{\prime}}{\kappa_{1}}\right)^{2} \tag{3.20}\\
\kappa_{2}^{\prime}-\frac{\kappa_{1}^{\prime}}{\kappa_{1}} \kappa_{2}+\frac{3(c-s)}{4} \cos \theta g\left(\varphi T, E_{3}\right)=0 \tag{3.21}
\end{gather*}
$$

If we multiply (3.21) with $2 \kappa_{2}$ and use (3.15), we obtain

$$
\begin{equation*}
2 \kappa_{2} \kappa_{2}^{\prime}-2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} \kappa_{2}^{2}+\frac{3(c-s)}{4}\left(-2 \theta^{\prime} \cos \theta \sin \theta\right)=0 \tag{3.22}
\end{equation*}
$$

Let us denote $v(t)=\kappa_{2}^{2}(t)$, where t is the arc-length parameter. Then (3.22) turns into

$$
\begin{equation*}
v^{\prime}-2 \frac{\kappa_{1}^{\prime}}{\kappa_{1}} v=-\frac{3(c-s)}{4}\left(-2 \theta^{\prime} \cos \theta \sin \theta\right) \tag{3.23}
\end{equation*}
$$

which is a linear ODE. If we solve (3.23), we get the following results:
i) If θ is a constant, then

$$
\begin{equation*}
\frac{\kappa_{2}}{\kappa_{1}}=c_{2} \tag{3.24}
\end{equation*}
$$

where $c_{2}>0$ is an arbitrary constant. From (3.15) and (3.25), we find $g\left(\varphi T, E_{3}\right)=0$. Since $\|\varphi T\|=1$ and $\varphi T=\cos \theta E_{2}+g\left(\varphi T, E_{4}\right) E_{4}$, we obtain $g\left(\varphi T, E_{4}\right)=\sin \theta$. By the use of (3.17) and (3.24), we have

$$
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-\frac{c+3 s+3(c-s) \cos ^{2} \theta}{4}\right]
$$

ii) If $\theta=\theta(t)$ is a non-constant function, then

$$
\begin{equation*}
\kappa_{2}^{2}=-\frac{3(c-s)}{4} \cos ^{2} \theta+\lambda(t) \cdot \kappa_{1}^{2} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda(t)=-\frac{3(c-s)}{2} \int \frac{\cos ^{2} \theta \kappa_{1}^{\prime}}{\kappa_{1}^{3}} d t \tag{3.26}
\end{equation*}
$$

If we write (3.25) in (3.20), we find

$$
[1+\lambda(t)] . \kappa_{1}^{2}=\frac{c+3 s}{4}+\frac{3(c-s)}{2} \cos ^{2} \theta-\frac{\kappa_{1}^{\prime \prime}}{2 \kappa_{1}}+\frac{3}{4}\left(\frac{\kappa_{1}^{\prime}}{\kappa_{1}}\right)^{2}
$$

Hence, we can state the following final theorem of the paper:
Theorem 3.5. Let $\gamma: I \rightarrow M$ be a Legendre curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, where $r \geq 4, m \geq 2, c \neq s, g\left(\varphi T, E_{2}\right)=\cos \theta(t)$ is not constant 0,1 or -1 . Then γ is proper f-biharmonic if and only if $f=c_{1} \kappa_{1}^{-3 / 2}$ and
(i) if θ is a constant,

$$
\frac{\kappa_{2}}{\kappa_{1}}=c_{2}
$$

$$
\begin{gathered}
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-\frac{c+3 s+3(c-s) \cos ^{2} \theta}{4}\right] \\
\kappa_{2} \kappa_{3}= \pm \frac{3(c-s) \sin 2 \theta}{8}
\end{gathered}
$$

(ii) if θ is a non-constant function,

$$
\begin{gathered}
\kappa_{2}^{2}=-\frac{3(c-s)}{4} \cos ^{2} \theta+\lambda(t) \cdot \kappa_{1}^{2} \\
3\left(\kappa_{1}^{\prime}\right)^{2}-2 \kappa_{1} \kappa_{1}^{\prime \prime}=4 \kappa_{1}^{2}\left[(1+\lambda(t)) \kappa_{1}^{2}-\frac{c+3 s+3(c-s) \cos ^{2} \theta}{4}\right] \\
\kappa_{2} \kappa_{3}= \pm \frac{3(c-s) \sin 2 \theta \sin w}{8}
\end{gathered}
$$

where c_{1} and c_{2} are positive constants, $\varphi T=\cos \theta E_{2} \pm \sin \theta \cos w E_{3} \pm \sin \theta \sin w E_{4}$, w is the angle function between E_{3} and the orthogonal projection of φT onto span $\left\{E_{3}, E_{4}\right\} . w$ is related to θ by $\cos w=\frac{-\theta^{\prime}}{\kappa_{2}}$ and $\lambda(t)$ is given by

$$
\lambda(t)=-\frac{3(c-s)}{2} \int \frac{\cos ^{2} \theta \kappa_{1}^{\prime}}{\kappa_{1}^{3}} d t
$$

In case θ is a constant, we can give the following direct corollary of Theorem 3.5:
Corollary 3.1. Let $\gamma: I \rightarrow M$ be a Legendre curve of osculating order r in an \mathcal{S}-space form $\left(M^{2 m+s}, \varphi, \xi_{\alpha}, \eta^{\alpha}, g\right)$, $\alpha \in\{1, \ldots, s\}$, where $r \geq 4, m \geq 2, c \neq s, g\left(\varphi T, E_{2}\right)=\cos \theta$ is a constant and $\theta \in(0,2 \pi) \backslash\left\{\frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$. Then γ is proper f-biharmonic if and only if $f=c_{1} \kappa_{1}^{-3 / 2}, \frac{\kappa_{2}}{\kappa_{1}}=c_{2}=$ constant >0 and
(i) if $a>0$, then κ_{1} satisfies

$$
t \pm \frac{1}{2 \sqrt{a}} \arctan \left(\frac{1}{2 \sqrt{a}} \frac{2 a+c_{3} \kappa_{1}}{\sqrt{c+3 s} \sqrt{-\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-c_{3} \kappa_{1}-a}}\right)+c_{4}=0
$$

(ii) if $a=0$, then κ_{1} satisfies

$$
t \pm \frac{\sqrt{-\kappa_{1}\left[\left(1+c_{2}^{2}\right) \kappa_{1}+c_{3}\right]}}{c_{3} \kappa_{1}}+c_{4}=0
$$

(iii) if $a<0$, then κ_{1} satisfies

$$
t \pm \frac{1}{2 \sqrt{-a}} \ln \left(\frac{2 a+c_{3} \kappa_{1}-2 \sqrt{-a} \sqrt{-\left(1+c_{2}^{2}\right) \kappa_{1}^{2}-c_{3} \kappa_{1}-a}}{2 a \kappa_{1}}\right)+c_{4}=0
$$

where $a=c+3 s+3(c-s) \cos ^{2} \theta, \varphi T=\cos \theta E_{2} \pm \sin \theta E_{4}, c_{1}>0, c_{2}>0, c_{3}$ and c_{4} are convenient arbitrary constants, t is the arc-length parameter and $\kappa_{1}(t)$ is in convenient open interval.

At the end of this section, let us give an example of an f-biharmonic Legendre curve in the very well known \mathcal{S}-space form $\mathbb{R}^{2 m+s}(-3 s)$ (see [12]), where we take $m=2$ and $s=2$.
Example 3.1. Let us consider the curve $\gamma: I \rightarrow \mathbb{R}^{6}(-6)$,

$$
\gamma(t)=\left(a_{1}, a_{2}, 2 \operatorname{arcsinh}(t), 2 \sqrt{1+t^{2}}, a_{3}, a_{4}\right)
$$

where $a_{i}(i=\overline{1,4})$ are real constants. After calculations, we find that γ is a Legendre curve of osculating order $2, t$ is the arc-length parameter,

$$
\kappa_{1}=\frac{1}{1+t^{2}}, \kappa_{2}=0, \varphi T \perp E_{2}
$$

and γ is f-biharmonic with $f=c_{1}\left(1+t^{2}\right)^{3 / 2}$, where $c_{1}>0$ is a constant. It is easy to show that γ satisfies Theorem $3.3(1)(b)$.

References

[1] Blair, D. E., Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$. J. Differential Geometry 4 (1970), 155-167.
[2] Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds. Boston, Birkhauser, 2002.
[3] Cabrerizo, J. L., Fernandez, L. M. and Fernandez M., The curvature of submanifolds of an S-space form. Acta Math. Hungar. 62 (1993), 373-383.
[4] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of S^{3}. Internat. J. Math. 12 (2001), 867-876.
[5] Caddeo, R., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.
[6] Chen, B.Y., A report on submanifolds of finite type. Soochow J. Math. 22 (1996), 117-337.
[7] Eells, Jr. J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
[8] Fetcu, D., Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45 (2008), 393-404.
[9] Fetcu, D. and Oniciuc, C., Explicit formulas for biharmonic submanifolds in Sasakian space forms. Pacific J. Math. 240 (2009), 85-107.
[10] Fetcu, D., Loubeau, E., Montaldo, S. and Oniciuc, C., Biharmonic submanifolds of $\mathbb{C P}^{n}$. Math. Z. 266 (2010), 505-531.
[11] Güvenç, Ş. and Özgür, C., On the characterizations of f-biharmonic Legendre curves in Sasakian space forms. Filomat 31 (2017), no. 3, 639-648.
[12] Hasegawa, I., Okuyama, Y. and Abe, T., On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A 37 (1986), no. 1, 1-16.
[13] Jiang, G. Y., 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7 (1986), 389-402.
[14] Kim, J. S., Dwivedi, M. K.and Tripathi, M. M., Ricci curvature of integral submanifolds of an \mathcal{S}-space form. Bull. Korean Math. Soc. 44(2007), 395-406.
[15] Lu, W. J.: On f-biharmonic maps between Riemannian manifolds. arXiv:1305.5478 (2013).
[16] Nakagawa, H., On framed f-manifolds. Kodai Math. Sem. Rep. 18 (1966), 293-306.
[17] Ou, Y.L., On f-biharmonic maps and f-biharmonic submanifolds. arXiv:1306.3549v1 (2013).
[18] Ou, Y.L., p-Harmonic morphisms, biharmonic morphisms,and nonharmonic biharmonic maps. J. Geom. Phys. 56 (2006), 358-374.
[19] Özgür C. and Güvenç, Ş., On Biharmonic Legendre Curves in S-Space Forms. Turk. J. Math. 38 (2014), 454-461.
[20] Vanzura, J., Almost r-contact structures. Ann. Scuola Norm. Sup. Pisa 26 (1972), no. 3, 97-115.
[21] Yano, K. and Kon, M., Structures on Manifolds. Series in Pure Mathematics, 3. Singapore. World Scientific Publishing Co., 1984.

Affiliations

ŞABAN GÜVENÇ
Address: Balikesir University, Dept. of Mathematics, 10145, Balikesir-Turkey.
E-MAIL: sguvenc@balikesir.edu.tr
ORCID ID: orcid.org/0000-0001-6254-4693

[^0]: Received : 16-April-2019, Accepted : 10-September-2019

 * Corresponding author

