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ABSTRACT

In this paper, we study f -biharmonic Legendre curves in S-space forms. Our aim is to find
curvature conditions for these curves and determine their types, i.e., a geodesic, a circle, a helix
or a Frenet curve of osculating order r with specific curvature equations. We also give a proper
example of f -biharmonic Legendre curves in the S-space form R2m+s(−3s), with m = 2 and s = 2.
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1. Introduction

Let us consider a smooth map φ : (M, g)→ (N,h), where (M, g) and (N,h) are Riemannian manifolds. If φ is
a critical point of the f -bienergy functional

E2,f (φ) =
1

2

∫
M

f |τ(φ)|2 υg,

then it is called an f -biharmonic map. Here, f ∈ C(M,R), υg is the volume element and τ(φ) is the first tension
field of φ defined as τ(φ) = trace∇dφ, (for further details, please refer to [15]). Using this definition, Y. L. Ou
calculated f -biharmonic equation given by (3.2) in Section 3, which gives opportunity to study f -biharmonic
curves in a variety of manifolds. The present author and Cihan Özgür studied f -biharmonic Legendre curves
in Sasakian space forms in [11]. This paper generalizes these results to S-space forms.

The paper is organised as follows. In Section 2, we give fundamentals of S-manifolds. We give main results
in Section 3, considering four different cases. At the end of this last section, we give a non-trivial example in
R6(−6), which satisfies our results.

2. S-space forms

Let (M, g) be a (2m+ s)-dimensional framed metric manifold [21] with a framed metric structure (ϕ, ξα, η
α, g),

α ∈ {1, ..., s} , that is, ϕ is a (1, 1) tensor field defining a ϕ-structure of rank 2m; ξ1, ..., ξs are vector fields; η1, ..., ηs
are 1-forms and g is a Riemannian metric on M such that for all X,Y ∈ TM and α, β ∈ {1, ..., s},

ϕ2X = −X +
s∑

α=1

ηα(X)ξα, ηα(ξβ) = δαβ , ϕ (ξα) = 0, ηα ◦ ϕ = 0 (2.1)

g(ϕX,ϕY ) = g(X,Y )−
s∑

α=1

ηα(X)ηα(Y ), (2.2)

dηα(X,Y ) = g(X,ϕY ) = −dηα(Y,X), ηα(X) = g(X, ξ). (2.3)
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(M2m+s, ϕ, ξα, η
α, g) is also called framed ϕ-manifold [16] or almost r-contact metric manifold [20]. If the Nijenhuis

tensor of ϕ equals −2dηα ⊗ ξα for all α ∈ {1, ..., s} , then (ϕ, ξα, η
α, g) is called S-structure [1].

For s = 1, a framed metric structure becomes an almost contact metric structure and an S-structure becomes
a Sasakian structure. If a framed metric structure on M is an S-structure, then we have [1]:

(∇Xϕ)Y =

s∑
α=1

{
g(ϕX,ϕY )ξα + ηα(Y )ϕ2X

}
, (2.4)

∇ξα = −ϕ, α ∈ {1, ..., s} . (2.5)

In Sasakian case (s = 1), (2.5) can directly be calculated from (2.4) .
A plane section in TpM is a ϕ-section if there exist a vector X ∈ TpM orthogonal to ξ1, ..., ξs such that {X,ϕX}

span the section. The sectional curvature of a ϕ-section is called ϕ-sectional curvature. In an S-manifold of
constant ϕ-sectional curvature, the curvature tensor R of M is calculated as

R(X,Y )Z =
∑
α,β

{
ηα(X)ηβ(Z)ϕ2Y − ηα(Y )ηβ(Z)ϕ2X

−g(ϕX,ϕZ)ηα(Y )ξβ + g(ϕY, ϕZ)ηα(X)ξβ}
+ c+3s

4

{
−g(ϕY, ϕZ)ϕ2X + g(ϕX,ϕZ)ϕ2Y

}
c−s
4 {g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ} ,

(2.6)

for all X,Y, Z ∈ TM [3]. An S-manifold of constant ϕ-sectional curvature c is called an S-space form and it is
denoted by M(c). For s = 1, an S-space form transforms into a Sasakian space form [2].

A submanifold of an S-manifold is called an integral submanifold if ηα(X) = 0, α = 1, ..., s, for every tangent
vector X [14]. A 1-dimensional integral submanifold of an S-space form (M2m+s, ϕ, ξα, η

α, g) is called a
Legendre curve of M . Equally, a curve γ : I →M = (M2m+s, ϕ, ξα, η

α, g) is called a Legendre curve if ηα(T ) = 0,
for every α = 1, ...s, where T denotes the tangent vector field of γ.

3. f -biharmonic Legendre curves in S-space forms

Let us consider an arc-length curve γ : I →M in an n-dimensional Riemannian manifold (M, g). If there
exists orthonormal vector fields E1, E2, ..., Er along γ satisfying

E1 = γ′ = T,

∇TE1 = κ1E2,

∇TE2 = −κ1E1 + κ2E3, (3.1)
...

∇TEr = −κr−1Er−1,

then γ is called a Frenet curve of osculating order r, where κ1, ..., κr−1 are positive functions on I and 1 ≤ r ≤ n.
A Frenet curve of osculating order 1 is a called geodesic. A Frenet curve of osculating order 2 is a circle if κ1 is a

non-zero positive constant. A Frenet curve of osculating order r ≥ 3 is called a helix of order r, when κ1, ..., κr−1
are non-zero positive constants; a helix of order 3 is simply called a helix.

An arclength parametrized curve γ : (a, b)→ (M, g) is called an f -biharmonic curve with a function f :
(a, b)→ (0,∞) if the following equation is satisfied [17]:

f(∇T∇T∇TT −R(T,∇TT )T ) + 2f ′∇T∇TT + f ′′∇TT = 0. (3.2)

Now let (M2m+s, ϕ, ξα, η
α, g) be an S-space form and γ : I →M a Legendre Frenet curve of osculating order

r. If we differentiate
ηα(T ) = 0 (3.3)

and use (3.1), we find
ηα(E2) = 0, α ∈ {1, ..., s} . (3.4)

Using equations (2.1), (2.2), (2.3), (2.6), (3.1) and (3.4), we calculate

∇T∇TT = −κ21E1 + κ′1E2 + κ1κ2E3,
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∇T∇T∇TT = −3κ1κ′1E1 +
(
κ′′1 − κ31 − κ1κ22

)
E2

+(2κ′1κ2 + κ1κ
′
2)E3 + κ1κ2κ3E4,

R(T,∇TT )T = −κ1
(c+ 3s)

4
E2 − 3κ1

(c− s)
4

g(ϕT,E2)ϕT,

(see [19]). If the left-hand side of (3.2) is denoted by f.τ3, we find that

τ3 = ∇T∇T∇TT −R(T,∇TT )T + 2
f ′

f
∇T∇TT +

f ′′

f
∇TT

=

(
−3κ1κ′1 − 2κ21

f ′

f

)
E1

+

(
κ′′1 − κ31 − κ1κ22 + κ1

(c+ 3s)

4
+ 2κ′1

f ′

f
+ κ1

f ′′

f

)
E2 (3.5)

+(2κ′1κ2 + κ1κ
′
2 + 2κ1κ2

f ′

f
)E3 + κ1κ2κ3E4

+3κ1
(c− s)

4
g(ϕT,E2)ϕT.

Let k = min {r, 4}. From (3.5), the curve γ is f -biharmonic if and only if τ3 = 0, i.e.,
(1) c = s or ϕT ⊥ E2 or ϕT ∈ span {E2, ..., Ek}; and
(2) g(τ3, Ei) = 0, for all i = 1, k.
Thus, we can state the following main theorem:

Theorem 3.1. Let γ be a non-geodesic Legendre Frenet curve of osculating order r in an S-space form
(M2m+s, ϕ, ξα, η

α, g), α ∈ {1, ..., s} and k = min {r, 4}. Then γ is f - biharmonic if and only if
(1) c = s or ϕT ⊥ E2 or ϕT ∈ span {E2, ..., Ek}; and
(2) the first k of the following equations are satisfied (replacing κk = 0):

3κ′1 + 2κ1
f ′

f = 0,
κ21 + κ22 = c+3s

4 + 3(c−s)
4 [g(ϕT,E2)]

2
+

κ′′
1

κ1
+ f ′′

f + 2
κ′
1

κ1

f ′

f ,
κ′2 +

3(c−s)
4 g(ϕT,E2)g(ϕT,E3) + 2κ2

f ′

f + 2κ2
κ′
1

κ1
= 0,

κ2κ3 +
3(c−s)

4 g(ϕT,E2)g(ϕT,E4) = 0.

From Theorem 3.1, one can easily see that a curve γ with constant geodesic curvature κ1 is f -biharmonic if
and only if it is biharmonic. Since we studied biharmonic curves in S-space forms in [19], we study curves with
non-constant κ1 in this paper. We call non-biharmonic f -biharmonic curves proper f -biharmonic.

Now we investigate results of Theorem 3.1 in four cases.

Case I. c = s.
In this case γ is proper biharmonic if and only if

3κ′1 + 2κ1
f ′

f = 0,
κ21 + κ22 = s+

κ′′
1

κ1
+ f ′′

f + 2
κ′
1

κ1

f ′

f ,
κ′2 + 2κ2

f ′

f + 2κ2
κ′
1

κ1
= 0,

κ2κ3 = 0.

(3.6)

Theorem 3.2. Let γ be a Legendre Frenet curve in an S-space form (M2m+s, ϕ, ξα, η
α, g), α ∈ {1, ..., s} , c = s and

(2m+ s) > 3. Then γ is proper f -biharmonic if and only if either
(i) γ is of osculating order r = 2 with f = c1κ

−3/2
1 and κ1 satisfies

t± 1

2
√
s
arctan

(
2s+ c3κ1

2
√
s
√
−κ21 − c3κ1 − s

)
+ c4 = 0, (3.7)

where c1 > 0, c3 < −2
√
s and c4 are arbitrary constants, t is the arc-length parameter and

1

2
(−
√
c23 − 4s− c3) < κ1(t) <

1

2
(
√
c23 − 4s− c3); or (3.8)
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(ii) γ is of osculating order r = 3 with f = c1κ
−3/2
1 , κ2

κ1
= c2 and κ1 satisfies

t± 1

2
√
s
arctan

(
2s+ c3κ1

2
√
s
√
−(1 + c22)κ

2
1 − c3κ1 − s

)
+ c4 = 0, (3.9)

where c1 > 0, c2 > 0, c3 < −2
√
s(1 + c22) and c4 are arbitrary constants, t is the arc-length parameter and

1

2(1 + c22)
(−
√
c23 − 4s(1 + c22)− c3) < κ1(t) <

1

2(1 + c22)
(
√
c23 − 4s(1 + c22)− c3). (3.10)

Proof. From the first equation of (3.6), it is easy to see that f = c1κ
−3/2
1 for an arbitrary constant c1 > 0. So, we

find
f ′

f
=
−3
2

κ′1
κ1

,
f ′′

f
=

15

4

(
κ′1
κ1

)2

− 3

2

κ′′1
κ1

. (3.11)

If κ2 = 0, then γ is of osculating order r = 2 and the first two of equations (3.6) must be satisfied. Hence the
second equation and (3.11) give us the ODE

3(κ′1)
2 − 2κ1κ

′′
1 = 4κ21(κ

2
1 − s). (3.12)

Let κ1 = κ1(t), where t denotes the arc-length parameter. If we solve (3.12) considering s is a positive integer,
we find (3.7). Since (3.7) must be well-defined, −κ21 − c3κ1 − s > 0. Since κ1 > 0, we have c3 < −2

√
s and (3.8).

If κ2 = constant 6= 0, we find f is a constant. Hence γ is not proper f -biharmonic in this case. Let κ2 6=
constant. From the fourth equation, we have κ3 = 0. So, γ is of osculating order r = 3. The third equation
of (3.6) gives us κ2

κ1
= c2, where c2 > 0 is a constant. If we write these equations in the second equation of (3.6),

we have the ODE
3(κ′1)

2 − 2κ1κ
′′
1 = 4κ21[(1 + c22)κ

2
1 − s]

which has the general solution (3.9) under the condition c3 < −2
√
s(1 + c22) and (3.10) must be satisfied.

If we take s = 1, we obtain Theorem 3.2 in [11].
Remark 3.1. If 2m+ s = 3, thenm = s = 1. SoM is a 3-dimensional Sasakian space form. Since a Legendre curve
in a Sasakian 3-manifold has torsion 1 (see [2]), we can write κ1 > 0 and κ2 = 1. The first and the third equations
of (3.6) give us f is a constant. Hence γ cannot be proper f -biharmonic. Previously, in [19], we claimed that γ
cannot be proper biharmonic either.

Case II. c 6= s, ϕT ⊥ E2.
In this case, g(ϕT,E2) = 0. From Theorem 3.1, we obtain

3κ′1 + 2κ1
f ′

f = 0,
κ21 + κ22 = c+3s

4 +
κ′′
1

κ1
+ f ′′

f + 2
κ′
1

κ1

f ′

f ,
κ′2 + 2κ2

f ′

f + 2κ2
κ′
1

κ1
= 0,

κ2κ3 = 0.

(3.13)

Firstly, we need the following proposition:

Proposition 3.1. [19] Let γ be a Legendre Frenet curve of osculating order 3 in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, ..., s} and ϕT ⊥ E2. Then {T = E1, E2, E3, ϕT,∇TϕT, ξ1, ..., ξs} is linearly independent at any point of γ.
Therefore m ≥ 3.

Now we have the following Theorem:

Theorem 3.3. Let γ be a Legendre Frenet curve in an S-space form (M2m+s, ϕ, ξα, η
α, g), α ∈ {1, ..., s} , c 6= s and

ϕT ⊥ E2. Then γ is proper biharmonic if and only if
(1) γ is of osculating order r = 2 with f = c1κ

−3/2
1 ,m ≥ 2, {T = E1, E2, ϕT,∇TϕT, ξ1, ..., ξs} is linearly independent

and
(a) if c > −3s, then κ1 satisfies

t± 1√
c+ 3s

arctan

(
c+ 3s+ 2c3κ1√

c+ 3s
√
−4κ21 − 4c3κ1 − c− 3s

)
+ c4 = 0,
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(b) if c = −3s, then κ1 satisfies

t±
√
−κ1(κ1 + c3)

c3κ1
+ c4 = 0,

(c) if c < −3s, then κ1 satisfies

t± 1√
−c− 3s

ln

(
c+ 3s+ 2c3κ1 −

√
−c− 3s

√
−4κ21 − 4c3κ1 − c− 3s

(c+ 3s)κ1

)
+ c4 = 0; or

(2) γ is of osculating order r = 3 with f = c1κ
−3/2
1 , κ2

κ1
= c2 = constant > 0, m ≥ 3,

{T = E1, E2, E3, ϕT,∇TϕT, ξ1, ..., ξs} is linearly independent and
(a) if c > −3s, then κ1 satisfies

t± 1√
c+ 3s

arctan

(
c+ 3s+ 2c3κ1√

c+ 3s
√
−4(1 + c22)κ

2
1 − 4c3κ1 − c− 3s

)
+ c4 = 0,

(b) if c = −3s, then κ1 satisfies

t±
√
−κ1 [(1 + c22)κ1 + c3]

c3κ1
+ c4 = 0,

(c) if c < −3s, then κ1 satisfies

t± 1√
−c− 3s

ln

(
c+ 3s+ 2c3κ1 −

√
−c− 3s

√
−4(1 + c22)κ

2
1 − 4c3κ1 − c− 3s

(c+ 3s)κ1

)
+ c4 = 0,

where c1 > 0, c2 > 0, c3 and c4 are convenient arbitrary constants, t is the arc-length parameter κ1(t) is in convenient
open interval.

Proof. The proof is similar to the proof of Theorem 3.2.

Case III. c 6= s, ϕT ‖ E2.
In this case, ϕT = ±E2, g(ϕT,E2) = ±1, g(ϕT,E3) = g(±E2, E3) = 0 and g(ϕT,E4) = g(±E2, E4) = 0. From

Theorem 3.1, γ is biharmonic if and only if

3κ′1 + 2κ1
f ′

f = 0,
κ21 + κ22 = c+

κ′′
1

κ1
+ f ′′

f + 2
κ′
1

κ1

f ′

f ,
κ′2 + 2κ2

f ′

f + 2κ2
κ′
1

κ1
= 0,

κ2κ3 = 0.

(3.14)

In [19], we have proved that κ2 =
√
s, that is, κ2 is a constant. Then, the first and the third equations of (3.14)

give us f is a constant. Hence, we give the following result:

Theorem 3.4. There does not exist any proper f -biharmonic Legendre curve in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, ..., s} with c 6= s and ϕT ‖ E2.

Case IV. c 6= s and g(ϕT,E2) is not constant 0, 1 or −1.
In this final case, let (M2m+s, ϕ, ξα, η

α, g) be an S-space form, α ∈ {1, ..., s} and γ : I →M a Legendre curve
of osculating order r, where 4 ≤ r ≤ 2m+ s and m ≥ 2. If γ is biharmonic, then ϕT ∈ span {E2, E3, E4} . Let θ(t)
denote the angle function between ϕT and E2, that is, g(ϕT,E2) = cos θ(t). If we differentiate g(ϕT,E2) along γ
and use equations (2.1), (2.3), (3.1) and (2.4), we get

−θ′(t) sin θ(t) = ∇T g(ϕT,E2) = g(∇TϕT,E2) + g(ϕT,∇TE2)

= g(

s∑
α=1

ξα + κ1ϕE2, E2) + g(ϕT,−κ1T + κ2E3) (3.15)

= κ2g(ϕT,E3).
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If we write ϕT = g(ϕT,E2)E2 + g(ϕT,E3)E3 + g(ϕT,E4)E4, Theorem 3.1 gives us

3κ′1 + 2κ1
f ′

f
= 0, (3.16)

κ21 + κ22 =
c+ 3s

4
+

3(c− s)
4

cos2 θ +
κ′′1
κ1

+
f ′′

f
+ 2

κ′1
κ1

f ′

f
, (3.17)

κ′2 +
3(c− s)

4
cos θg(ϕT,E3) + 2κ2

f ′

f
+ 2κ2

κ′1
κ1

= 0, (3.18)

κ2κ3 +
3(c− s)

4
cos θg(ϕT,E4) = 0. (3.19)

If we put (3.11) in (3.17) and (3.18) respectively, we find

κ21 + κ22 =
c+ 3s

4
+

3(c− s)
4

cos2 θ − κ′′1
2κ1

+
3

4

(
κ′1
κ1

)2

, (3.20)

κ′2 −
κ′1
κ1
κ2 +

3(c− s)
4

cos θg(ϕT,E3) = 0. (3.21)

If we multiply (3.21) with 2κ2 and use (3.15), we obtain

2κ2κ
′
2 − 2

κ′1
κ1
κ22 +

3(c− s)
4

(−2θ′ cos θ sin θ) = 0. (3.22)

Let us denote υ(t) = κ22(t), where t is the arc-length parameter. Then (3.22) turns into

υ′ − 2
κ′1
κ1
υ = −3(c− s)

4
(−2θ′ cos θ sin θ), (3.23)

which is a linear ODE. If we solve (3.23), we get the following results:
i) If θ is a constant, then

κ2
κ1

= c2, (3.24)

where c2 > 0 is an arbitrary constant. From (3.15) and (3.25), we find g(ϕT,E3) = 0. Since ‖ϕT‖ = 1 and
ϕT = cos θE2 + g(ϕT,E4)E4, we obtain g(ϕT,E4) = sin θ. By the use of (3.17) and (3.24), we have

3(κ′1)
2 − 2κ1κ

′′
1 = 4κ21[(1 + c22)κ

2
1 −

c+ 3s+ 3(c− s) cos2 θ
4

].

ii) If θ = θ(t) is a non-constant function, then

κ22 = −3(c− s)
4

cos2 θ + λ(t).κ21, (3.25)

where

λ(t) = −3(c− s)
2

∫
cos2 θκ′1
κ31

dt. (3.26)

If we write (3.25) in (3.20), we find

[1 + λ(t)] .κ21 =
c+ 3s

4
+

3(c− s)
2

cos2 θ − κ′′1
2κ1

+
3

4

(
κ′1
κ1

)2

.

Hence, we can state the following final theorem of the paper:

Theorem 3.5. Let γ : I →M be a Legendre curve of osculating order r in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, ..., s} ,where r ≥ 4,m ≥ 2, c 6= s , g(ϕT,E2) = cos θ(t) is not constant 0, 1 or−1. Then γ is proper f -biharmonic
if and only if f = c1κ

−3/2
1 and

(i) if θ is a constant,
κ2
κ1

= c2,
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3(κ′1)
2 − 2κ1κ

′′
1 = 4κ21[(1 + c22)κ

2
1 −

c+ 3s+ 3(c− s) cos2 θ
4

],

κ2κ3 = ±3(c− s) sin 2θ
8

,

(ii) if θ is a non-constant function,

κ22 = −3(c− s)
4

cos2 θ + λ(t).κ21,

3(κ′1)
2 − 2κ1κ

′′
1 = 4κ21[(1 + λ(t))κ21 −

c+ 3s+ 3(c− s) cos2 θ
4

],

κ2κ3 = ±3(c− s) sin 2θ sinw
8

,

where c1 and c2 are positive constants, ϕT = cos θE2 ± sin θ coswE3 ± sin θ sinwE4, w is the angle function between
E3 and the orthogonal projection of ϕT onto span {E3, E4} . w is related to θ by cosw = −θ′

κ2
and λ(t) is given by

λ(t) = −3(c− s)
2

∫
cos2 θκ′1
κ31

dt.

In case θ is a constant, we can give the following direct corollary of Theorem 3.5:

Corollary 3.1. Let γ : I →M be a Legendre curve of osculating order r in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, ..., s} ,where r ≥ 4,m ≥ 2, c 6= s , g(ϕT,E2) = cos θ is a constant and θ ∈ (0, 2π) \
{
π
2 , π,

3π
2

}
. Then γ is proper

f -biharmonic if and only if f = c1κ
−3/2
1 , κ2

κ1
= c2 = constant > 0 and

(i) if a > 0, then κ1 satisfies

t± 1

2
√
a
arctan

(
1

2
√
a

2a+ c3κ1√
c+ 3s

√
−(1 + c22)κ

2
1 − c3κ1 − a

)
+ c4 = 0,

(ii) if a = 0, then κ1 satisfies

t±
√
−κ1 [(1 + c22)κ1 + c3]

c3κ1
+ c4 = 0,

(iii) if a < 0, then κ1 satisfies

t± 1

2
√
−a

ln

(
2a+ c3κ1 − 2

√
−a
√
−(1 + c22)κ

2
1 − c3κ1 − a

2aκ1

)
+ c4 = 0,

where a = c+ 3s+ 3(c− s) cos2 θ, ϕT = cos θE2 ± sin θE4, c1 > 0, c2 > 0, c3 and c4 are convenient arbitrary
constants, t is the arc-length parameter and κ1(t) is in convenient open interval.

At the end of this section, let us give an example of an f -biharmonic Legendre curve in the very well known
S-space form R2m+s(−3s) (see [12]), where we take m = 2 and s = 2.

Example 3.1. Let us consider the curve γ : I → R6(−6),

γ(t) = (a1, a2, 2arcsinh(t), 2
√

1 + t2, a3, a4),

where ai (i = 1, 4) are real constants. After calculations, we find that γ is a Legendre curve of osculating order
2, t is the arc-length parameter,

κ1 =
1

1 + t2
, κ2 = 0, ϕT ⊥ E2

and γ is f -biharmonic with f = c1(1 + t2)3/2, where c1 > 0 is a constant. It is easy to show that γ satisfies
Theorem 3.3 (1)(b).
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