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Abstract: This paper presents methodologies on detecting nonstationarity and removing nonstationarity by 

differencing for the autocorrelated time series. For this purpose, 5-year daily temperature, light intensity and 

relative humidity data from weather station in Tokat were used as materials. Since 5-year daily data 

sequences include many records, the new data sequences were constituted by averaging daily average 

temperature and relative humidity (average of records at 7.00, 14.00 and 21.00 in a day) and daily light 

intensity of five years. The existence of serial correlation between the averages from the mentioned climatic 

components was examined by using graphical approach, Ljung-Box Q and Runs tests. These three approaches 

imply that the averages have serial correlation. Unit root test (augmented Dickey and Fuller, ADF) was 

applied to test whether the averaged daily data sequences are nonstationary. The results of ADF emphasis the 

existence of nonstationarity in the daily data sequences. Similarly, the autocorrelation function graphs 

(correlogram) show nonstationarty, because of slowly decay in the autocorrelation functions for the daily data 

sequences. The first differencing was applied to remove nonstationary. After taking the first differencing, the 

ADF test results and the correlograms of the daily data sequences showed stationary.  

Key Words: Unit root, Dickey and Fuller test, Ljung-Box Q statistic, runs test. 

 

Bağımlı Meteorolojik Zaman Serilerinde Durağanlığın Birim Kök Yaklaşımı 

ile Belirlenmesi: Tokat Örneği 
 

Özet: Bu çalışmanın amacı, bağımlı zaman serilerindeki değişimin saptanması ve bu değişimin fark 

dönüşümüyle giderilmesi ile ilgili metodolojileri sunmaktadır. Bu amaçla, Tokat meteoroloji istasyonunda 

ölçülen 5 yıllık günlük sıcaklık,  güneşlenme şiddeti ve bağıl nem verisi materyal olarak kullanıldı. 5 yıllık 

ölçümler çok fazla veri içerdiğinden, günlük ortalama sıcaklık  ve bağıl nem (7.00, 14.00 ve 21.00  

ölçümlerinden elde edilen) ve 5 yıllık günlük güneşlenme şiddetinin ortalamaları alınarak yeni veri serileri 

oluşturuldu.  Adı geçen bu iklim elemanlarından elde edilen ortalamalar arasındaki otokorelasyonun varlığı 

grafiksel yaklaşım, Ljung-Box Q istatistiği ve Runs test ile incelendi. Bu üç yaklaşım, ortalamaların 

otokorelasyona sahip olduğunu göstermektedir.  Ortalama günlük veri serilerindeki değişimi test etmek için 

Birim kök testi (augmented Dickey and Fuller, ADF) uygulanmıştır. ADF test sonuçları günlük veri 

serilerinde değişimin olduğunu belirtmektedir.  Benzer şekilde,  günlük veri serileri için elde edilen 

otokorelasyon fonksiyonları yavaş azalım gösterdiğinden dolayı, otokorelasyon grafikleri (korrelogram) 

değişimi belirtiyor. Günlük veri serilerindeki değişimi gidermek için birinci fark dönüşümü uygulandı. 

Birinci fark dönüşümünden sonra, günlük veri serilerinin ADF test sonuçları ve korrelogramları durağanlığı 

göstermiştir.        

Anahtar Kelimeler: Birim kök, Dickey and Fuller test ,Ljung-Box Q istatistiği, runs test. 

 
1. Introduction 

The series have been referred as the 

autocorrelated time series if there is dependence 

between observations of a given series. 

Especially, there is a significant dependence in 

observations recording of many hydrologic 

phenomena. As known, observations of daily 

discharges do not change appreciably from one 

day to another. There is a tendency for the 

values to cluster, in the sense that high values 

tend to follow high values and low values tend 

to follow low values. Thus, the daily discharges 

are not independently distributed in time. The 

dependence among monthly discharges is less 

than that among daily discharges, and the 

dependence among annual discharges is less 

than that among monthly discharges. Thus, the 

dependence between hydrologic observations 

decreases with an increase in the time base. If 

there is a linear dependence between the values 

of a series, the correlation between the values 

may be taken as dependence criterion (Chow, 

1964). 

Many hydrologic time series processes 

may be stationary or nonstationary. 

Nonstationary time series can occur in many 

different ways. They could have nonconstant 
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means, time varying second moments such as 

nonconstant variance, or have both of these 

properties (Wei, 1990). 

The occurrence of nonstationary in a 

hydrologic time series can result from gradual 

natural or man-induced changes in the 

hydrologic environment producing the time 

series.  Changes in watershed conditions over 

period of several years can result in 

corresponding changes in streamflow 

characteristic that show up as trends in time 

series of streamflow data.  Urbanization on a 

large scale may result in changes in 

precipitation amounts that show up as trends in 

precipitation. (Huff and Changnon, 1973). 

Besides, natural events such as earthquakes, 

large forest fires and landslide that quickly and 

significantly alter hydrologic regime of an area 

cause jumps in the time series.   Also, jumps in 

the time series results from man-made changes 

such as a new dam construction, and the 

beginning or cessation of pumping of ground 

water (Bayazit, 1981).  

Especially, in stochastic modeling studies, 

nonstationarity is a fundamental problem. 

Therefore, a time series, which has 

nonstationarity, should be converted to a 

stationary time series. A nonstationary time 

series may be transformed to a stationary time 

series by using linear difference equation. But, 

it is needed to detect whether a given series is 

nonstationary before transforming. For this 

reason, there are alternative approaches as 

graphical method, nonparametric tests and unit 

root test. In addition to than, the autocorrelation 

function (ACF) is very important tool for the 

autocorrelated series. Enders (1995) expresses 

that inspection of ACF serves as a rough 

indicator of whether nonstationarity is present 

in a series. Wei (1990) states that if the sample 

ACF decays very slowly, it indicates that 

differencing is needed. This inspection of ACF 

implies that the sample is nonstationary.  

In time series analysis, the most commonly 

used transformations are variance–stabilizing 

transformations and differencing. Since 

differencing may create some negative values, 

variance–stabilizing transformations should be 

applied before taking differencing (Cromwell et 

all., 1994)     

Wilson (1990) expresses that the 

hydrology of a region depends primarily on 

climate of the region and, climate is 

significantly affected by the geographical 

position on the earth’s surface. Therefore, 

having information about the conditions related 

to the hydrology of a region in future is very 

important for hydrologists. For this reason, 

especially, modeling studies on climatic 

components are rather needed. The present 

study is an attempt to detect whether time series 

data related to temperature, light intensity and 

relative humidity as known climatic 

components are nonstationary and, to remove 

nonstationarity by differencing. 

 

2. Material and Method 

2.1 Study Area 

Tokat province selected as study area is 

located between 39º 45' N and 40º 45' N 

latitudes, 35º 30' E and 37º 45' E longitudes, 

covering approximately 10160.7 km
2
. About 

30% of the area is occupied by cropland. Wheat 

is the major food crop (average sowing area is 

68.5% of the total cropped area) not only in the 

district, but in the entire Turkey. The major 

sources of irrigation are rainfall, canal and 

groundwater.  

In this study, 5-year daily temperature, 

light intensity and relative humidity data from 

weather station in Tokat-TURKEY were used 

as materials. Since 5-year daily data sequences 

include many records, the new data sequences 

were constituted by averaging daily average 

temperature and relative humidity (average of 

records at 7.00, 14.00 and 21.00 in a day) and 

daily light intensity of five years.    

 

2.2 Testing for Nonstationarity 

Nonstationarity is the first fundamental 

statistical property tested in time series analysis. 

A nonstationary time series has no long-run 

mean and its variance is time-dependent.   If 

nonstationarity is present in a given time series, 

it is possible to transform the series to a 

stationary series. Because of most time series 

data are nonstationary, transformation is needed 

in stochastically modeling. In this sense, the 

most common transformation is differencing, 

that is, subtracting a past value of a variable 

from its current value (Greene, 2000). But, it is 

necessary to detect whether nonstationarity is 

present in a series before differencing.  

To detect whether a given series has 

nonstationarity, lets assume that the relationship 

between current value (in time t) and last value 
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(in time t-1) in the time series is as following 

(Enders, 1995): 

tεyay 1t1t      (1) 

 

Where, εt is a white noise process. This 

model is a first order autoregressive process. In 

the process, if |a1| < 1, the series is referred as 

stationary. The yt series is nonstationary if |a1| = 

1 or >1. The series has a unit root and such 

processes are called as random walk. Having a 

unit root means that the effect of past shocks 

continues.  

Greene (2000) stated that a nonstationary 

time series could be converted to a stationary 

time series by taking first or higher order 

difference. If yt-1 is subtracted from the right 

and left sides of the above equation, the new 

equation is yielded as following: 

 

t1t1t ε1)y(aΔy     (2) 

 

This equation is expressed as a first order 

difference equation. If a1 is taken one (1) in the 

equation, the effect of unit root can be removed 

from the actual series that has nonstationarity 

via a first differencing.   The series that is 

stationary with the first difference is said to be 

integrated of order one and, is denoted by I (1). 

If the series becomes stationary after being 

differenced d times, the nonstationary series is 

integrated of order d, and is denoted by I (d). 

Although there are different approaches to test 

unit root, Dickey and Fuller test is the most 

popular.   

 

2.3 Dickey and Fuller Test    

One of unit root approaches commonly 

used to explain whether a time series is 

nonstationary is Dickey and Fuller test by 

Dickey and Fuller (1981). There are three types 

of equation to test for unit root in Dickey and 

Fuller, which are: 

A pure random walk, (if α1 is taken, instead 

of a1-1 in Equation 2) 

 

t1t1t εyΔy      (3) 

 

A random walk with drift (constant), 

 

t1t10t εyΔy     (4) 

 

A random walk with drift and linear time 

trend, 

 

t1t10t εyΔy   t  (5) 

 

Where α0 and β are the coefficients of 

constant and time trend, respectively. The null 

hypothesis related to the above equations is  

Ho: y(t) is random walk, if α1= 0, because of |a1| 

= 1. The associated alternative hypothesis for 

null hypothesis of each equation is H1: α1≠ 0. 

For each case, the test statistic related to 

the null hypothesis is calculated as (Cromwell 

et all., 1994): 

 

 )0)/SE(α(ατ 11cal     (6) 

 

Where SE (α1) refers to standard error of 

α1. The calculated statistic, (τcal), is compared 

with τ-critical value from McKinnon (1990) at 

the chosen significance level and, if τcal is 

greater than τ-critical value, the null hypothesis 

is rejected. 

Enders (1995) stated that residuals were 

assumed to be independent and to have a 

constant variance in Dickey and Fuller test. 

Under the conditions that residuals have serial 

correlation, 






1p

1j

jtj Δyθ term should be 

augmented to remove serial correlation in 

residuals to Dickey and Fuller test regressions 

(3, 4 and 5).  This approach is called as 

augmented Dickey and Fuller Test.  Where p is 

the number of lags chosen for dependent 

variable (residuals). The test variations related 

to the augmented Dickey and Fuller regressions 

are as given above. Gujarati (2002) suggested 

that the existence of autocorrelation in the 

residuals could be achieved by Durbin-Watson 

(DW) test.   

Besides, the unit root approach in detecting 

nonstationarity, it is possible to visually 

determine via the autocorrelation function 

(ACF) from an autocorrelated series. Wei 

(1990) expresses that a slowly decaying ACF is 

indicative of a large characteristic root. This 

indicates that differencing is needed to convert 

series to stationary series. 
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2.4 Inspection of Autocorrelation Function 

Autocorrelation refers to the correlation of 

a time series with its own past and future 

values. Autocorrelation is called as serial 

correlation. Many hydrologic time series 

exhibit significant serial correlation. That is, the 

value of random variable under consideration at 

one period is correlated with the values of the 

random variable at earlier time periods.  

Positively autocorrelated series represent that 

high values tend to follow high values and low 

values tend to follow low values. Negatively 

autocorrelated series is characterized by 

reversals from high to low or from low to high 

(Box and Jenkins, 1976). The k
th 

order 

autocorrelation coefficient of a given series is 

denoted as rk and defined as: 

 






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2

1     (7) 

 

Hipel et al. (1977) suggest that the ACF 

for a series  should not exceed a maximum lag 

of approximately n/4. If the autocorrelations 

function (ACF) of a given time series, x(t), is 

significantly different from zero, this implies 

that there is dependence between observations. 

Therefore, ACF is a powerful complementary 

beneficial tool for testing independence 

(Ferguson et al., 2000). For this reason, the 

corrologram is drawn by plotting rk against lag 

k. If the autocorrelation coefficients from a 

given series fall in the confidence interval at 

5%, the series is referred as independent. 

Controversially, if more than 5% of the serial 

correlation coefficients fall outside the limits, 

the series is called as dependent. This emphasis 

that the observations are correlated (Janacek 

and Swift, 1993).Salas et al. (1980) suggest that 

the confidence limits on the correlogram of a 

series can be calculated from the following 

equation. 

 

kn

kn
CL






196.11
 

 (8) 

Additional to graphical approach to render 

whether a series is autocorrelated, Ljung-Box Q 

statistic and runs tests were used as alternative 

approaches in this study. The approaches are 

given as following, respectively. 

 

2.4.1 Ljung-Box Q (LBQ) Statistic 

The Ljung-Box Q or Q (r) statistic (Ljung 

and Box, 1978) can be employed to check 

independence instead of visual inspection of the 

sample autocorrelations. A test of this 

hypothesis can be done for serial dependence 

by choosing a level of significance and then 

comparing the value of calculated χ
2
 with χ

2
-

table of critical value. If the calculated χ
2
 value 

is smaller than the χ
2
-table critical value, there 

is no serial dependence on the basis of available 

data. The Q (r) statistic is calculated by using: 

 





m

k

krknnnrQ
1

21)()2()(  (9) 

Where m is the number of lags. 

 
2.4.2 Runs Test 

The runs test can be used to decide if a 

data set is from a random process. A run is 

defined as a series of increasing values or a 

series of decreasing values. The number of 

increasing, or decreasing, values is the length of 

the run. In a random data set, the probability 

that the (I+1)
th
 value is larger or smaller than 

the I
th
 value follows a binomial distribution 

which forms the basis of the runs test.  The first 

step in the runs test is to compute the sequential 

differences (Yi - Yi-1). Positive values indicate 

an increasing value whereas negative values 

indicate a decreasing value. In other term, if Yi 

> Yi-1, a 1 (one) is assigned for an observation 

and a 0 (zero) otherwise. The series then has an 

associated series of 1’s and 0’s. A run is a 

consecutive sequence of 0’s or 1’s. A run’s test 

check if the number of runs is the correct 

number for a series that is random. To figure 

this out, let T be the number of observations, TA 

be the number above the mean and TB be the 

number below the mean. Let R be the observed 

number of runs. Then using combinatorial 

methods, the probability P(R) can be 

established and mean and variance of R can be 

derived: (Gibbons, 1997; Cromwell et al., 

1994). When T is relatively large (>20), the 

distribution of R is approximately normal.  
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T
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   (10) 
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
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  (11) 

N(0,1)
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E(R)R
ZN 


  (12) 

The null hypothesis is rejected if the 

calculated ZN value is greater than the selected 

critical value obtained from standard normal 

distribution table. In other words, x(t) series is 

decided to be non-random. 

 

3. Results and Discussion 

The autocorrelation function (ACF) 

graphs, which is known as corrrelogram, of the 

data were taken into consideration to visually 

detect the existence of nonstationarity in the 

averaged daily temperature, light intensity and 

relative humidity data from 5-year daily records 

at weather station in Tokat-TURKEY (Figure 

1). The figure indicates that ACFs decline 

gradually implying nonstationary. Especially, 

slowly decay in ACFs related to the averaged 

daily temperature and light intensity data 

sequences is more obvious than the ACF of the 

averaged daily relative humidity data 

sequences. Also, the ACFs show that the 

averaged daily data sequences have rather high 

serial correlation. Similarly, Ljung-Box Q 

(LBQ) and Runs test results emphasize rather 

high serial correlation between the averages of 

the daily data sequences (Table 1).  The LBQ 

statistic calculated for each of three daily data 

sequences were rather high compared with 
2
 

critical values at 5% significance level. Because 

the LBQ statistics are greater than the 
2
 critical 

values, the null hypothesis of independence 

between the averages is rejected. Addition to 

LBQ statistic, runs test results show serial 

correlation between the averages. ZN values 

obtained for each data sequences are greater 

than Z critical value from standard normal 

distribution table at 5% significance level. This 

implies rejection of the null hypothesis related 

to no serial correlation. Because the ACFs 

attenuate very slowly, nonstationarity in the 

daily data sequences should be counteracted for 

performing stationary data sequences. 

Therefore, the most common transformation, 

differencing, was applied to the averaged daily 

data sequences. Figure 2 illustrates that the first 

differencing removes nonstationary pattern for 

each daily data sequences. 

Unit root test (augmented Dickey and 

Fuller, ADF,) was applied to the averaged daily 

data sequences to test the nonstationary of data 

sequences. Test results were given in Table 2. 

The ADF test statistics, (τcal), for the daily data 

sequences were smaller than the critical values 

obtained from MacKinnon (1990) at 0.01, 0.05 

and 0.10 significance levels, except 10% 

significance level for the averaged daily 

humidity data. According to these results, the 

null hypothesis, which has a unit root, for the 

data sequences should be accepted at 0.01, 0.05 

and 0.10 significance levels, except daily 

relative humidity data at 10% significance 

level. For each of the averaged daily data 

sequences from 5-year daily temperature, light 

intensity and relative humidity data, maximum 

lag lengths for ADF test were selected as 6, 9 

and 5, respectively. Maximum lag lengths of 

ADF test were selected by taking into 

consideration Akaike Information Criterion 

(AIC) given by Wei (1990). The model in 

which the AIC is the lowest is chosen for 

maximum lag length. AIC for maximum lag 

lengths (6, 9 and 5, respectively) related to 

temperature, light intensity and relative 

humidity data are calculated, respectively, as 

0.847, 4.732 and 1.546. Whether the existence 

of autocorrelation in the residuals from the 

regression models with the lowest AIC obtained 

for the daily data sequences was fulfilled by 

Durbin-Watson (DW) test. The DW test values 

related to temperature, light intensity and 

relative humidity data are 2.004, 2.012 and 

1.995, respectively. Gujarati (2002) expresses 

that if DW statistic is 2, there is no serial 

correlation in the residuals. There is no serial 

correlation between the residuals, because the 

DW statistics for the residuals from the 

regression models with the lowest AIC are very 

close to 2. The values (V) of the parameter 

associated the standard errors (SEV), t-ratios 

(tcal) for drift (constant) and trend parameters in 

regressions of the daily data sequences were 

given in Table 2. These t-ratios  (tcal) related to 

constant and trend coefficients were compared 

with critical value of 1.96 obtained from t-
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distribution at 0.05 significance level. Only, t-

ratios (tcal), of constant and trend coefficients 

related to light intensity data and constant 

coefficient of relative humidity data were 

greater than critical value (Table 2). Therefore, 

these parameters concerning with light intensity 

and relative humidity data should be involved 

in its regressions. 

 

Table 1. Test Results of Serial Correlation from Actual Data  

Variable 

Ljung-Box Q Test 

k=90 Decision 
Runs Test 

Decision 

Q(r) 
2

Tableχ  ZN ZTable 

Temp. 11037.2 
 

112.02 

NR -17.9 
 

± 1.96 

NR 

Light Int. 9513.4 NR -16.2 NR 

Rel.Hum. 2406.4 NR -10.2 NR 

NR, the variable are dependent 

Temp., Temperature 

Light Int., Light Intensity 

Rel.Hum., Relative Humidity 

 

Table 2.Unit Root Test Results for The Actual Data Sequences 

Variable 
ADF 

Statistic 

Test Critical Value Constant Trend 

0.01 0.05 0.10 V SEV t-ratio V SEV t-ratio 

Temp. -0.735 

-3.988 -3.424 -3.135 

0.104 0.054 1.919  -0.0003 0.0002 -1.656 

Light Int. -1.095 1.625 0.666 2.440  -0.0054 0.0014 -3.817 

Rel.Hum. -3.215 1.894 0.602 3.147 0.0003 0.0002 1.017 

 

ADF test was applied to detect whether the 

differenced series are stationary after 

performing the first differencing to the 

averaged daily data sequences. Test results 

were given in Table 3. The ADF test statistics 

of the daily data sequences were greater than 

the MacKinnon critical values at 0.01, 0.05 and 

0.10 significance levels. According to these 

results, the null hypothesis, which has a unit 

root, should be rejected at 0.01, 0.05 and 0.10 

significance levels.  For each of the averaged 

daily data sequences, maximum lag lengths of 

ADF test were 5, 8 and 4, respectively. The 

lowest AIC for maximum lag lengths (5, 8 and 

4, respectively) related to the differenced 

temperature, light intensity and relative 

humidity data were calculated, respectively, as 

0.843, 4.730 and 1.569. DW test values 

concerning with whether serial correlation in 

the residuals from the regression models 

selected for the differenced data sequences is 

present, were calculated, respectively, as 2.005, 

2.013 and 2.002. The values (V) of the 

parameter associated the standard errors (SEV), 

t-ratios (tcal) for drift (constant) and trend 

parameters in regressions for the differenced 

data sequences were given in Table 3. These t-

ratios  (tcal) related to constant and trend 

coefficients of the differenced temperature and 

light intensity data (except constant parameter 

of temperature data) were greater than critical 

value of 1.96 obtained from t-distribution at 

0.05 significance level. Therefore, these 

parameters concerning with the differenced 

temperature and light intensity data should be 

present in its regressions. 

 

 

Table 3. Unit Root Test Results for The Differenced Data Sequences 

Variable 
ADF 

Statistic 

Test Critical Value Constant Trend 

0.01 0.05 0.10 V SEV t-ratio V SEV t-ratio 

Temp. -11.034  

-3.988 

8 

 

-3.424 

3 

 

-3.135 

3 

0.077 0.040 1.922   -0.0004 0.0002 -1.998 

Light Int. -9.968 0.971 0.295 3.288   -0.0053 0.0014 -3.735 

Rel.Hum. -13.501 -0.033 0.057 -0.577  0.0001 0.0003  0.500 



K.YÜREKLİ, O.ÇEVİK 

 51 

 

Temperature

Lag Number

8981736557494133251791

A
C

F

1.0

.5

0.0

-.5

-1.0

 
Light Intensity

Lag Number

8981736557494133251791

A
C

F

1.0

.5

0.0

-.5

-1.0

 
Relative Humidity

Lag Number

8981736557494133251791

A
C

F

1.0

.5

0.0

-.5

-1.0

 
Figure 1. ACF-The Actual Data 
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Figure 2. ACF-The Differenced Data 

 

 

 
 



K.YÜREKLİ, O.ÇEVİK 

 53 

4. Conclusion 

One of the fundamental problems in 

stochastic modeling is nonstationarity of a 

given time series. Therefore, nonstationary time 

series should be transformed to a stationary 

time series. There are different ways to detect 

whether a given series is nonstationary. Unit 

root test (Augmented Dickey and Fuller test) is 

one of the most commonly used approaches.  

In this study, Augmented Dickey and 

Fuller (ADF) test was applied to 5-year daily 

temperature, light intensity and relative 

humidity data from the weather station in Tokat 

province. The ADF test showed that the daily 

data sequences are nonstationary. To remove 

nonstationarity in the daily data sequences, first 

differencing was applied to the daily data 

sequences. ADF test was applied to detect 

whether the differenced series are stationary 

after the first differencing. The ADF test results 

showed that the first differencing helped to 

remove nonstationary from the data.
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