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Stochastic Modeling for The Daily Extreme Flows of Kelkit Stream
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Abstract: The aim of this study is to determine whether the daily extreme flows for Kelkit Stream could be forecast as a stochastic
model. For this aim, the autoregressive models (the first and second order Markov models) and Arima(1.0.1) model (mixed
autoregressive-moving average model) were used. The flows forecasted by using the models mentioned were compared to the observed
flows. The results showed that the flow predictions based on the first order Markov model are fitted to the data better than the other
models. ’
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Kelkit Caymin Giinliik Ekstrem Akimlari i¢in Stokastik Modelleme

Ozet: Bu ¢alismanm amact, Kelkit gay giinlik ekstrem akimlarinin stokastik bir modelle tahmin edilebilirligini beliriemek igindir. Bu

amagla otoregresif modeller (birinci ve ikinci derece Markov modelleri) ve Arima(1.1) model (otoregresif-hareketli ortalama)
kullamlnustir. Adi gegen modeller kullanilarak tahmin edilen akimlarin gézlenen akimlar ile kargilagtinlmasi yapilmistir. Sonuglar,
birinci derece Markov modelden elde edilen akim tahminlerinin, veriye diger modellerden daha fazla uyum sagladigini gostermistir.

Anahtar kelimeler: Ekstrem akimlar, otokorelasyon katsayisi, Markov model, Arima model.

Introduction

Hydrologic phenomena are cyclic and stochastic
in nature. The rotation of the earth around the sun is one of
the main factors that produces cylclicities; meanwhile,
erratic atmospheric movement contribute to the
randomness of natural hydrologic processes. Therefore,
both the cyclicity and the stochasticity in the hydrologic
processes are equally important in the modeling studies
).

A time series may consist only deterministic
events, only stochastic events or a combination of the two.
Most often a hydrologic time series will be composed of a
stochastic component superimposed on a deterministic
component. Ultimately design decisions must be based on
a stochastic model or a combination of stochastic and
deterministic models. This is because any system must be
designed 1o operate in the future. A stochastic model is a
probabilistic model having parameters that must be
obtained from observed data. Stochastic stream flows are
neither historical flows nor predictions of future flows, but
they are representative of possible future flows in a
statistical sense (2).

Most of the statistical methods wused in
hydrologic studies are based on the assumption that the
observations are independently distributed in time. The
occurrence of an event is assumed to be independent of all
previous events. This assumption is not always valid for
hydrologic time series. Observations of daily discharges
do not change appreciably from one day to the next. There
is a tendency for the values to cluster, in the sense that
high values tend the follow high values and low values
tend to follow low values. Thus the daily discharges are
not independently distributed in time. The dependence
among monthly discharges is less than that between daily
discharges, and the dependence among annual discharges
is less than that between monthly discharges. Thus the
dependence between hydrologic observations decreases
with an increase in the time base (3).

If there is a linearly dependence between the
values of a time series, these series are called as a

stochastic process or autoregressive process. The
correlation between the values may be taken as a
dependence criterion.

It is inadequate to determine only the probability
distribution fitted to the stochastic process in hydrologic
studies, meanwhile, the stochastic process must be
modeled according to the dependence between the values
of the time series. The modeling stochastic process is for
generating data. In general, the period for which data is
available is usually less than the economic life of the
project in the studies involving planning and management
of water resources. However, McMichael and Hunter (4)
stated that providing good forecast functions for time
dependent data was a common problem.

Material and Methods

In this study, the daily flow values measured
from 1938 to 1988 in the flow station numbered 1401
controlled by General Directorate of Electric Power
Research Survey and Development Administration (EIE)
were used. The flow station was nearby Fatli Bridge in
Tokat. Kelkit stream is formed by joining together of
small streams that originate from Spikor, Pulur. Otlukbeli.
Sarhan and Balaban mountains. located in the north
Erzincan, near the Kelkit district. Kelkit stream passes
through Susehri, Niksar and Erbaa plains and then, joins to
Yesilirmak River in the north of Erbaa plain. Kelkit stream
is 245.5 km in length and its watershed area is 11455 km®

5)-

Determination of Daily Extreme Flows

The daily flow data were used to model the daily
extreme flows of Kelkit stream as a stochastic process.
Although the flow records are available in the mentioned
flow station, the measurements after 1988 were discarded
since Kilickaya dam was built on Kelkit stream in that
year. Okman (6) stated that the flows were homogenous
from 1938 to 1988.
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The daily extreme flows for each year was taken
from the daily flows recorded from 1938 to 1988, and the
remaining data were disregarded (7). Thus, the daily
extreme flows taken were. supposed to be a random and
continuous variable that can represent the discarded daily
flows (8).

Modeling Stochastic Process of The Daily Extreme
Flows
The First and Second Order Markov Models

Most hydrologic time series exhibit significant
serial correlation. That is, the value of the random variable
under consideration at one period is correlated with the
values of the random variable at earlier time periods. The
correlation of a random variable X at one time period with
its value k time periods earlier is denoted by r, and is
called the k™ order serial correlation ).

A first order Markov model is defined by the
equation ( 10)

Zioy = uH N Zi—,) e ()

A second order Markov mode! is defined by the
equation (11).

Ziny =t BiZin— 1t BoZip i @
B, and P, are,

Bi=(r-niry) / (1-r%) 3)

Bz == (ty1) / (I-1%) | 4)

Ty in equations is referred to as k™ order serial
correlation coefficient (autocorrelation cosfficient). k¥
order serial correlation coefficient may be calculated
according to circular series or open series approach (11).

A circular series is one that closes on itself so
that z, is followed by z, (4). k" order serial correlation
coefficient based on circular series approach is

n
Z lei+k - nluzz
=1

D)

Matalas (12) has suggested that for hydrologic
data 1, tends to be greater than zero due to persistence
caused by storage. If the r, is zero, there is a linearly
independence between the values of a time series. There is

r, =

&)

a high dependence between the values of a time series if .

the r, is between zero and minus or plus 1 (3).

Equation 1 and 2 give suitable results when the
data is normally distributed. Therefore, Hipel et al. (13)
suggested the use of transformed data in autoregressive
models since most hydrologic events have a skewed
distribution. These transformations are as follows;

z), =/1“‘[(x,”=l +c)—1] 270 6)
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ZL, = ln(x;’=1 +c) A=0 (M

Mcleod et al. (14) stated that A might be .5 or +
1, and C might be 1. '

In Haan (2), with respect to the first order serial
correlation coefficient r;, Anderson showed that, since r, is
nearly normally distributed, the confidence limits (CL) for
a computed value of r; are given by

CL=(-121 ,J-DW(n-1) @

For the confidence limits of the serial
correlation coefficients higher than r,, n-k+1 must be
substituted for n in equation 8 (15; 16).

Bayazit (15) stated that the second order
Markov model is preferred to the first order
Markov model when R*—r2 is higher than 0.01r,>.
R%is equal to (1> + 1> -2 1 )/ (- 1.

The Arima Model

Arima model is an integration of autoregressive
models and moving average models (17). Arima model is
expressed as;

Zi=@1Zi4+ ..+ ngi-p +Ei—B1 g1 — ... — Bq4tiq (9)

The model has p+q+2 parameters. This model is
also called as Arima (p.d.q). The Arima (1.0.1) is
extensively used for the sequences of annual discharge
volumes (15).

Carlson (18) showed that Arima(1.0.1) could be
converted to the autoregressive model. Thus, If a value for
, 91 is assumed, say , 8, = 0°, then the data z,, 2, z;, ..., Z,
can be converted to a new data set w;, wo, Wi, ..., W,
according to
wn:Zn+ 60 Wn-l (]0)

The new set of data w,, now follows the pure
autoregressive model
W, =0w 1+ (11)

Tao and Delleur (1) obtained @4, 0, parameters
for Arima(1.0.1}) as follows

ro= (1-¢1'91')(¢| _'91)
! 1+ ¢12 —2¢,6,

(12)

=11 k>2 (13)
Generation of The Residuals (g;)

g is an independently distributed random
variable. Average of this variable is zero and its variance

is 6,2 It is assumed that g is normally distributed (19).
The numbers of g can be obtained as fallows (2)

(3] =65Rn+u5 (14)
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R, is a random standard normal deviate and is a
random observation from a standard normal distribution.
There is a table prepared for random siandard normal
deviates.

The variances of g; for the first and second order
Markov models can be calculated from the following
relationships, respectively (20; 11).

o2 = (ﬁ—n‘ij(l e ) (}7%3)

=1

(15)
2 (n—2) 3 N
o, = (n—3) [co Bie ,326‘2] (16)
n-1
c (Z, —luz Xzi+l —luz)
n=l—L|=2 a7
) c P ]
° Z(Zi _:u:.')
i=1
n-2
c Z(Zi —luz XZH—Z -Juz)
r,={2% =L (18)

“ 3, - )
i=1

The variance (O z ) for the Arima (1,1) model
can be calculated from the following equation (9),

o = 19

Results and Discussion

Three models have been used for forecasting of
the daily extreme flows of Kelkit stream. In forecasting
the daily extreme flows for Kelkit stream, serial
correlation coefficient was taken as a base for each model.

The daily extreme flows were transformed to be
fitted normal distribution, by taking A equal to * 5. £1 or
zero in Equation 6 and 7. The calculated flows for A, + 5,
=1 and zero were tested by Simirnov-Kolmogorov
method. The calculated flows for +5 were more normally
distributed than the others. Simirnov-Kolmogorov test
results are given in Table 1.

The serial correlation coefficients were
calculated from the Equation 5 for the transformed daily
extreme flows. These serial correlation coefficients are
given in Table 2. As it can be seen in Table 2, the serial
correlation coefficients for the daily extreme flows were
between —0.2539 and 0.2131 for the maximum daily
flows, were between —0.3085 and 0.5659 for the minimum
daily flows. The correlograms for the daily extreme flows
were illustrated in Figure 1. Although the serial correlation
coefficients for the daily extreme flows are low (close to
zero) at some years, it can be said to be dependence
among the observations.

To test whether the series of the daily extreme
flows are dependent or independent, CL values for 5 %
confidence limits were calculated using Equation 8. These
values were shown in Table 3. Box and Jenkins (9)
expressed that if 95 % of the calculated twenty serial
correlation coefficients are within the confidence limits,
then the series of the daily extreme flows will be
independent. In this study, all of the calculated serial
correlation coefficients for the daily maximum flows were
within the confidence limits. But less than 95 % of the
calculated serial correlation coefficients for the daily
minimum flows were within the confidence limits.
Therefore, it can be said that the daily maximum flows are
independent and the daily minimum flows are dependent.
But, as it can be seen the serial correlation coefficient of
the daily maximum flows, there is dependence among the
daily maximum flows. As a result of these, the
autoregressive models for the daily extreme flows were
used.

Table 1. Simimov-Kolmogorov Test Results from Normal Distribution for A

Maximum Flow Minimum Flow
. A= max |F(x,) - F,(x)
F(x) Fa(xi) F(x) Fa(xi) Maximum Flow Minimum Flow
0 0.89285 0.96078 0.73005 0.66667 0.0679 0.0634
0.5 0.90731 0.96078 0.37633 0.43137 0.0535 0.0550
-0.5 0.53785 0.45098 0.55117 0.47059 0.0869 0.0806
1.0 0.64999 0.70588 0.35400 043137 0.0559 0.0774
-1.0 0.70264 0.96078 0.57738 0.47059 0.2581 0.1068

F(x;) is the probability levels from normal distribution for the observations.

Fa(x;) is the frequencies based on the ranks of the observations
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Table 2. Serial Correlation Coefficients for Kelkit Stream’s Daily Extreme Flows

r. for Markov Models Arima Model
Tk Qmax Qmin
Femaxi Temax2 I'imint Femin2 re for Qmin
r 0.0583 0.5659 -0.0363 0.0474 -0.0492) -0.0591 -0.0028
T 0.1986] 0.3679] 0.1933 -0.0147 -0.0897 -0.1324 -0.1127
rs -0.1849 0.3779] -0.1974 -0.1628] 0.2020; 0.1620); 0.1771
Ty 0.2131 02849 0.2434 0.1521 0.1023) 0.0356) 0.0657
s -0.1663 0.1297 -0.1968 -0.1539 -0.1550) -0.1106] -0.1508
s 0.1193] 0.1450 0.1141 0.0709¢ 0.1187 0.0730f 0.0847
r; -0.1743 0.1326 -0.2028 -(.1330) -0.0141 -0.0194] -0.0206
rs 0.1208, 0.1433 0.1803 0.0721 0.0581] 0.0854f 0.0510
T -0.1451 0.1288 -0.2215 -0.1495 0.1275 0.1562 0.1214
Ti0 -0.0130 0.0238 0.0805 0.0375] -0.0440) -0.1127 -0.0639
Ty -0.1141 0.0029] -0.1798 0.0183 -0.1401 -0.0562) -0.1217
T 0.0510 0.0854 0.2140] 0.0897] 0.2528 0.2192] 02458
113 -0.1955] 0.0002] -0.3218] -0.2337 -0.0645 -0.0724] -0.0432
T --0.0321] - =B:0559 0.0466 ~0.0563] -0.0530) -0.0447, -0.0401
Tis -0.0312] -0.0829, -0.1027 0.0885 0.0637 0.0559, 0.0567
715 -0.0510] -0.2127 0.1010] -0.1106) -0.1344 -0.2076 -0.1692
Ty ~0 2539 -0.2690] -0.3795 ~03462 -0.2104 -0.10 -0.1919
713 0.0159 -0.2522] 0.1549) 0.0662] 0.0998] 0.1119| 0.1155
T19 -0.0873 -0.3085] -0.1518 0.1379) -0.1422! -0.1095] -0.1286
T20 0.0601 -0.3064] 02339 0.0791 -0.0370] -0.1530 -0.0388
Table 3. The Statistics for The Models in the Study
Maximum Flows Minimum Flows Arima Model
Parameter MM, MM, MM, MMy Maximum Flows Minimum Flows
Bl [ 23 00469 sk Om ek ¥ * kK
B; sk k 01959 skdkk 940701 Aok *%kk
Cly +025 -0.29 +025 029 +025 -029 +025 -0.29
CL, +026 -0.30 +026 030 ol +026 -0.30
32 39.37 19742 0.58 2824 —482.6 0.56
Z, [T Y] T 2] 3.407 0.650
Ql %ok E2 13 E2 23 Fkk 0299 0 124
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Figure 1. The Correlogram for The Daily Maximum and Minimum Flows

To determine whether which one of the first
order and second order Markov models are suitable, the
residuals (g;) for the daily extreme flows were calculated
using Equation 1 and 2. The serial comrelation coefficients
of the g were calculated Equation 5. These serial
correlation coefficients are given in Table 2. The
correlograms of the ¢; are illustrated in Figure 2 and Figure
3. To test whether the g; is dependent or independent, CL
values for 5 % confidence limits were calculated using
Equation 8. These values were shown in Figure 2 and
Figure 3. As it can be seen in Figure 2, less than 95 % of
the serial correlation coefficients of the g calculated from
the first order Markov model forthe daily maximum flows
were within the confidence limits. But, 95 % of the serial
cortelation cocfficients of the g calculated from the
second order Markov model for the daily maximum flows
were within the confidence limits (Figure 3). Therefore,
for forecasting of the daily maximnm flows, it can be
expressed that the first order Markov-model is not suitable,
but the second order Markov model is suitable. As it can
be seen in Figure 2 and Figure 3, all of the serial
correlation coefficients of the calculated g from the first
and second order Markov models for the daily minimum
flows were within the confidence limits. Thus, the first
and sccond order Markov models can be used for
forecasting the daily minimum flows.

To determine which one of the first or second
order Markov models is suitable forthe series of the daily
extreme {lows, it is necessary to determine what the
relationship between R? — r,2 and 0.01 r? is. R? = r%was
higher than 0.01 r,2 for the daily extreme flows. Therefore,
the second order Markov model was preferred to the first
order Markov model, because the second order Markov
model reflects the variance of the variable (the daily
extreme flows) better than the first order Markov model.

The first and second order Markov model
equations for the daily maximum and minimum flows of
Kelkit stream are as follows, respectively.

For the first order Markov model,
2, =41.96+(0.0583)(Z;— 41.96) + &, (20)
Zix=4.52 H0.35639)(Z; — 4.52) + g, 2n
Forthe second order Markov model,

Ziiz=41.96+ 0.0469(Z;+1— 41.96) + 0.1959(Z;— 41.96)
+ & 22)

Ziiy=4.52+ 035262(Z;.;— 4.52) + 0.0701(Z;— 4.52)
+ &na (23)

Although the second order Markov model is
mathematically more suitable than the first order Markov

‘mode! R%1;> > 0.01 1,%), the daily extreme flows from the

first order Markov model reflects the observed flows well
than the second order Markov model (Figure 4, Figure 3.
Figure 6, Figure 7). Bayazit (20). Janacek and Swift (10)
stated that while number of parameters in a model
increases, the success of prediction decreases.

Arima(1.0.1) model 1is not suitable for
forecasting the daily maximum flow of Kelkit stream. @.
Parameter was obtained as 3.407 (Table 3). That is, this
parameter was higher than 1. Box and Jenkins (9) reported
that the absolute values of @4 and, 8, parameters must be
between zero and one. Because of the @4, the variance of
the g was negative (Table 3). But, forecasting the daily
minimum flows of Kelkit stream are suitable with
Arima(1.0.1) model. @1 and, 0, parameters were lower
than 1 (Table 3). But, as it can be seen in Figure 8. the
calculated flows were smalier than the observed flows. All
of the correlation coefficients of the ¢ calculated based on
Arima(1.0.1) for the daily minimum flows were within the
confidence limits (Table2).
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Figure 2. The Correlogram of‘Thf:Bﬁsiduals of The Daily Extrem Flows for The First Order Markov Model

Figure 3. The Correlogram of The Residuals of The Daily Extrem Flows for The Second Order Markov Model
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Figure 4. The Curve of The Daily Maximum Flows for The First Order Markov Model
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Figure 5. The Curve of The Daily Minimum Flows

for The First Order Markov Model
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Figure 6. The Curve of The Daily Maximum Flows for The Second Order Markov Model
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Figure 7. The Curve of The Daily Minimum Flows for The Second Order Markov Model
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Figure 8. The Curve of The Daily Minimum Flows for The Arima Model
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