Hacettepe Journal of Hacet. J. Math. Stat.
Volume 48 (5) (2019), 12861303
Mathematics & Statistics DOI : 10.15672/hujms.592974

RESEARCH ARTICLE

Quasi-n-absorbing and semi-n-absorbing
preradicals

Hojjat Mostafanasab@®, Ahmad Yousefian Darani™

Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil,
Iran

Abstract

The aim of this paper is to introduce the notions of quasi-n-absorbing preradicals and
of semi-n-absorbing preradicals. These notions are inspired by applying the concept of
n-absorbing preradicals to semiprime preradicals. Also, we study the concepts of quasi-
n-absorbing submodules and of semi-n-absorbing submodules and their relations with
quasi-n-absorbing preradicals and semi-n-absorbing preradicals.
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1. Introduction

The notion of 2-absorbing ideals of commutative rings was introduced by Badawi in
[2], where a proper ideal I of a commutative ring R is called a 2-absorbing ideal of R if
whenever a,b,¢c € R and abc € I, then ab € I or ac € I or bc € I. He proved that [ is
a 2-absorbing ideal of R if and only if whenever Iy, Is, I3 are ideals of R with I1113 C I,
then I11o C I or I1I3 C I or IoI3 C I. Anderson and Badawi [1] generalized the concept of
2-absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of
R is called an n-absorbing (resp. strongly n-absorbing) ideal if whenever xy - - z,41 € I for
X1y Tnt1 € R (vesp. Iy -+ Ipy1 C I forideals I, ..., I, 41 of R), then there are n of the
x;’s (resp. n of the I;’s) whose product is in I. In [20], the concept of 2-absorbing ideals was
generalized to submodules of a module over a commutative ring. Let M be an R-module
and N be a submodule of M. N is said to be a 2-absorbing submodule of M if whenever
a,b € R and m € M with abm € N, then ab € (N :gp M) or am € N or bm € N. In
[13], Raggi et al. introduced the concepts of prime preradicals and prime submodules over
noncommutative rings. The generalized notions of these, “2-absorbing preradicals" and
“2-absorbing submodules" were investigated by Yousefian and Mostafanasab in [19]. Raggi
et al. [14] defined the notions of semiprime preradicals and semiprime submodules. In
this paper, we give the concepts of “quasi-n-absorbing preradicals” and “semi-n-absorbing
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preradicals”. Also, investigation of “quasi-n-absorbing submodules” and “semi-n-absorbing
submodules” is in this paper.

2. Preliminaries

Throughout this paper, R is an associative ring with identity, and R-Mod denotes
the category of all the unitary left R-modules. A ring R is said to be left V-ring if all
simple R-modules are injective. We denote by R-simp a complete set of representatives
of isomorphism classes of simple left R-modules. We recall that R is a left local ring if
and only if |R-simp| = 1. For M € R-Mod, we denote by E(M) the injective hull of M.
Let U, N € R-Mod, we say that N is generated by U (or N is U-generated) if there exists
an epimorphism U®) — N for some index set A. Dually, we say that N is cogenerated by
U (or N is U-cogenerated) if there exists a monomorphism N — U? for some index set
A. Also, we say that an R-module X is subgenerated by M (or X is M-subgenerated) if
X is a submodule of an M-generated module. The category of M-subgenerated modules
(the Wisbauer category) is denoted o[M] (see [17]). A preradical over the ring R is a
subfunctor of the identity functor on R-Mod. Denote by R-pr the class of all preradicals
over R. There is a natural partial ordering in R-pr given by o <X 7 if o(M) < 7(M) for
every M € R-Mod. It is proved in [10] that with this partial ordering, R-pr is an atomic
and co-atomic big lattice. The smallest and the largest elements of R-pr are denoted 0
and 1, respectively.

Let M € R-Mod. Recall ([6] or [10]) that a submodule N of M is called fully invariant
if f(IN) < N for each R-homomorphism f : M — M. In this paper, the notation N <y; M
means that “N is a fully invariant submodule of M". Obviously the submodule K of M
is fully invariant if and only if there exists a preradical 7 of R-Mod such that K = 7(M).
If N < M, then the preradicals a¥ and w¥ are defined as follows: For K € R-Mod,

(1) oy (K) = S{f(N)|f € Homg(M, K)}.

(2) Wi (K) = N{f~1(N)|f € Homp(K, M)}.
Using the preradicals o/ and wd, in the works [5], [7] and [13] , two operations were
introduced and studied.

(1) a-product of submodules K, N < M: K - N = o (N).

(2) w-product of submodules K, N < M: K ® N = wM(N).
Notice that for o € R-pr and M, N € R-Mod we have that (M) = N if and only if
N <fl M and a]]{,/[ <o = wN. We have also that if K < N < M with K, N <z; M, then

M < oM and wM < WM.

The atoms and coatoms of R-pr are, respectively, {ag(s)|5 € R-simp} and

{wB|T is a maximal ideal of R} (See [10, Theorem 7]).

There are four classical operations in R-pr, namely, A,V,- and : which are defined as
follows. For o, 7 € R-pr and M € R-Mod:

(1) (cAT)(M)=0MNTM,

(2) (cVT)(M)=0M + 1M,

(3) (o7 )( ) = o(rM) and

(4) (o:71)(M) is determined by (o : 7)(M)/oM = 7(M/oM).
The meet A and join V can be defined for arbitrary families of preradicals as in [10].
The operation defined in (3) is called product, and the operation defined in (4) is called
coproduct. 1t is easy to show that for o, 7 € R-pr, o7 Ko AT 20V T 2 (0:7).

We denote oo ---0 (n times) by o”. Recall that o € R-pr is an idempotent if 0 = o,
while o is a radical if (o0 : 0) = 0. We say that o is nilpotent if 0™ = 0 for some n > 1.
Also o is called a t-radical if 0 = off i for some ideal I of R. Note that o is a radical if and
only if, o(M/o(M)) = 0 for each M € R-Mod. Furthermore, o is a t-radical if and only
if, for each M € R-Mod, o(M) = o(R)M.
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For any o € R-pr, we will use the following class of R-modules:
F, ={M € R-Mod | o(M) = 0}.

Let 0 € R-pr. By [10, Theorem 8.2], the following classes of modules are closed under
taking arbitrary meets and arbitrary joins:

Aq = {7 € R-pr| 7o = 0}.

Ac={r € Rpr|(c:7)=0}.
As in [11], we define, for o € R-pr, the following preradicals:

a(o) = /{7 € A,} = the annihilator of o.

c(o) = V{7 € A.} = the co-equalizer of o.

Clearly, a(c)o = 0 and (0 : ¢(0)) = 0.

In [13], Raggi et al. defined the notions of prime preradicals and prime submodules as
follows:

Let 0 € R-pr. o is called prime in R-pr if o # 1 and for any 7, n € R-pr, 7 < ¢ implies
that 7 <0 ornp < 0. Let M € R-Mod and let N # M be a fully invariant submodule
of M. The submodule N is said to be prime in M if whenever K, L are fully invariant
submodules of M with K - L < N, then K < N or L < N. Also, Raggi et al. [14] defined
a preradical o semiprime in R-pr if ¢ # 1 and for any 7 € R-pr, 72 < o implies that
7 X 0. They said that a proper fully invariant submodule N of M is semiprime in M if
whenever K is a fully invariant submodule of M with K - K < N, then K < N. In the
special case, M is a prime (resp. semiprime) module if its zero submodule 0 is a prime
(resp. semiprime) submodule.

Yousefian and Mostafanasab [19] introduced the notions of 2-absorbing preradicals and
2-absorbing submodules. Also, in [18] they defined the notions of co-2-absorbing preradi-
cals and co-2-absorbing submodules. The preradical o € R-pr is called 2-absorbing if o # 1
and, for each n,u,v € R-pr, nuv = o implies that nu < o or nv < ¢ or pv <X 0. More
generally, a preradical 1 # ¢ in R-pr is said to be an n-absorbing preradical if whenever
mne ... Nnt1 = o for ni,me, ..., Mpt1 € R-pr, there are iy, 42, ...,i, € {1,2,...,n+1} such
that iy < ig < -+ < ip and 1;; M, . ..M, = 0. They denoted by R-Ass the class of all
R-modules M that the operation a-product is associative over fully invariant submodules
of M, i.e., for any fully invariant submodules K, N,L of M, (K -N)-L = K - (N - L).
So we denote (K - N) - L simply by K - N - L. In the special case K - K---K (n times) is
denoted by K™. By Proposition 5.6 of [3], we can see that if an R-module M is projective
in o[M], then M € R-Ass; in particular R € R-Ass. Let M € R-Ass and let N # M be
a fully invariant submodule of M. The submodule N is said to be 2-absorbing in M if
whenever J, K, L are fully invariant submodules of M with J-K-L < N, then J- K < N
or J-L < NorL-K<N. A generalization of 2-absorbing submodules is that the sub-
module N is said n-absorbing in M if whenever K - Ko --- K11 < N for fully invariant
submodules Ky, Ks,..., K, 1 of M, there are iy,i9,...,i, € {1,2,...,n + 1} such that
i1 < iy < - <iyand K, - K, --- K;,, < N. We say that a preradical 1 # o € R-pr is
called a quasi-n-absorbing preradical if whenever p""v < o for u,v € R-pr, then u" < o or
u" v < o. A preradical 1 # o € R-pr is called a semi-n-absorbing preradical if whenever
ut < o for 4 € R-pr, then u® < o. Let M € R-Ass. We say that a proper fully
invariant submodule N of M is quasi-n-absorbing in M if for every fully invariant sub-
modules K, L of M, K" - L < N implies that K™ < N or K" '. L < N. A proper fully
invariant submodule N of M is called semi-n-absorbing in M if for every fully invariant
submodule K of M, K"t! < N implies that K™ < N. Notice that for every ideals I
and Iy of R, I - Iy = Oéﬁ([g) = I1I,. Therefore, an ideal I of R is a quasi-n-absorbing
submodule of pR if and only if for any ideals I;, I of R, I{'Io < I implies that IT7* < I or
If_lfg < I. Also, I is a semi-n-absorbing submodule of zpR if and only if for any ideal J
of R, J"*! < I implies that J® < I. An R-module M is said to be satisfies the a-property
if 7(M) -n(M) = (tn)(M) for every T, n € R-pr, [19].
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A ring R is called left hereditary if all of its left ideals are projective (see [8]).

Corollary 2.1 ([19, Corollary 2.5]). Let R be a left hereditary ring. Then R satisfies the
a-property.

We recall the definition of relative mono-injectivity (see [16]). Let M and N be modules.
N is said to be mono-M -injective if, for any submodule K of M and any monomorphism
f: K — N, there exists a homomorphism g : M — N with g |x= f.

Proposition 2.2 ([19, Proposition 2.8(1)]). Let M € R-Mod. If every fully invariant
submodule of M is mono-M -injective, then M satisfies the a-property.

Proposition 2.3 ([3, Proposition 5.6]). Let M € R-Mod. Assume that M is projective
in o[M], and let K and N be submodules of M. Then (K -N)-X =K - (N - X) for any
module rRX € o[M].

In the next sections we frequently use the following proposition.

Proposition 2.4 ([9, Proposition 1.2]). Let {My} er and { Ny} cr be families of modules
in R-Mod such that for each v € I, Ny < M,. Let N = @.c; Ny, M = D, My,
N/ — H’YGIN’Y and M/ — H’YGI M’Y

(1) If N <j; M, then for each v € I, Ny <y M, and oX = Vwela%{;'

(2) If N" <y; M, then for each v € I, N, <y M, and w%/ = /\yelwzj\\/?-

3. Quasi-n-absorbing preradicals

Suppose that m, n are positive integers with m > n. A preradical ¢ # 1 is called a
quasi-(m, n)-absorbing preradical if whenever ™ 'v < o for yu,v € R-pr, then u™ < o or
-1
w20

Proposition 3.1. Let 0 € R-pr and m > n be positive integers. Then o is quasi-(m,n)-
absorbing if and only if o is quasi-n-absorbing.

Proof. Assume that o is quasi-(m, n)-absorbing. Let u"v < ¢ for some u,v € R-pr. Since
n < m —1, then " 'v < . Therefore u™ < o or u"~'v < o. Consequently o is quasi-n-
absorbing. Now, suppose that ¢ is quasi-n-absorbing. Let u™'v < ¢ for some u, v € R-pr.
Therefore p" ™=~y < o. Hence p" < o or p* ' um=1-"y = (m=2)y < 5. Repeating
this argument we obtain p” < o or u" v < o. Thus o is quasi-(m,n)-absorbing. O

Remark 3.2. Let 0 € R-pr.
(1) o is prime if and only if o is quasi-1-absorbing if and only if ¢ is 1-absorbing.
(2) If o is quasi-n-absorbing, then it is quasi-i-absorbing for all i > n.
(3) If o is prime, then it is quasi-n-absorbing for all n > 1.
(4) If o is quasi-n-absorbing for some n > 1, then there exists the least ng > 1 such
that o is quasi-ng-absorbing. In this case, o is quasi-n-absorbing for all n > ng
and it is not quasi-i-absorbing for ng > i > 0.

Proposition 3.3. Let P be a family of prime preradicals. Then N\,cpo is a quasi-i-
absorbing preradical for every i > 2.

Proof. Let 7 = \,cpo. By part (2) of Remark 3.2, it is sufficient to show that 7 is a
quasi-2-absorbing preradical. Suppose that p?v < 7 for some p,v € R-pr. Since every
o € P is prime and [LQI/ <o, then p <X o or v X o. Therefore pv < 7, and so, we conclude
that 7 is a quasi-2-absorbing preradical. O

Let p = AM{wj | S € R-simp}. Notice that for every R-module M, p(M) = Rad(M). As
in [14], p is called the Jacobson radical.
As a direct consequence of Proposition 3.3 we have the following result.
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Proposition 3.4. p is a quasi-i-absorbing preradical for every i > 2.

Proof. By [13, Corollary 24], for each simple R-module S, wﬁq is prime. So by Proposition
3.3, we have the claim. O

Proposition 3.5. If R is a semisimple Artinian ring, then every preradical 1 # o € R-pr
s a quasi-i-absorbing preradical for every i > 2.

Proof. Suppose that R is a semisimple Artinian ring. According to [13, Remark 3],
every coatom w}% (I is a maximal ideal of R) is a prime preradical. On the other hand,
[10, Theorem 11] implies that o = A{w¥ | I is a maximal ideal of R, wf = o}. Therefore,
every preradical 1 # o € R-pr is quasi-i-absorbing for every ¢ > 2, by Proposition 3.3. [

Remark 3.6. Let S51,95,...,Sh+1 € R-simp be distinct simple modules. Then by Propo-
sition 3.3, wg LA wg VAR /\w‘g "*! is a quasi-i-absorbing preradical in R-pr for every i > 2.
But, [19, Corollary 3.6] implies that wagl A w()g? Ao A wag"“ is not an n-absorbing pre-
radical. This remark shows that the two concepts of quasi-n-absorbing preradicals and of
n-absorbing preradicals are different in general.

Corollary 3.7. If R is a ring such that every quasi-n-absorbing preradical in R-pr is
n-absorbing, then |R-simp| < n.

Proposition 3.8. Let R be a ring. The following statements are equivalent:
(1) For every preradicals u,v € R-pr, u"v = u" or p"v = u" tv;

(2) For every preradicals 01,09, ...,0n+1 € R-pr, (61 Noa A+ ANop)" X 0102+ Opy1
or (cy Noag A~ ANop)" Lopi1 0109 0nat;

(3) Ewvery preradical 1 # o € R-pr is quasi-n-absorbing.

Proof. (1)=(2) If 01,09, ...,0n4+1 € R-pr, then we get from (1),

(o1 Noag A~ ANop)" = (01 ANoa A+~ ANop)"Opt1 S 0102 Opt1,

or
(or Nog A=+ A on)"flam_l =(o1ANoa A~ Nop)"Opt1 20102 Opt1-
n times
—_—~—
(2)=(1) For preradicals pu,v € R-pr, we have from (2), u” = (uA---Ap)" <X p"v or
n times
—_—~
p = (uA-Ap)" v < v, So we have that p"v = p" or v = u" .
(1)<(3) is trivial. O

Proposition 3.9. Let 1 # o € R-pr be an idempotent radical.
(1) If o is such that for any p,v € R-pr, we have p"v = ¢ = uAv = [u" =< o or
u" v < o], then o is quasi-n-absorbing.
(2) If o is such that for any pi,p2, ..., tnt1 € R-pr, we have
M1 g1 20 St A Ao AN lipyp1 =
(1 i ping1 2o, for some 1 <i<n+1]

then o is an n-absorbing preradical.

Proof. (1) Let o0 # 1 be an idempotent radical that satisfies the hypothesis stated in
(1). Let 7"\ < o for some 7, A € R-pr. Then, by [10, Theorem 8(3)] we have

(c:1)"(c:N)=(c:7" )= (c:0)=0=2(0:T)N(0:N).
So, by hypothesis we have 7" < (0 : 7") = (0 : T)" 2 g or 7" A < (o : 7"71)) =
(0 :7)" (o : \) X 0. Therefore o is quasi-n-absorbing.
(2) The proof is similar to that of (1).
O
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Proposition 3.10. Let P be a chain of quasi-n-absorbing preradicals, that is, a subclass
of quasi-n-absorbing preradicals which is linearly ordered. Then N,cpo is a quasi-n-
absorbing preradical.

Proof. Let 7 = A\,cpo and suppose that p"v < 7 for some p,v € R-pr. If p" < o for
each o € P, then p™ < 7. If there is o9 € P such that u" £ oo, then p™ £ o for each
o = 0g. Since all preradicals in P are quasi-n-absorbing, it follows that u"~'v < o for
each o =< gg. Thus u"fly < o for each o € P, so that ,u"*1V =< 7. We conclude that 7 is
a quasi-n-absorbing preradical. O

Theorem 3.11. Let M € R-Ass and N be a fully invariant submodule of M. Consider
the following statements:
(1) N is n-absorbing in M.
(2) w¥ is an n-absorbing preradical.
Then (2) = (1), and if M satisfies the a-property, then (1) = (2).

Proof. Similar to the proof of [19, Theorem 4.2]. O

We recall that the commutative hereditary domains are precisely the Dedekind domains.

The following remark shows that the two concepts of quasi-(n + 1)-absorbing preradi-
cals ((n + 1)-absorbing preradicals) and of quasi-n-absorbing preradicals are different in
general. Also, in this remark we can observe that the intersection of two quasi-n-absorbing
preradicals may not be quasi-n-absorbing.

Z

Remark 3.12. Let p, ¢ be distinct prime numbers. By [13, Theorem 15], w;, is a prime

P
preradical in Z-pr. On the other hand, w%nz is an m-absorbing preradical, by [1, p. 1650]

and Theorem 3.11. Hence, [19, Proposition 3.5] implies that w?nz A w?Z is an (n + 1)-
absorbing preradical, and so it is quasi-(n + 1)-absorbing preradical. If w%nz A w?z is a

. . . 72 \" 7 7 7 . . . 7\ 7
quasi-n-absorbing preradical, (wpz) Waz, = Wyngz, AWz, implies that either (pr> = wyy, or

-1
(w%z)n w?z = w%nz. Therefore, by Corollary 2.1 we have that p™ € ¢Z or p"~'q € p"Z.

These contradictions show that wfnz A wgz is not quasi-n-absorbing.

Proposition 3.13. If 0; is a quasi-n;-absorbing preradical in R-pr for every 1 < i < k,
then o1 Aoy A -+ Aoy is a quasi-n-absorbing preradical for n =ny + - -+ + ng.

Proof. Let pu,v € R-pr be such that u"v < o1 Aoa A--- A og. Note that o; is quasi-n;-
absorbing, for every 1 < i < k. Then for every 1 <1i < k, 0; is (n + 1, n;)-absorbing, by
Proposition 3.1. Hence, for every 1 < i < k, either u™ < o; or p™ v < o;. If for every
1<i<k p% <o then p*» < oy Aog A--- Aoy. If for every 1 < i < k, % v < oy,
then " 'v < oy Aga A--- Aoy. Otherwise, without loss of generality we may assume that
there exists 1 < j < k such that p™ < o; for every 1 < i < j and p™ 'v < o; for every
7+ 1 <1< k. Hence, u”fluj(fl/\ag/\---/\ak which shows that o1 Aog A--- Ao is a
quasi-n-absorbing preradical. O]

Proposition 3.14. Let 01,09,...,0; € R-pr.
(1) If o1 is a quasi-n-absorbing preradical and o9 is a quasi-m-absorbing preradical for
m < mn, then o1 A\ oy is a quasi-(n + 1)-absorbing preradical.
(2) Ifo1,09,...,0 are quasi-n-absorbing preradicals, then o1 Aoa A --- N0y is a quasi-
(n+t —1)-absorbing preradical.
(3) If 0; is a quasi-n;-absorbing preradical for every 1 <i <t withny <ng < - - <mny
and t > 2, then o1 ANog A -+ Aoy is a quasi-(ng + 1)-absorbing preradical.
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Proof. (1) Let pu,v € R-pr be such that u"*'v < o1 A 09. Since oy is quasi-n-
absorbing, then, by Proposition 3.1, o7 is quasi-(n+ 2, n)-absorbing. Hence, either
pu" =< oy or u" v < o1. Also, o9 is quasi-m-absorbing, so, again by Proposition
3.1, either pu™ < g9 or u™ 1y < gy, There are four cases.

Case 1. Suppose that p™ < o1 and ™ =< g9. Then p™* < o1 A 9.

Case 2. Suppose that u” < o7 and p™ v < 09. Then p"v < o1 A 03.

Case 3. Suppose that /,L”_IV =< o1 and p" = o3. Then u”_ly <01 A o3.

Case 4. Suppose that u”_ly < o1 and um_ly < o09. Then ,u”_ly =< o1 A 09.
Consequently o1 A o9 is quasi-(n + 1)-absorbing.

(2) We use induction on ¢. For ¢ = 1 there is nothing to prove. Let ¢ > 1 and assume
that for t—1 the claim holds. Then o1 AgaA---Aoy_1 is quasi-(n+t—1)-absorbing.
Since oy is quasi-n-absorbing, then it is quasi-(n + ¢ — 2)-absorbing, by Remark
3.2(2). Therefore o1 A oa A - -+ A oy is quasi-(n + t — 1)-absorbing by part (1).

(3) Induction on ¢. For ¢t = 3 apply parts (1) and (2). Let ¢ > 3 and suppose that for
t — 1 the claim holds. Hence o1 Aog A+ -+ Aoy is quasi-(ny—1 + 1)-absorbing. We
consider the following cases:

Case 1. Let ny—1+1 < ny. In this case o1 Aog A- - - Aoy is quasi-(n 4 1)-absorbing
by part (1).
Case 2. Let ng_1 +1 =ny. Thus o1 Aog A--- Aoy is quasi-(ng + 1)-absorbing by
part (2).

O

Proposition 3.15. Let o € R-pr be idempotent. If o is quasi-n-absorbing, then c(o) is
quasi-n-absorbing.

Proof. Assume that o is quasi-n-absorbing, and let p"v < ¢(o) for some p,v € R-pr.
Then (o : w)"(o : v) < (0 : u"v) < (0 : ¢(o)) = 0. Since o is quasi-n-absorbing and
idempotent either (o : u)* = (0 : ") <o or (o : )" Yo :v) = (0: " 'v) <o, and so

either (o : u™) = o or (o : u"'v) = 0. By definition of co-equalizer either u” < c(o) or

"ty < ¢(o). Consequently, c¢(o) is quasi-n-absorbing. O
The annihilator operator can be generalized to a relative annihilator, which can be
considered also as an operator r.a, : R-pr — R-pr.

Definition 3.16. Let o, 7 € R-pr. The right annihilator of ¢ relative to 7 is r.a (o) =
V{p € R-pr| op < 7}. The operator r.ag is denoted by r.a, and r.a(o) is called the right
annihilator of o.

Each ¢ € R-pr has a unique pseudocomplement o1 such that if 7 € R-pr and o A
7 = 0 then 7 < ot, [12, Theorem 4]. This pseudocomplement can be described as

ot = MwP® | S € Rsimp o(E(S)) # 0} (see [11]).

Proposition 3.17. Let 0 € R-pr. If 0 is quasi-n-absorbing, then for each T € R-pr with
™ £ 0, r.a,(m") = r.a, (1), Moreover 7 1(7")t < 0.

Proof. Suppose that o is quasi-n-absorbing and let 7 € R-pr such that 7" £ o. If
p € R-pr is such that 7"p < o, then 7" !p < o, since o is quasi-n-absorbing. Therefore
r.a,(7") < r.a,(r"!). On the other hand, r.a, (7" 1) < r.a,(r"). So the equality holds.
Note that 77(77)+ < 7™ A (7")+ = 0. Thus 7"~ 1(7")+ < o, since o is quasi-n-absorbing
and 7" £ 0. O

Corollary 3.18. Let R be a ring. If 0 is a quasi-n-absorbing preradical in R-pr, then for
each T € R-pr, either 7" =0 or r.a(t") = r.a(r" ).

Proof. By Proposition 3.17. g
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4. Semi-n-absorbing preradicals

Suppose that m, n are positive integers with n > m. A more general concept than semi-
n-absorbing preradicals is the concept of semi-(n, m)-absorbing preradicals. A preradical
o # 1 is called a semi-(n, m)-absorbing preradical if whenever u™ < o for yu € R-pr, then
um =< o.

Note that a semiprime preradical is just a semi-1-absorbing preradical.

Theorem 4.1. Let o0 € R-pr and m, n be positive integers with n > m.

(1) If o is quasi-(n,m)-absorbing, then it is semi-(n, m)-absorbing.

(2) o is semi-(n,m)-absorbing if and only if o is semi-(n, k)-absorbing for each n >
k> m if and only if o is semi-(i, j)-absorbing for each n > i > j > m.

(3) If o is semi-(n, m)-absorbing, then it is semi-(nk, mk)-absorbing for every positive
integer k.

(4) If o is semi-(n,m)-absorbing and semi-(r, s)-absorbing for some positive integers
r > s, then it is semi-(nr, ms)-absorbing.

Proof. (1) Is trivial.
(2) Straightforward.
(3) Assume that o is semi-(n, m)-absorbing. Let p € R-pr and let k be a positive

integer such that y™* < ¢. Then (,uk)n =< 0. Since o is semi-(n, m)-absorbing,

m
(,uk) = ™" < ¢, and so o is semi-(nk, mk)-absorbing.
(4) Suppose that o is semi-(n, m)-absorbing and semi-(r, s)-absorbing for some positive
integers r > s. Let 4™ < 0. Since o is semi-(n, m)-absorbing, ™" < o, and since

o is semi-(r, s)-absorbing, u™° < o. Hence o is semi-(nr, ms)-absorbing.
O

Corollary 4.2. Let 0 € R-pr and n be a positive integer.

(1) If o is quasi-n-absorbing, then it is semi-n-absorbing.

(2) Lett < n be an integer. If o is semi-(n+1,t)-absorbing, then it is semi-(nk+1,tk)-
absorbing for all k > 1> 1.

(3) If o is semi-n-absorbing, then it is semi-(nk + i,nk)-absorbing for all k > i > 1.

(4) If o is semi-n-absorbing, then it is semi-(nk + j)-absorbing for all k > j > 0.

(5) If o is semi-n-absorbing, then it is semi-(nk)-absorbing for every positive integer
k.

(6) If o is semiprime, then it is semi-k-absorbing for every positive integer k.

(7) If o is semiprime, then for every k > 1 and every u € R-pr, u* < o implies that
w=o.

(8) If o is semi-n-absorbing, then it is semi-((n + 1)*, n')-absorbing for all t > 1.

(9) If o is semiprime, then it is quasi-k-absorbing for every k > 1.

Proof. (1) By Theorem 4.1(1).
(2) Let o be semi-(n+1,t)-absorbing. Then, by Theorem 4.1(3), o is semi-(nk+k, tk)-
absorbing, for every positive integer k. Hence, by Theorem 4.1(2), o is semi-
(nk + i, tk)-absorbing for every k >1i > 1.
(3) In part (2) get t =n.
(4) By part (3)
(5) Is a special case of (4).
(6) Is a direct consequence of (5).
(7) By part (6).
(8) By Theorem 4.1(4).
(9) Assume that o 1s semiprime. Let p*v < o for some u,v € R-pr and some k > 1.
Then (uv)* < v < 0. Therefore uv < o, by part (7). So o is quasi-k-absorbing.



1294 H. Mostafanasab, A. Yousefian Darani

O

Proposition 4.3. Let o1,09,...,0, € R-pr. If for every 1 <i <mn, o; is a semiprime pre-
radical, then o109 - - - 0y is a semi-n-absorbing preradical. In particular, if o is a semiprime
preradical, then o™ is a semi-n-absorbing preradical.

Proof. Use Corollary 4.2 (7). O

Lemma 4.4. Let o € R-pr. If o™t is a semi-n-absorbing preradical, then o™t = ™. In
particular, if o2 is a semiprime preradical, then o is idempotent.

The following remark shows that the two concepts of semi-n-absorbing preradicals and
of semi-(n + 1)-absorbing preradicals are different in general.
Remark 4.5. Let n > 1, R be a left hereditary ring and I be a two-sided prime ideal
of R. Since wﬁ is a prime preradical, (wﬁ)"+1 is a semi-(n + 1)-absorbing preradical, by
Proposition 4.3. If (wf)"*1 is a semi-n-absorbing preradical, then (wf)"*1 = (wf)" and
so I"*1 = I by Corollary 3.1. Consequently, for any prime number p, (wgz)n—i_l is a
semi-(n + 1)-absorbing preradical in Z-pr which is not a semi-n-absorbing preradical.

Proposition 4.6. Let 0 € R-pr, 0 # 1 be an idempotent radical. If o is such that for any
p € R-pr, we have u"!' <o < p = p™ < o, then o is semi-n-absorbing.

Proof. The proof is similar to that of Proposition 3.9(1). O

Proposition 4.7. Let 01,09,...,0, € R-pr be semi-2-absorbing preradicals. Then o109 - - -
is a semi-(3" — 1)-absorbing preradical.

Proof. Suppose that u3n =< 0109 -0, for some pu € R-pr. For every 1 < i < n, ,u?’n = 0;
and o; is semi-2-absorbing, then ,uzn < o;. Therefore ,u”Qn < o109+ 0p. On the other
hand, n2" < 3" —1. So u®"~! < o109 - - - 0, which shows that o109 - - -0y, is semi-(3" — 1)-
absorbing. O

Theorem 4.8. If 0; is a semi-n;-absorbing preradical in R-pr for every 1 < ¢ < k, then
k

o1 Nog A+ Aoy is a semi-(n — 1)-absorbing preradical for n = [] (n; +1).

i=1
Proof. Let . € R-pr be such that u® < o1 Aog A --- A og. Then for every 1 < i < k,
(,um)("#l) =< o;, where m = I1 ). Since o0;’s are semi-n;-absorbing, then, for

J=1,5#i"(nj+1)
k
each 1 <i <k, u™"™ < 0,. Note that for every 1 <i <k,nm < [[(n;+1)—1=n—1.
i=1

So we have u”_l = o; for every 1 <17 < k. Hence ,u"‘l =01 Aog A -+ A o which implies
that o1 A og A --+ A oy is a semi-(n — 1)-absorbing preradical. O

Proposition 4.9. Let 01,09 € R-pr and m, n be positive integers.
(1) If o1 is quasi-m-absorbing and o9 is semi-n-absorbing, then o109 is semi-(n(m +
1) + m)-absorbing.
(2) If o1 is quasi-(2m)-absorbing and oo is semi-m-absorbing, then o109 is semi-
(m(m + 2))-absorbing.

Proof. (1) Assume that pt)(+) < 55, for some p € R-pr. Since oy is quasi-m-
absorbing and p™tDm+1) < 5 then §™ < 1. On the other hand, oy is semi-n-
absorbing and p( D) < 5o then p"(™t1) < gy, Consequently p(m+tH+m <
01092, and so o109 is semi-(n(m + 1) + m)-absorbing.

(2) Suppose that p™D?* < 510y for some p € R-pr. Since oy is quasi-(2m)-absorbing
and p(m+1? (m+1)?

= o1, then u2m =< 01. Since o9 is semi-m-absorbing and p < 09,

On
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then qu < 9. Hence ,um2+2m = 0109 which shows that o109 is semi-(m(m + 2))-
absorbing.
O

Proposition 4.10. Let R be a ring. The following statements are equivalent:
(1) For every preradical o € R-pr, c"! = o™;
(2) For all preradicals c102,...,0n41 € R-pr we have (o1 A og A -+ A opg1)” =
0102 On+1;
(3) Ewvery preradical 1 # o € R-pr is semi-n-absorbing.
Proof. (1)=(2) If 01,09,...,0n4+1 € R-pr, then from (1),
(LA A - ANopp )" = (01 AT A Aopp1)" T <109+ oyt
n+1 times
(2)=(1) For a preradical o € R-pr, we get from (2), 0™ = (G A--- Acd)" < o™, So we
have that "1 = o™.
(1)<(3) It is obvious. O

Remark 4.11. Let {oa}acr € R-pr. If o, is semi-n-absorbing for every o € I, then
Nacr Ta is semi-n-absorbing.

The following remark shows that the two concepts of semi-n-absorbing preradicals and
of quasi-n-absorbing (n-absorbing) preradicals are different in general.

Remark 4.12. Let p, ¢ be distinct prime numbers. By Remark 4.11, wfnz A quZ is a
semi-n-absorbing preradical, but it is not quasi-n-absorbing, by Remark 3.12.

Proposition 4.13. Let 0 € R-pr be idempotent. If o is semi-n-absorbing, then c(o) is
semi-n-absorbing.

Proof. Is similar to the proof of Proposition 3.15. O

In Proposition 17 of [14], it was shown that o¢ := A{c € R-pr | o is semiprime} is the
unique least semiprime preradical.

Proposition 4.14. There exists in R-pr a unique least semi-n-absorbing preradical.

Proof. Set O'[()n) = A{o € R-pr | o is semi-n-absorbing}. By Remark 4.11, U[()n) is the least
semi-n-absorbing preradical. O

By notation in the the proof of the previous proposition we have that 0(()1) = 0yp.

Remark 4.15. As p is a semiprime preradical, then og < p. Also p™ is a semi-n-absorbing
(n)

preradical, by Proposition 4.3. Therefore, oy’ < p".

Proposition 4.16. The following statements hold:
(1) oo =V U((]n).

n>1
(2) O'(()nk) = 0(()”) for every positive integer k.
(3) a(()n) =< o™ for every semiprime preradical o.

Proof. (1) By Corollary 4.2(6), every semiprime preradical is semi-n-absorbing for every
n > 1. Then O'(()n) = o for every n > 1.

(2) By Corollary 4.2(5).

(3) By Proposition 4.3. O

In Proposition 20 of [14] it was shown that v° < o, where v° = \/{r | 7 € R-
pr, 7 is nilpotent}.
The following proposition is straightforward.
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Proposition 4.17. Suppose that I/?n) =\V{m | 7 € R-pr, T"T! =0}. Then:

(1) v, 2o,
0

~

(2) 1/?1) ;I/ .

Corollary 4.18. The following statements hold:
(1) If p"*t1 =0, then V?n) = J((]n) =of = p".
(2) If p*> =0, then V?l) =09=p=1".

Proof. (1) By Remark 4.15 and Proposition 4.17 we have that I/?n) < O'(()n) Rop Xpt If
p"t1 =0, then p" < I/?n), and so y?n) = aén) =0l =p".
(2) By part (1) and [14, Corollary 21]. O

Proposition 4.19. For a ring R the following statements are equivalent:

(1) For every u € R-pr, u" ' = 0 implies that u™ = 0;

(2) 0 is a semi-n-absorbing preradical;

(3) 0" = 0;
0 _
(4) Viy = 0.
Proof. 1t can be easily proved. O

Notation 4.20. Let 7 € R-pr. Define
SM(r) = /\{o € R-pr | 7 <0, o semi-n-absorbing},

which is the unique least semi-n-absorbing preradical greater than or equal to 7. Notice
that in [14], SO is denoted by S.

Proposition 4.21. Let R be a ring.
(1) o =S5O = A ™).

TER-pr

acl ael

(2) For each T € R-pr, T = S (7).
(3) For each 7,0 € R-pr we have 7 < 0 = S™ (1) < S (q).
(4) For each T € R-pr, S™ (r"+1) = §() (7).
(5) For each T € R-pr, T is semi-n-absorbing if and only if T = S™ ().
(6) {r € R-pr | T is semi-n-absorbing} = Im S = {S"(5) | o € R-pr}.
2
(7) [S(")} = S™M . Then, S™ is a closure operator on R-pr.
(8) For each family {7o}acr € R-pr, we have ST (\/ 14) = SMW(\ SM(7,)).
)

k>1 k>1
(10) S (g"*1) = S (™) = o™ for every semiprime preradical o.

Proof. (1), (2), (3), (5) and (6) are evident.

(4) For every 7 € R-pr, part (3) implies that S( (77+1) < S™) (7). Since S (7"*1) is
semi-n-absorbing (by Remark 4.11) and 77+ < () (77+1) then 7 < S (77+1). Hence
S (r7) < §() (77+1) - Consequently the equality holds.

(7) Is a direct consequence of part (5).

(8) The proof is similar to that of [14, Proposition 25](5).

(9) Use Corollary 4.2(5).

(10) By Proposition 4.3 and parts (4), (5). O

Now consider the operator (/_\) in R-pr that assigns to each preradical o the greatest
idempotent below o (see [15, p. 137]).
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Lemma 4.22. Let o, 7 € R-pr such that o is idempotent and T is semi-n-absorbing. Then:

o —

(1) ¢ = 8™ (a) < S™(q).
(2) $1(0) = SO(S0 (7).
(3) 7= 8M(7F) < 7.
(4) 7 = SO).
Proof. Similar to the proof of [14, Lemma 26]. O
The following result is a direct consequence of the previous properties.

Proposition 4.23. Let R be a ring.

o —

(1) The operator S(")(_) defines a closure operator on the ordered class of idempotent
preradicals.

(2) The operator S(")(C\)) defines an interior operator on the ordered class of semi-
n-absorbing preradicals.
Notlce that the “closed" idempotent preradicals associated with the closure operator
S(”)( ) are

@Z(.g) = {0 idempotent | o = 7 for some semi-n-absorbing 7}.

The “open” semi-n-absorbing preradicals associated with the interior operator S ((_))
are
O = {7 semi-n-absorbing | 7 = S () for some idempotent o}.
The following result is immediate.

Corollary 4.24. For a ring R the operators S(”)(_) and (/_\) restrict to mutually inverse
(n) (n)
maps between C;;” and Osa’ .
Definition 4.25. Let 7 € R-pr. Define Sﬁn) (1) =V{o" | 0 € R-pr,o™"! < 7}.
Proposition 4.26. Let R be a ring.
(1) For each T € R-pr, T < Sﬁn) (7).
2) For each T € R-pr, T is semi-n-absorbing if and only if S%n)(T) <.

4) Let T, o € R-pr. If T = 0o, thenS( )( )<S§ )( ).

5) For each family {to}acr C R-pr, Sl (/\ Ta) = A 5’ (Ta) and \/ S§”)(ra)
acl a€cl acl

(2)
(3) 0 is a semi-n-absorbing preradical if and only if S%n) (0) = 0.
(4)
(5)

< STV Ta).

ael
Proof. The assertions have straightforward verifications. O

n)

We apply an “Amitsur construction” to Sf as follows:

Definition 4.27. Let 7 € R-pr. We define recursively the preradical Sﬁ\n) (1) for each
ordinal A as follows:

(1) s (r) =

(2) S\ (r) = S (57 (7).

(3) If A is a limit ordinal, then S( (r)=V S ( ).
B<A

@) S5 = v sM).

A ordinal
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Proposition 4.28. Let 7 € R-pr. Then the following statements are equivalent:
(1) 7 is semi-n-absorbing;
(2) For each ordinal X, S&n) (r) 2 7;
(3) 55 (r) = .
Proof. By Proposition 4.26 and applying transfinite induction we have the claim. O

As is the case with S%n), all of the operators S&n) preserve order between preradicals.

Proposition 4.29. Let 7, o € R-pr be such that T < 0. Then:
(1) For each ordinal X, Sg\n) (r) = Sgn)(a).
2) 557(r) < 557 (0.

Proposition 4.30. For each T € R-pr, S(n)( ) =< SM (7).

Proof. Let 7 € R-pr. By transfinite induction, we have that S(()n) () = 7 =< S0(7).
Assume that A is an ordinal such that S/(\n) (1) = S (7). Since S™(7) is semi-n-absorbing,
Syfl(T) = S{n)(S/(\n) (1)) = SYL)(S(") (7)) = S(M(7), by parts (2) and (4) of Proposition
4.26. If X is a limit ordinal and Sén)(T) =< SM(7) for each B < A, then Sg\n)(T) =
Vv S5(r) < S0 (7). O
B<A

In the following result we give equivalent conditions for the equality Sézn) (1) = S™(r)
to hold.

Proposition 4.31. For each T € R-pr the following statements are equivalent:

(1) Sg()n)( ) is semi-n-absorbing;

(2) 817 (55"(1) = 857(7);
(3) For each ordinal A we have S& )(S(n)( ) = S(n)( );
(1) 555 (7)) = 557 ();
(5) S57(r) = S0(7).
Proof. (1)=(2) By Proposition 4.26(2).
(2)=-(3) It follows by transfinite induction on A.
(3)=(4) Is easy.
(4)=-(1) By Proposition 4.28.
(1)=(5) Assume that S( )( ) is semi-n-absorbing. Since 7 =< ng) (1), the definition of

St)(7) implies that S )( ) = S(n) (7). On the other hand, SS()") (1) = 8™ (1), by Propo-
sition 4.30. So the equality holds
(5)=(1) Is straightforward. 0O

5. Quasi-n-absorbing and semi-n-absorbing submodules

Remark 5.1. Let M € R-Ass and N be a proper fully invariant submodule of M. Then,
the following conditions hold:
(1) N is n-absorbing in M = N is quasi-n-absorbing in M = N is semi-n-absorbing
in M.
(2) N is a quasi-1-absorbing submodule of M if and only if N is a prime submodule
of M.
(3) N is a semi-1-absorbing submodule of M if and only if N is a semiprime submodule
of M.
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Proposition 5.2. Let o € R-pr. If for every M € R-Mod, (M) is a semiprime submod-
ule of M, then o is a semiprime preradical.

Proof. By hypothesis, [14, Theorem 14] implies that wé\/([ M) is a semiprime preradical. So
o= /\{w%M) | M € R-Mod} (see [12, Remark 1}) is a semiprime preradical. O

Corollary 5.3. Let R be a ring. If every R-module is semiprime, then 0 is a semiprime
preradical in R-pr.

Lemma 5.4 ([7, Lemma 3.4]). Let M € R-Mod. Then for any submodules N, K of M,
M  _ M M
WNAK = Wy NWwi -

Proposition 5.5. Let M € R-Mod. Suppose that {N;}icr is a family of semiprime
submodules of M. Then N = N;crN; is a semiprime submodule of M .

Proof. Let {N;}icr be a family of semiprime submodules of M. Then, by [14, Proposition
14], w%j s are semiprime preradicals. Thus wif = A,¢; w%_ (see Lemma 5.4) is a semiprime

preradical. Again, by [14, Proposition 14], N = N;erN; is a semiprime submodule of
M. ]

Proposition 5.6. Let R be a ring and {M;}icr be a family of semiprime R-modules.
Then M = @ M; is a semiprime R-module.

i€l
Proof. Since for every i € I, M; is a semiprime R-module, thus for every ¢ € I, wéw tis
a semiprime preradical by [14, Proposition 14]. Therefore A wéwi = wé” is a semiprime
1€l
preradical, and so, again by [14, Proposition 14], M = @ M, is a semiprime R-module. [
i€l

Proposition 5.7. For a ring R the following statements are equivalent:

(1) R is a left V-ring;

(2) 0 is a semiprime preradical;

(3) @ E(S) is a semiprime R-module.

SeR-simp
Proof. (1)<(2) By [14, Theorem 23].
(2)<(3) Set C = @  E(S). Notice that w§ = 0, by [10, Lemma 6]. Now apply
SeR-simp

[14, Theorem 14]. O

The following result shows that the injective hull of a semiprime R-module may not be
semiprime.

Corollary 5.8. Let R be a ring that is not a left V-ring. Then there exists a simple
R-module S € R-simp such that E(S) is not semiprime.

Proof. By Proposition 5.6 and Proposition 5.7. U
Theorem 5.9. Let M € R-Ass and N be a fully invariant submodule of M. Consider the
following statements:

(1) N is quasi-n-absorbing (resp. semi-n-absorbing) in M.

(2) w¥ is a quasi-n-absorbing (resp. semi-n-absorbing) preradical.

Then (2) = (1), and if M satisfies the a-property, then (1) = (2).

Proof. (1) = (2) Assume that N is quasi-n-absorbing in M and that n(M) - (M) =
(nu)(M) for every n, u € R-pr. Since N # M we have wd! # 1. Now let n,u € R-pr be
such that " < wi!. In this case we have

n(M)" - (M) = (" u)(M) < wif (M) = N.
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Since N is quasi-n-absorbing in M, by hypothesis we get n"(M) = n(M)" < N or
(") (M) = n(M)"~1 - (M) < N. Tt follows from [10, Proposition 5] that 7™ < w¥ or
T w]]{,/[, that is w% is quasi-n-absorbing.

(2) = (1) Assume that w}! is a quasi-n-absorbing preradical. Since wd # 1, we have
N # M. Suppose that J, K are fully invariant submodules of M such that J" - K < N.

Then we have n "
I K = (o) (K) = (of1)" ajf (0).

n
By [10, Proposition 5], we get (aﬁ/f) a% =< w%,K = wAN/I. Since w% is quasi-n-absorbing,

we have (ay)n =< w¥ or (aJM)nil o < WM. Therefore J* = (o/}/[)n(M) < N or

-1
J K = (o)) M (M) < N
A similar proof can be stated for semi-n-absorbing preradicals. O

Remark 5.10. Note that in Theorem 5.9, for the case n = 2 we can omit the condition
M € R-Ass, by the definition of quasi-2-absorbing (semi-2-absorbing) submodules.

Definition 5.11. Let M € R-Ass. We say that M is a quasi-n-absorbing (resp. semi-n-
absorbing) module if its zero submodule 0 is a quasi-n-absorbing (resp. semi-n-absorbing)
submodule of M.

Corollary 5.12. Let R be a ring. If R is a semisimple Artinian ring, then every R-module
s quasi-i-absorbing for every i > 2.

Proof. By Proposition 3.5 and Theorem 5.9. (|

Example 5.13. Let R be a semisimple Artinian ring and S1,S2,...,S5,+1 € R-simp be
distinct. Then EBZ"Jrll S; is quasi-n-absorbing by Corollary 5.12. But note that, by [19
Corollary 3.6] and Theorem 3.11, @”H S; is not n-absorbing. This example shows that
the two concepts of quasi-n- absorbmg modules and of n-absorbing modules are different
in general.

Proposition 5.14. Let My, Ms, ..., M, be projective R-modules. Suppose that My, Mo, ...
are quasi-n-absorbing R-modules that satisfy the a-property. Then M = EBf:l M; is a
quasi-(n +t — 1)-absorbing R-module.

Proof. Let My, M, ..., M; be quasi-n-absorbing R-modules. Then, by Theorem 5.9,

w%i w]\]\fg, e ,w%: are quasi-n-absorbing preradicals, and so w% =w M1 /\cuM2 ARERWA w%j
is a quasi-(n +t — 1)-absorbing preradical by Proposition 3.14(2). Again, by Theorem 5.9,
M = @!_, M; is a quasi-(n + t — 1)-absorbing R-module. O

Lemma 5.15. Let M € R-Mod, N sz M and K1, Ko, Ks < M.

(1) Suppose that N < K; such that K;/N <y M/N for every 1 < i < 3. If
[(K1/N)-(K2/N)| - (K3/N) = 0, then [K; - Ks] - K3 < N. In particular, if
(Kl/N) . (KQ/N) = O, then Kl . K2 S N.

(2) Let K; <f; M and K = (K;+ N)/N for every 1 <1i < 3. If M is quasi-projective
and [K; - K9] - K3 < N, then K} - K3] - K5 = 0. In particular, if K; - Ko < N,
then K7 - K5 = 0.

Proof. (1) Assume that [(K1/N) - (K2/N)] - (K3/N) = 0. Notice that by [13, Lemma
17), K;/N <y; M/N implies that K; <y M. Since [(K1/N) - (K2/N)]-(K3/N) =0, then
f((K1/N) - (K2/N)) =0 for every f € Hompr(M/N,K3/N). We get g : M — K3. Since
N <4 M, g(N) < N, thus g induces g : M/N — K3 /N such that g((K1/N)-(K2/N)) =
Now, let h : M — Ko, similarly h induces h : M/N — Ky/N. Therefore g(h(K1/N)) =0
and thus gh(Kl) < N. Consequently,

K - K. = {g(h( | g € Homp(M, K3),h € Hompg(M, K2)} < N.

,Mt
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(2) Assume that M is quasi-projective and [K; - K2 - K3 < N. By [13, Lemma 17],
K; < M implies that K7 <y M/N. Let f : M/N — K3 and g : M/N — K3. Let
m: M — M/N be the canonical projection and m; : K; — K be its restriction to K;
for ¢ = 2,3. Since M is quasi-projective, M is K;-projective, for i« = 2,3. So there exist
h:M — Ksand t: M — Ky such that m3h = fr and mot = gm. Since [K; - K] - K3 < N,
then ht(K7) < N. Therefore fg(K7}) = 0. Consequently,

[K; - K3)- Kj = Y{f(9(K})) | f € Homp(M/N, K3), g € Homp(M/N, K3)} =0. O

Proposition 5.16. Let M be a quasi-projective R-module and let N # M be a fully
invariant submodule of M. Then N is quasi-2-absorbing (resp. semi-2-absorbing) in M if
and only if M/N is a quasi-2-absorbing (resp. semi-2-absorbing) module.

Proof. (=) Assume that N is quasi-2-absorbing in M and let J/N, K/N be fully invariant
submodules of M/N such that (J/N)?- (K/N) = 0. By [13, Lemma 17], J, K are fully
invariant submodules of M. We deduce from Lemma 5.15 that J% - K < N. Since N is
quasi-2-absorbing in M, we have J> < Nor J-K < N. So (J/N)?=0or (J/N)-(K/N) =
0, by Lemma 5.15. Hence M/N is a quasi-2-absorbing module.

(<) Let J, K be fully invariant submodules of M such that J2 - K < N. Then, by
[13, Lemma 17|, J* = (J + N)/N, K* = (K 4+ N)/N are fully invariant submodules of
M/N. By Lemma 5.15, J*2 . K* = 0. Since M/N is assumed to be a quasi-2-absorbing
module, we get J*? = 0 or J*- K* = 0. Hence J2 < N or J- K < N, by Lemma 5.15.
Consequently, N is quasi-2-absorbing in M. O

Theorem 5.17. Let M € R-Ass that satisfies the a-property. The following statements
are equivalent:

(1) M is quasi-n-absorbing;

(2) wd! is quasi-n-absorbing;

(3) For each fully invariant submodule K of M and a € R-pr, a" < wlf = a1 < wff
or a” < w;

(4) For each fully invariant submodule K of M and o« € R-pr, o™(K) = 0 =
a" Y K) =0 or a®(M) = 0;

(5) For each T,n € R-pr, M € Frny = M € Frn or M € Frnoy,).

Proof. (1) < (2) Is clear by Theorem 5.9.

(2) = (3) Assume that K is a fully invariant submodule of M and a € R-pr such that
a” < wi and a® £ w)f. Then o™(K) < wk(K) = 0, and so a"w} (M) = 0 which
shows that a”w% = wé\/f . Now, since wé” is quasi-n-absorbing and a” A wéw , then
a"1wM <M. Hence " 1(K) = a" twM (M) = 0, and thus o ! < wf.

(3) < (4) Is obvious.

(4) = (5) Let 7, € R-pr such that 7"n(M) = 0. Suppose that 7" 1n(M) # 0. By setting
K :=n(M) we have 7"(K) = 0, 7" }(K) # 0. Consequently, 7%(M) = 0, by (4).

(5) = (2) Let 7, € R-pr such that 7"y < wd!. Then, 7"n(M) = 0, so by hypothesis
(M) =0 or 7" 1n(M) = 0. Consequently, 7" < wd! or 7" 1n < wd!, so w}! is quasi-n-
absorbing. O

Similarly we can prove the following theorem.

Theorem 5.18. Let M € R-Ass that satisfies the a-property. The following statements
are equivalent:

(1) M is semi-n-absorbing;

(2) wd! is semi-n-absorbing;
(3) For each 7 € R-pry, M € Frn+1 = M € Frn.
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Theorem 5.19. Let M € R-Mod be such that, for each pair K, L of fully invariant
submodules of M, we have a%ai‘/l = Q%L. Then, for each quasi-n-absorbing (resp. semi-
n-absorbing) preradical o such that o(M) # M, we have that o(M) is quasi-n-absorbing
(resp. semi-n-absorbing) in M.

Proof. Let o be a quasi-n-absorbing preradical such that (M) # M. If K, L are fully
invariant submodules of M such that K™ - L < o(M), then

M\" M M M
(O[K) oy, :aK"-Ljao'(M)jU‘

n n—1
Since ¢ is quasi-n-absorbing, then a]}(/[n = (O/\K/[) <o or a]\K/[n—l.L = (a%) aﬁ/l =< o.

In the first case we have K" = o}, (M) < o(M); in the second case we have K"~ 1. [ =
M

a1 (M) < o(M). Consequently, o(M) is quasi-n-absorbing. O
Lemma 5.20. Let M € R-Mod. If M is projective in o[M], then a)fal = o3 for any
fully invariant submodules K and N of M.

Proof. 1t follows from Proposition 2.3. U

Corollary 5.21. Let o be a quasi-n-absorbing (resp. semi-n-absorbing) preradical. Then
o(R) is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. Notice that if o(R) = R, then by [4, Proposition 4(v)], ¢ = 1 which is a contra-
diction. Now apply Theorem 5.19 and Lemma 5.20. U

For two R-modules U, N, the submodule
Rej(N,U) = [ {Ker f|f € Homp(N,U)} < N
is called the reject of U in N.

Corollary 5.22. Let M € R-Ass that satisfies the a-property. If M is quasi-n-absorbing

(resp. semi-n-absorbing), then Anng(M) is a quasi-n-absorbing (resp. semi-n-absorbing)
ideal of R.

Proof. Note that for any R-module M, w)!(R) = Rej(R, M) = Anng(M). Now apply
Theorem 5.17 and Corollary 5.21. O
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