Quasi- n-absorbing and semi- n-absorbing preradicals

Hojjat Mostafanasab(1), Ahmad Yousefian Darani* (1)
Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

Abstract

The aim of this paper is to introduce the notions of quasi- n-absorbing preradicals and of semi- n-absorbing preradicals. These notions are inspired by applying the concept of n-absorbing preradicals to semiprime preradicals. Also, we study the concepts of quasi-n-absorbing submodules and of semi- n-absorbing submodules and their relations with quasi- n-absorbing preradicals and semi- n-absorbing preradicals.

Mathematics Subject Classification (2010). Primary 16N99, 16S99; Secondary 06C05, 16N20

Keywords. lattice, preradical, quasi- n-absorbing, semi- n-absorbing

1. Introduction

The notion of 2-absorbing ideals of commutative rings was introduced by Badawi in [2], where a proper ideal I of a commutative ring R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. He proved that I is a 2-absorbing ideal of R if and only if whenever I_{1}, I_{2}, I_{3} are ideals of R with $I_{1} I_{2} I_{3} \subseteq I$, then $I_{1} I_{2} \subseteq I$ or $I_{1} I_{3} \subseteq I$ or $I_{2} I_{3} \subseteq I$. Anderson and Badawi [1] generalized the concept of 2-absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing) ideal if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$ (resp. $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R), then there are n of the x_{i} 's (resp. n of the I_{i} 's) whose product is in I. In [20], the concept of 2 -absorbing ideals was generalized to submodules of a module over a commutative ring. Let M be an R-module and N be a submodule of $M . N$ is said to be a 2-absorbing submodule of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. In [13], Raggi et al. introduced the concepts of prime preradicals and prime submodules over noncommutative rings. The generalized notions of these, " 2 -absorbing preradicals" and "2-absorbing submodules" were investigated by Yousefian and Mostafanasab in [19]. Raggi et al. [14] defined the notions of semiprime preradicals and semiprime submodules. In this paper, we give the concepts of "quasi- n-absorbing preradicals" and "semi- n-absorbing

[^0]preradicals". Also, investigation of "quasi- n-absorbing submodules" and "semi- n-absorbing submodules" is in this paper.

2. Preliminaries

Throughout this paper, R is an associative ring with identity, and R-Mod denotes the category of all the unitary left R-modules. A ring R is said to be left V-ring if all simple R-modules are injective. We denote by R-simp a complete set of representatives of isomorphism classes of simple left R-modules. We recall that R is a left local ring if and only if $\mid R$-simp $\mid=1$. For $M \in R$-Mod, we denote by $\mathrm{E}(M)$ the injective hull of M. Let $U, N \in R$-Mod, we say that N is generated by U (or N is U-generated) if there exists an epimorphism $U^{(\Lambda)} \rightarrow N$ for some index set Λ. Dually, we say that N is cogenerated by U (or N is U-cogenerated) if there exists a monomorphism $N \rightarrow U^{\Lambda}$ for some index set Λ. Also, we say that an R-module X is subgenerated by M (or X is M-subgenerated) if X is a submodule of an M-generated module. The category of M-subgenerated modules (the Wisbauer category) is denoted $\sigma[M]$ (see [17]). A preradical over the ring R is a subfunctor of the identity functor on R-Mod. Denote by R-pr the class of all preradicals over R. There is a natural partial ordering in R-pr given by $\sigma \preceq \tau$ if $\sigma(M) \leq \tau(M)$ for every $M \in R$-Mod. It is proved in [10] that with this partial ordering, R-pr is an atomic and co-atomic big lattice. The smallest and the largest elements of R-pr are denoted 0 and 1 , respectively.
Let $M \in R$-Mod. Recall ([6] or [10]) that a submodule N of M is called fully invariant if $f(N) \leq N$ for each R-homomorphism $f: M \rightarrow M$. In this paper, the notation $N \leq_{f i} M$ means that " N is a fully invariant submodule of M ". Obviously the submodule K of M is fully invariant if and only if there exists a preradical τ of R-Mod such that $K=\tau(M)$. If $N \leq M$, then the preradicals α_{N}^{M} and ω_{N}^{M} are defined as follows: For $K \in R$-Mod,
(1) $\alpha_{N}^{M}(K)=\sum\left\{f(N) \mid f \in \operatorname{Hom}_{R}(M, K)\right\}$.
(2) $\omega_{N}^{M}(K)=\bigcap\left\{f^{-1}(N) \mid f \in \operatorname{Hom}_{R}(K, M)\right\}$.

Using the preradicals α_{N}^{M} and ω_{N}^{M}, in the works [5], [7] and [13], two operations were introduced and studied.
(1) α-product of submodules $K, N \leq M: K \cdot N=\alpha_{K}^{M}(N)$.
(2) ω-product of submodules $K, N \leq M: K \odot N=\omega_{K}^{M}(N)$.

Notice that for $\sigma \in R$-pr and $M, N \in R$-Mod we have that $\sigma(M)=N$ if and only if $N \leq_{f i} M$ and $\alpha_{N}^{M} \preceq \sigma \preceq \omega_{N}^{M}$. We have also that if $K \leq N \leq M$ with $K, N \leq_{f i} M$, then $\alpha_{K}^{M} \preceq \alpha_{N}^{M}$ and $\omega_{K}^{M} \preceq \omega_{N}^{M}$.

The atoms and coatoms of R-pr are, respectively, $\left\{\alpha_{S}^{E(S)} \mid S \in R\right.$-simp $\}$ and $\left\{\omega_{I}^{R} \mid I\right.$ is a maximal ideal of $\left.R\right\}$ (See [10, Theorem 7]).
There are four classical operations in R-pr, namely, \wedge, \vee, \cdot and : which are defined as follows. For $\sigma, \tau \in R$-pr and $M \in R$-Mod:
(1) $(\sigma \wedge \tau)(M)=\sigma M \cap \tau M$,
(2) $(\sigma \vee \tau)(M)=\sigma M+\tau M$,
(3) $(\sigma \tau)(M)=\sigma(\tau M)$ and
(4) $(\sigma: \tau)(M)$ is determined by $(\sigma: \tau)(M) / \sigma M=\tau(M / \sigma M)$.

The meet \wedge and join \vee can be defined for arbitrary families of preradicals as in [10]. The operation defined in (3) is called product, and the operation defined in (4) is called coproduct. It is easy to show that for $\sigma, \tau \in R$-pr, $\sigma \tau \preceq \sigma \wedge \tau \preceq \sigma \vee \tau \preceq(\sigma: \tau)$.
We denote $\sigma \sigma \cdots \sigma$ (n times) by σ^{n}. Recall that $\sigma \in R$-pr is an idempotent if $\sigma^{2}=\sigma$, while σ is a radical if $(\sigma: \sigma)=\sigma$. We say that σ is nilpotent if $\sigma^{n}=0$ for some $n \geq 1$. Also σ is called a t-radical if $\sigma=\alpha_{I}^{R}$ for some ideal I of R. Note that σ is a radical if and only if, $\sigma(M / \sigma(M))=0$ for each $M \in R$-Mod. Furthermore, σ is a t-radical if and only if, for each $M \in R$-Mod, $\sigma(M)=\sigma(R) M$.

For any $\sigma \in R$-pr, we will use the following class of R-modules:

$$
\mathbb{F}_{\sigma}=\{M \in R-\operatorname{Mod} \mid \sigma(M)=0\} .
$$

Let $\sigma \in R$-pr. By [10, Theorem 8.2], the following classes of modules are closed under taking arbitrary meets and arbitrary joins:

$$
\begin{aligned}
& \mathcal{A}_{a}=\{\tau \in R-\mathrm{pr} \mid \tau \sigma=0\} . \\
& \mathcal{A}_{c}=\{\tau \in R-\mathrm{pr} \mid(\sigma: \tau)=\sigma\} .
\end{aligned}
$$

As in [11], we define, for $\sigma \in R$-pr, the following preradicals:
$a(\sigma)=\bigvee\left\{\tau \in \mathcal{A}_{a}\right\}=$ the annihilator of σ.
$c(\sigma)=\bigvee\left\{\tau \in \mathcal{A}_{c}\right\}=$ the co-equalizer of σ.
Clearly, $a(\sigma) \sigma=0$ and $(\sigma: c(\sigma))=\sigma$.
In [13], Raggi et al. defined the notions of prime preradicals and prime submodules as follows:

Let $\sigma \in R$-pr. σ is called prime in R-pr if $\sigma \neq 1$ and for any $\tau, \eta \in R$-pr, $\tau \eta \preceq \sigma$ implies that $\tau \preceq \sigma$ or $\eta \preceq \sigma$. Let $M \in R$-Mod and let $N \neq M$ be a fully invariant submodule of M. The submodule N is said to be prime in M if whenever K, L are fully invariant submodules of M with $K \cdot L \leq N$, then $K \leq N$ or $L \leq N$. Also, Raggi et al. [14] defined a preradical σ semiprime in R-pr if $\sigma \neq 1$ and for any $\tau \in R$ - $\mathrm{pr}, \tau^{2} \preceq \sigma$ implies that $\tau \preceq \sigma$. They said that a proper fully invariant submodule N of M is semiprime in M if whenever K is a fully invariant submodule of M with $K \cdot K \leq N$, then $K \leq N$. In the special case, M is a prime (resp. semiprime) module if its zero submodule 0 is a prime (resp. semiprime) submodule.
Yousefian and Mostafanasab [19] introduced the notions of 2-absorbing preradicals and 2 -absorbing submodules. Also, in [18] they defined the notions of co-2-absorbing preradicals and co-2-absorbing submodules. The preradical $\sigma \in R$-pr is called 2-absorbing if $\sigma \neq 1$ and, for each $\eta, \mu, \nu \in R$-pr, $\eta \mu \nu \preceq \sigma$ implies that $\eta \mu \preceq \sigma$ or $\eta \nu \preceq \sigma$ or $\mu \nu \preceq \sigma$. More generally, a preradical $1 \neq \sigma$ in R-pr is said to be an n-absorbing preradical if whenever $\eta_{1} \eta_{2} \ldots \eta_{n+1} \preceq \sigma$ for $\eta_{1}, \eta_{2}, \ldots, \eta_{n+1} \in R$-pr, there are $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, n+1\}$ such that $i_{1}<i_{2}<\cdots<i_{n}$ and $\eta_{i_{1}} \eta_{i_{2}} \ldots \eta_{i_{n}} \preceq \sigma$. They denoted by R-Ass the class of all R-modules M that the operation α-product is associative over fully invariant submodules of M, i.e., for any fully invariant submodules K, N, L of $M,(K \cdot N) \cdot L=K \cdot(N \cdot L)$. So we denote $(K \cdot N) \cdot L$ simply by $K \cdot N \cdot L$. In the special case $K \cdot K \cdots K(n$ times) is denoted by K^{n}. By Proposition 5.6 of [3], we can see that if an R-module M is projective in $\sigma[M]$, then $M \in R$-Ass; in particular $R \in R$-Ass. Let $M \in R$-Ass and let $N \neq M$ be a fully invariant submodule of M. The submodule N is said to be 2-absorbing in M if whenever J, K, L are fully invariant submodules of M with $J \cdot K \cdot L \leq N$, then $J \cdot K \leq N$ or $J \cdot L \leq N$ or $L \cdot K \leq N$. A generalization of 2 -absorbing submodules is that the submodule N is said n-absorbing in M if whenever $K_{1} \cdot K_{2} \cdots K_{n+1} \leq N$ for fully invariant submodules $K_{1}, K_{2}, \ldots, K_{n+1}$ of M, there are $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, n+1\}$ such that $i_{1}<i_{2}<\cdots<i_{n}$ and $K_{i_{1}} \cdot K_{i_{2}} \cdots K_{i_{n}} \leq N$. We say that a preradical $1 \neq \sigma \in R$-pr is called a quasi-n-absorbing preradical if whenever $\mu^{n} \nu \preceq \sigma$ for $\mu, \nu \in R$-pr, then $\mu^{n} \preceq \sigma$ or $\mu^{n-1} \nu \preceq \sigma$. A preradical $1 \neq \sigma \in R$-pr is called a semi-n-absorbing preradical if whenever $\mu^{n+1} \preceq \sigma$ for $\mu \in R$-pr, then $\mu^{n} \preceq \sigma$. Let $M \in R$-Ass. We say that a proper fully invariant submodule N of M is quasi-n-absorbing in M if for every fully invariant submodules K, L of $M, K^{n} \cdot L \leq N$ implies that $K^{n} \leq N$ or $K^{n-1} \cdot L \leq N$. A proper fully invariant submodule N of M is called semi-n-absorbing in M if for every fully invariant submodule K of $M, K^{n+1} \leq N$ implies that $K^{n} \leq N$. Notice that for every ideals I_{1} and I_{2} of $R, I_{1} \cdot I_{2}=\alpha_{I_{1}}^{R}\left(I_{2}\right)=I_{1} I_{2}$. Therefore, an ideal I of R is a quasi- n-absorbing submodule of ${ }_{R} R$ if and only if for any ideals I_{1}, I_{2} of $R, I_{1}^{n} I_{2} \leq I$ implies that $I_{1}^{n} \leq I$ or $I_{1}^{n-1} I_{2} \leq I$. Also, I is a semi- n-absorbing submodule of ${ }_{R} R$ if and only if for any ideal J of $R, J^{n+1} \leq I$ implies that $J^{n} \leq I$. An R-module M is said to be satisfies the α-property if $\tau(M) \cdot \eta(M)=(\tau \eta)(M)$ for every $\tau, \eta \in R-p r$, [19].

A ring R is called left hereditary if all of its left ideals are projective (see [8]).
Corollary 2.1 ([19, Corollary 2.5]). Let R be a left hereditary ring. Then R satisfies the α-property.

We recall the definition of relative mono-injectivity (see [16]). Let M and N be modules. N is said to be mono- M-injective if, for any submodule K of M and any monomorphism $f: K \rightarrow N$, there exists a homomorphism $g: M \rightarrow N$ with $\left.g\right|_{K}=f$.
Proposition 2.2 ([19, Proposition 2.8(1)]). Let $M \in R$-Mod. If every fully invariant submodule of M is mono- M-injective, then M satisfies the α-property.
Proposition 2.3 ([3, Proposition 5.6]). Let $M \in R$-Mod. Assume that M is projective in $\sigma[M]$, and let K and N be submodules of M. Then $(K \cdot N) \cdot X=K \cdot(N \cdot X)$ for any module ${ }_{R} X \in \sigma[M]$.

In the next sections we frequently use the following proposition.
Proposition 2.4 ([9, Proposition 1.2]). Let $\left\{M_{\gamma}\right\}_{\gamma \in I}$ and $\left\{N_{\gamma}\right\}_{\gamma \in I}$ be families of modules in R-Mod such that for each $\gamma \in I, N_{\gamma} \leq M_{\gamma}$. Let $N=\oplus_{\gamma \in I} N_{\gamma}, M=\oplus_{\gamma \in I} M_{\gamma}$, $N^{\prime}=\prod_{\gamma \in I} N_{\gamma}$ and $M^{\prime}=\prod_{\gamma \in I} M_{\gamma}$.
(1) If $N \leq_{f i} M$, then for each $\gamma \in I, N_{\gamma} \leq_{f i} M_{\gamma}$ and $\alpha_{N}^{M}=\bigvee_{\gamma \in I} \alpha_{N_{\gamma}}^{M_{\gamma}}$.
(2) If $N^{\prime} \leq_{f i} M^{\prime}$, then for each $\gamma \in I, N_{\gamma} \leq_{f i} M_{\gamma}$ and $\omega_{N^{\prime}}^{M^{\prime}}=\wedge_{\gamma \in I} \omega_{N_{\gamma}}^{M_{\gamma}}$.

3. Quasi- n-absorbing preradicals

Suppose that m, n are positive integers with $m>n$. A preradical $\sigma \neq 1$ is called a quasi-((m, n)-absorbing preradical if whenever $\mu^{m-1} \nu \preceq \sigma$ for $\mu, \nu \in R$-pr, then $\mu^{n} \preceq \sigma$ or $\mu^{n-1} \nu \preceq \sigma$.
Proposition 3.1. Let $\sigma \in R-p r$ and $m>n$ be positive integers. Then σ is quasi- $(m, n)-$ absorbing if and only if σ is quasi-n-absorbing.

Proof. Assume that σ is quasi- $\left(m, n\right.$)-absorbing. Let $\mu^{n} \nu \preceq \sigma$ for some $\mu, \nu \in R$-pr. Since $n \leq m-1$, then $\mu^{m-1} \nu \preceq \sigma$. Therefore $\mu^{n} \preceq \sigma$ or $\mu^{n-1} \nu \preceq \sigma$. Consequently σ is quasi- n absorbing. Now, suppose that σ is quasi $-n$-absorbing. Let $\mu^{m-1} \nu \preceq \sigma$ for some $\mu, \nu \in R$-pr. Therefore $\mu^{n} \mu^{(m-1-n)} \nu \preceq \sigma$. Hence $\mu^{n} \preceq \sigma$ or $\mu^{n-1} \mu^{(m-1-n)} \nu=\mu^{(m-2)} \nu \preceq \sigma$. Repeating this argument we obtain $\mu^{n} \preceq \sigma$ or $\mu^{n-1} \nu \preceq \sigma$. Thus σ is quasi- (m, n)-absorbing.
Remark 3.2. Let $\sigma \in R$-pr.
(1) σ is prime if and only if σ is quasi- 1 -absorbing if and only if σ is 1 -absorbing.
(2) If σ is quasi $-n$-absorbing, then it is quasi- i-absorbing for all $i \geq n$.
(3) If σ is prime, then it is quasi- n-absorbing for all $n \geq 1$.
(4) If σ is quasi $-n$-absorbing for some $n \geq 1$, then there exists the least $n_{0} \geq 1$ such that σ is quasi- n_{0}-absorbing. In this case, σ is quasi- n-absorbing for all $n \geq n_{0}$ and it is not quasi- i-absorbing for $n_{0}>i>0$.

Proposition 3.3. Let \mathcal{P} be a family of prime preradicals. Then $\bigwedge_{\sigma \in \mathcal{P}} \sigma$ is a quasi-iabsorbing preradical for every $i \geq 2$.
Proof. Let $\tau=\bigwedge_{\sigma \in \mathcal{P}} \sigma$. By part (2) of Remark 3.2, it is sufficient to show that τ is a quasi-2-absorbing preradical. Suppose that $\mu^{2} \nu \preceq \tau$ for some $\mu, \nu \in R$-pr. Since every $\sigma \in \mathcal{P}$ is prime and $\mu^{2} \nu \preceq \sigma$, then $\mu \preceq \sigma$ or $\nu \preceq \sigma$. Therefore $\mu \nu \preceq \tau$, and so, we conclude that τ is a quasi-2-absorbing preradical.

Let $\rho=\wedge\left\{\omega_{0}^{S} \mid S \in R\right.$-simp $\}$. Notice that for every R-module $M, \rho(M)=\operatorname{Rad}(M)$. As in [14], ρ is called the Jacobson radical.

As a direct consequence of Proposition 3.3 we have the following result.

Proposition 3.4. ρ is a quasi-i-absorbing preradical for every $i \geq 2$.
Proof. By [13, Corollary 24], for each simple R-module S, ω_{0}^{S} is prime. So by Proposition 3.3, we have the claim.

Proposition 3.5. If R is a semisimple Artinian ring, then every preradical $1 \neq \sigma \in R$-pr is a quasi-i-absorbing preradical for every $i \geq 2$.

Proof. Suppose that R is a semisimple Artinian ring. According to [13, Remark 3], every coatom ω_{I}^{R} (I is a maximal ideal of R) is a prime preradical. On the other hand, [10, Theorem 11] implies that $\sigma=\bigwedge\left\{\omega_{I}^{R} \mid I\right.$ is a maximal ideal of $\left.R, \omega_{I}^{R} \succeq \sigma\right\}$. Therefore, every preradical $1 \neq \sigma \in R$-pr is quasi- i-absorbing for every $i \geq 2$, by Proposition 3.3.
Remark 3.6. Let $S_{1}, S_{2}, \ldots, S_{n+1} \in R$-simp be distinct simple modules. Then by Proposition 3.3, $\omega_{0}^{S_{1}} \wedge \omega_{0}^{S_{2}} \wedge \cdots \wedge \omega_{0}^{S_{n+1}}$ is a quasi- i-absorbing preradical in R-pr for every $i \geq 2$. But, [19, Corollary 3.6] implies that $\omega_{0}^{S_{1}} \wedge \omega_{0}^{S_{2}} \wedge \cdots \wedge \omega_{0}^{S_{n+1}}$ is not an n-absorbing preradical. This remark shows that the two concepts of quasi- n-absorbing preradicals and of n-absorbing preradicals are different in general.
Corollary 3.7. If R is a ring such that every quasi-n-absorbing preradical in R-pr is n-absorbing, then $\mid R$-simp $\mid \leq n$.
Proposition 3.8. Let R be a ring. The following statements are equivalent:
(1) For every preradicals $\mu, \nu \in R-p r, \mu^{n} \nu=\mu^{n}$ or $\mu^{n} \nu=\mu^{n-1} \nu$;
(2) For every preradicals $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n+1} \in R-p r,\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}\right)^{n} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n+1}$ or $\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}\right)^{n-1} \sigma_{n+1} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n+1}$;
(3) Every preradical $1 \neq \sigma \in R$-pr is quasi-n-absorbing.

Proof. (1) $\Rightarrow(2)$ If $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n+1} \in R$-pr, then we get from (1),

$$
\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}\right)^{n}=\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}\right)^{n} \sigma_{n+1} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n+1}
$$

or

$$
\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}\right)^{n-1} \sigma_{n+1}=\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n}\right)^{n} \sigma_{n+1} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n+1}
$$

$(2) \Rightarrow(1)$ For preradicals $\mu, \nu \in R$-pr, we have from $(2), \mu^{n}=(\overbrace{\mu \wedge \cdots \wedge \mu}^{n \text { times }})^{n} \preceq \mu^{n} \nu$ or $\mu^{n-1} \nu=(\overbrace{\mu \wedge \cdots \wedge \mu}^{n \text { times }})^{n-1} \nu \preceq \mu^{n} \nu$. So we have that $\mu^{n} \nu=\mu^{n}$ or $\mu^{n} \nu=\mu^{n-1} \nu$. $(1) \Leftrightarrow(3)$ is trivial.
Proposition 3.9. Let $1 \neq \sigma \in R-p r$ be an idempotent radical.
(1) If σ is such that for any $\mu, \nu \in R$-pr, we have $\mu^{n} \nu \preceq \sigma \preceq \mu \wedge \nu \Rightarrow\left[\mu^{n} \preceq \sigma\right.$ or $\left.\mu^{n-1} \nu \preceq \sigma\right]$, then σ is quasi-n-absorbing.
(2) If σ is such that for any $\mu_{1}, \mu_{2}, \ldots, \mu_{n+1} \in R$-pr, we have

$$
\begin{aligned}
& \mu_{1} \mu_{2} \cdots \mu_{n+1} \preceq \sigma \preceq \mu_{1} \wedge \mu_{2} \wedge \cdots \wedge \mu_{n+1} \Rightarrow \\
& \quad\left[\mu_{1} \cdots \widehat{\mu_{i}} \cdots \mu_{n+1} \preceq \sigma, \text { for some } 1 \leq i \leq n+1\right]
\end{aligned}
$$

then σ is an n-absorbing preradical.
Proof. (1) Let $\sigma \neq 1$ be an idempotent radical that satisfies the hypothesis stated in (1). Let $\tau^{n} \lambda \preceq \sigma$ for some $\tau, \lambda \in R$-pr. Then, by [10, Theorem 8(3)] we have

$$
(\sigma: \tau)^{n}(\sigma: \lambda)=\left(\sigma: \tau^{n} \lambda\right) \preceq(\sigma: \sigma)=\sigma \preceq(\sigma: \tau) \wedge(\sigma: \lambda)
$$

So, by hypothesis we have $\tau^{n} \preceq\left(\sigma: \tau^{n}\right)=(\sigma: \tau)^{n} \preceq \sigma$ or $\tau^{n-1} \lambda \preceq\left(\sigma: \tau^{n-1} \lambda\right)=$ $(\sigma: \tau)^{n-1}(\sigma: \lambda) \preceq \sigma$. Therefore σ is quasi- n-absorbing.
(2) The proof is similar to that of (1).

Proposition 3.10. Let \mathcal{P} be a chain of quasi-n-absorbing preradicals, that is, a subclass of quasi-n-absorbing preradicals which is linearly ordered. Then $\bigwedge_{\sigma \in \mathcal{P}} \sigma$ is a quasi-nabsorbing preradical.

Proof. Let $\tau=\bigwedge_{\sigma \in \mathcal{P}} \sigma$ and suppose that $\mu^{n} \nu \preceq \tau$ for some $\mu, \nu \in R$-pr. If $\mu^{n} \preceq \sigma$ for each $\sigma \in \mathcal{P}$, then $\mu^{n} \preceq \tau$. If there is $\sigma_{0} \in \mathcal{P}$ such that $\mu^{n} \npreceq \sigma_{0}$, then $\mu^{n} \npreceq \sigma$ for each $\sigma \preceq \sigma_{0}$. Since all preradicals in \mathcal{P} are quasi- n-absorbing, it follows that $\mu^{n-1} \nu \preceq \sigma$ for each $\sigma \preceq \sigma_{0}$. Thus $\mu^{n-1} \nu \preceq \sigma$ for each $\sigma \in \mathcal{P}$, so that $\mu^{n-1} \nu \preceq \tau$. We conclude that τ is a quasi- n-absorbing preradical.

Theorem 3.11. Let $M \in R$-Ass and N be a fully invariant submodule of M. Consider the following statements:
(1) N is n-absorbing in M.
(2) ω_{N}^{M} is an n-absorbing preradical.

Then $(2) \Rightarrow(1)$, and if M satisfies the α-property, then $(1) \Rightarrow(2)$.
Proof. Similar to the proof of [19, Theorem 4.2].
We recall that the commutative hereditary domains are precisely the Dedekind domains.
The following remark shows that the two concepts of quasi- $(n+1)$-absorbing preradicals ($(n+1)$-absorbing preradicals) and of quasi- n-absorbing preradicals are different in general. Also, in this remark we can observe that the intersection of two quasi- n-absorbing preradicals may not be quasi- n-absorbing.
Remark 3.12. Let p, q be distinct prime numbers. By [13, Theorem 15], $\omega_{p \mathbb{Z}}^{\mathbb{Z}}$ is a prime preradical in \mathbb{Z}-pr. On the other hand, $\omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}}$ is an n-absorbing preradical, by [1, p. 1650] and Theorem 3.11. Hence, [19, Proposition 3.5] implies that $\omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q \mathbb{Z}}^{\mathbb{Z}}$ is an $(n+1)$ absorbing preradical, and so it is quasi- $(n+1)$-absorbing preradical. If $\omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q \mathbb{Z}}^{\mathbb{Z}}$ is a quasi- n-absorbing preradical, $\left(\omega_{p \mathbb{Z}}^{\mathbb{Z}}\right)^{n} \omega_{q \mathbb{Z}}^{\mathbb{Z}} \preceq \omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q \mathbb{Z}}^{\mathbb{Z}}$ implies that either $\left(\omega_{p \mathbb{Z}}^{\mathbb{Z}}\right)^{n} \preceq \omega_{q_{\mathbb{Z}}}^{\mathbb{Z}}$ or $\left(\omega_{p \mathbb{Z}}^{\mathbb{Z}}\right)^{n-1} \omega_{q \mathbb{Z}}^{\mathbb{Z}} \preceq \omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}}$. Therefore, by Corollary 2.1 we have that $p^{n} \in q \mathbb{Z}$ or $p^{n-1} q \in p^{n} \mathbb{Z}$. These contradictions show that $\omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q \mathbb{Z}}^{\mathbb{Z}}$ is not quasi- n-absorbing.
Proposition 3.13. If σ_{i} is a quasi- n_{i}-absorbing preradical in R-pr for every $1 \leq i \leq k$, then $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$ is a quasi-n-absorbing preradical for $n=n_{1}+\cdots+n_{k}$.
Proof. Let $\mu, \nu \in R$-pr be such that $\mu^{n} \nu \preceq \sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$. Note that σ_{i} is quasi- $n_{i^{-}}$ absorbing, for every $1 \leq i \leq k$. Then for every $1 \leq i \leq k, \sigma_{i}$ is $\left(n+1, n_{i}\right)$-absorbing, by Proposition 3.1. Hence, for every $1 \leq i \leq k$, either $\mu^{n_{i}} \preceq \sigma_{i}$ or $\mu^{n_{i}-1} \nu \preceq \sigma_{i}$. If for every $1 \leq i \leq k, \mu^{n_{i}} \preceq \sigma_{i}$, then $\mu^{n} \preceq \sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$. If for every $1 \leq i \leq k, \mu^{n_{i}-1} \nu \preceq \sigma_{i}$, then $\mu^{n-1} \nu \preceq \sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$. Otherwise, without loss of generality we may assume that there exists $1 \leq j<k$ such that $\mu^{n_{i}} \preceq \sigma_{i}$ for every $1 \leq i \leq j$ and $\mu^{n_{i}-1} \nu \preceq \sigma_{i}$ for every $j+1 \leq i \leq k$. Hence, $\mu^{n-1} \nu \preceq \sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$ which shows that $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$ is a quasi- n-absorbing preradical.
Proposition 3.14. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t} \in R$-pr.
(1) If σ_{1} is a quasi-n-absorbing preradical and σ_{2} is a quasi-m-absorbing preradical for $m<n$, then $\sigma_{1} \wedge \sigma_{2}$ is a quasi- $(n+1)$-absorbing preradical.
(2) If $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}$ are quasi-n-absorbing preradicals, then $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t}$ is a quasi($n+t-1$)-absorbing preradical.
(3) If σ_{i} is a quasi- n_{i}-absorbing preradical for every $1 \leq i \leq t$ with $n_{1}<n_{2}<\cdots<n_{t}$ and $t>2$, then $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t}$ is a quasi- $\left(n_{t}+1\right)$-absorbing preradical.

Proof. (1) Let $\mu, \nu \in R$-pr be such that $\mu^{n+1} \nu \preceq \sigma_{1} \wedge \sigma_{2}$. Since σ_{1} is quasi- n absorbing, then, by Proposition 3.1, σ_{1} is quasi- $(n+2, n)$-absorbing. Hence, either $\mu^{n} \preceq \sigma_{1}$ or $\mu^{n-1} \nu \preceq \sigma_{1}$. Also, σ_{2} is quasi- m-absorbing, so, again by Proposition 3.1, either $\mu^{m} \preceq \sigma_{2}$ or $\mu^{m-1} \nu \preceq \sigma_{2}$. There are four cases.

Case 1. Suppose that $\mu^{n} \preceq \sigma_{1}$ and $\mu^{m} \preceq \sigma_{2}$. Then $\mu^{n} \preceq \sigma_{1} \wedge \sigma_{2}$.
Case 2. Suppose that $\mu^{n} \preceq \sigma_{1}$ and $\mu^{m-1} \nu \preceq \sigma_{2}$. Then $\mu^{n} \nu \preceq \sigma_{1} \wedge \sigma_{2}$.
Case 3. Suppose that $\mu^{n-1} \nu \preceq \sigma_{1}$ and $\mu^{m} \preceq \sigma_{2}$. Then $\mu^{n-1} \nu \preceq \sigma_{1} \wedge \sigma_{2}$.
Case 4. Suppose that $\mu^{n-1} \nu \preceq \sigma_{1}$ and $\mu^{m-1} \nu \preceq \sigma_{2}$. Then $\mu^{n-1} \nu \preceq \sigma_{1} \wedge \sigma_{2}$. Consequently $\sigma_{1} \wedge \sigma_{2}$ is quasi- $(n+1)$-absorbing.
(2) We use induction on t. For $t=1$ there is nothing to prove. Let $t>1$ and assume that for $t-1$ the claim holds. Then $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t-1}$ is quasi-($n+t-1$)-absorbing. Since σ_{t} is quasi- n-absorbing, then it is quasi- $(n+t-2)$-absorbing, by Remark 3.2(2). Therefore $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t}$ is quasi- $(n+t-1)$-absorbing by part (1).
(3) Induction on t. For $t=3$ apply parts (1) and (2). Let $t>3$ and suppose that for $t-1$ the claim holds. Hence $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t-1}$ is quasi- $\left(n_{t-1}+1\right)$-absorbing. We consider the following cases:
Case 1. Let $n_{t-1}+1<n_{t}$. In this case $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t}$ is quasi- $\left(n_{t}+1\right)$-absorbing by part (1).
Case 2. Let $n_{t-1}+1=n_{t}$. Thus $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{t}$ is quasi- $\left(n_{t}+1\right)$-absorbing by part (2).

Proposition 3.15. Let $\sigma \in R$-pr be idempotent. If σ is quasi-n-absorbing, then $c(\sigma)$ is quasi-n-absorbing.

Proof. Assume that σ is quasi- n-absorbing, and let $\mu^{n} \nu \preceq c(\sigma)$ for some $\mu, \nu \in R$-pr. Then $(\sigma: \mu)^{n}(\sigma: \nu) \preceq\left(\sigma: \mu^{n} \nu\right) \preceq(\sigma: c(\sigma))=\sigma$. Since σ is quasi- n-absorbing and idempotent either $(\sigma: \mu)^{n}=\left(\sigma: \mu^{n}\right) \preceq \sigma$ or $(\sigma: \mu)^{n-1}(\sigma: \nu)=\left(\sigma: \mu^{n-1} \nu\right) \preceq \sigma$, and so either $\left(\sigma: \mu^{n}\right)=\sigma$ or $\left(\sigma: \mu^{n-1} \nu\right)=\sigma$. By definition of co-equalizer either $\mu^{n} \preceq c(\sigma)$ or $\mu^{n-1} \nu \preceq c(\sigma)$. Consequently, $c(\sigma)$ is quasi- n-absorbing.

The annihilator operator can be generalized to a relative annihilator, which can be considered also as an operator $\mathbf{r} . \mathbf{a}_{\tau}: R-\mathrm{pr} \rightarrow R$-pr.
Definition 3.16. Let $\sigma, \tau \in R$-pr. The right annihilator of σ relative to τ is $\mathbf{r} . \mathbf{a}_{\tau}(\sigma)=$ $\bigvee\{\rho \in R$-pr| $\sigma \rho \preceq \tau\}$. The operator r.a \mathbf{a}_{0} is denoted by r.a, and r.a((σ) is called the right annihilator of σ.

Each $\sigma \in R$-pr has a unique pseudocomplement σ^{\perp} such that if $\tau \in R$-pr and $\sigma \wedge$ $\tau=0$ then $\tau \preceq \sigma^{\perp}$, [12, Theorem 4]. This pseudocomplement can be described as $\sigma^{\perp}=\bigwedge\left\{\omega_{0}^{E(S)} \mid S \in R\right.$-simp $\left.\sigma(E(S)) \neq 0\right\}$ (see [11]).

Proposition 3.17. Let $\sigma \in R$-pr. If σ is quasi-n-absorbing, then for each $\tau \in R$-pr with $\tau^{n} \npreceq \sigma, \mathbf{r} \cdot \mathbf{a}_{\sigma}\left(\tau^{n}\right)=\mathbf{r} . \mathbf{a}_{\sigma}\left(\tau^{n-1}\right)$. Moreover $\tau^{n-1}\left(\tau^{n}\right)^{\perp} \preceq \sigma$.
Proof. Suppose that σ is quasi- n-absorbing and let $\tau \in R$-pr such that $\tau^{n} \npreceq \sigma$. If $\rho \in R$-pr is such that $\tau^{n} \rho \preceq \sigma$, then $\tau^{n-1} \rho \preceq \sigma$, since σ is quasi- n-absorbing. Therefore r. $\mathbf{a}_{\sigma}\left(\tau^{n}\right) \preceq \mathbf{r} . \mathbf{a}_{\sigma}\left(\tau^{n-1}\right)$. On the other hand, r. $\mathbf{a}_{\sigma}\left(\tau^{n-1}\right) \preceq \mathbf{r} . \mathbf{a}_{\sigma}\left(\tau^{n}\right)$. So the equality holds. Note that $\tau^{n}\left(\tau^{n}\right)^{\perp} \preceq \tau^{n} \wedge\left(\tau^{n}\right)^{\perp}=0$. Thus $\tau^{n-1}\left(\tau^{n}\right)^{\perp} \preceq \sigma$, since σ is quasi- n-absorbing and $\tau^{n} \npreceq \sigma$.

Corollary 3.18. Let R be a ring. If 0 is a quasi-n-absorbing preradical in R-pr, then for each $\tau \in R$-pr, either $\tau^{n}=0$ or $\mathbf{r} \cdot \mathbf{a}\left(\tau^{n}\right)=\mathbf{r} . \mathbf{a}\left(\tau^{n-1}\right)$.
Proof. By Proposition 3.17.

4. Semi- n-absorbing preradicals

Suppose that m, n are positive integers with $n>m$. A more general concept than semi-n-absorbing preradicals is the concept of semi- (n, m)-absorbing preradicals. A preradical $\sigma \neq 1$ is called a semi-($n, m)$-absorbing preradical if whenever $\mu^{n} \preceq \sigma$ for $\mu \in R$-pr, then $\mu^{m} \preceq \sigma$.

Note that a semiprime preradical is just a semi-1-absorbing preradical.
Theorem 4.1. Let $\sigma \in R$-pr and m, n be positive integers with $n>m$.
(1) If σ is quasi- (n, m)-absorbing, then it is semi- (n, m)-absorbing.
(2) σ is semi-($n, m)$-absorbing if and only if σ is semi- (n, k)-absorbing for each $n>$ $k \geq m$ if and only if σ is semi-($i, j)$-absorbing for each $n \geq i>j \geq m$.
(3) If σ is semi-($n, m)$-absorbing, then it is semi- $(n k, m k)$-absorbing for every positive integer k.
(4) If σ is semi-($n, m)$-absorbing and semi- (r, s)-absorbing for some positive integers $r>s$, then it is semi-($n r, m s)$-absorbing.

Proof. (1) Is trivial.
(2) Straightforward.
(3) Assume that σ is semi- (n, m)-absorbing. Let $\mu \in R$-pr and let k be a positive integer such that $\mu^{n k} \preceq \sigma$. Then $\left(\mu^{k}\right)^{n} \preceq \sigma$. Since σ is semi- (n, m)-absorbing, $\left(\mu^{k}\right)^{m}=\mu^{m k} \preceq \sigma$, and so σ is semi- $(n k, m k)$-absorbing.
(4) Suppose that σ is semi- (n, m)-absorbing and semi- (r, s)-absorbing for some positive integers $r>s$. Let $\mu^{n r} \preceq \sigma$. Since σ is semi- (n, m)-absorbing, $\mu^{m r} \preceq \sigma$, and since σ is semi- (r, s)-absorbing, $\mu^{m s} \preceq \sigma$. Hence σ is semi- $(n r, m s)$-absorbing.

Corollary 4.2. Let $\sigma \in R-p r$ and n be a positive integer.
(1) If σ is quasi-n-absorbing, then it is semi-n-absorbing.
(2) Let $t \leq n$ be an integer. If σ is semi- $(n+1, t)$-absorbing, then it is semi- $(n k+i, t k)-$ absorbing for all $k \geq i \geq 1$.
(3) If σ is semi-n-absorbing, then it is semi- $(n k+i, n k)$-absorbing for all $k \geq i \geq 1$.
(4) If σ is semi-n-absorbing, then it is semi- $(n k+j)$-absorbing for all $k>j \geq 0$.
(5) If σ is semi-n-absorbing, then it is semi- $(n k)$-absorbing for every positive integer k.
(6) If σ is semiprime, then it is semi-k-absorbing for every positive integer k.
(7) If σ is semiprime, then for every $k \geq 1$ and every $\mu \in R$-pr, $\mu^{k} \preceq \sigma$ implies that $\mu \preceq \sigma$.
(8) If σ is semi-n-absorbing, then it is semi-(($\left.n+1)^{t}, n^{t}\right)$-absorbing for all $t \geq 1$.
(9) If σ is semiprime, then it is quasi- k-absorbing for every $k>1$.

Proof. (1) By Theorem 4.1(1).
(2) Let σ be semi- $(n+1, t)$-absorbing. Then, by Theorem 4.1(3), σ is semi- $(n k+k, t k)$ absorbing, for every positive integer k. Hence, by Theorem 4.1(2), σ is semi$(n k+i, t k)$-absorbing for every $k \geq i \geq 1$.
(3) In part (2) get $t=n$.
(4) By part (3).
(5) Is a special case of (4).
(6) Is a direct consequence of (5).
(7) By part (6).
(8) By Theorem 4.1(4).
(9) Assume that σ is semiprime. Let $\mu^{k} \nu \preceq \sigma$ for some $\mu, \nu \in R$-pr and some $k>1$. Then $(\mu \nu)^{k} \preceq \mu^{k} \nu \preceq \sigma$. Therefore $\mu \nu \preceq \sigma$, by part (7). So σ is quasi- k-absorbing.

Proposition 4.3. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in R$-pr. If for every $1 \leq i \leq n, \sigma_{i}$ is a semiprime preradical, then $\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ is a semi-n-absorbing preradical. In particular, if σ is a semiprime preradical, then σ^{n} is a semi-n-absorbing preradical.

Proof. Use Corollary 4.2 (7).
Lemma 4.4. Let $\sigma \in R$-pr. If σ^{n+1} is a semi-n-absorbing preradical, then $\sigma^{n+1}=\sigma^{n}$. In particular, if σ^{2} is a semiprime preradical, then σ is idempotent.

The following remark shows that the two concepts of semi- n-absorbing preradicals and of semi- $(n+1)$-absorbing preradicals are different in general.

Remark 4.5. Let $n>1, R$ be a left hereditary ring and I be a two-sided prime ideal of R. Since ω_{I}^{R} is a prime preradical, $\left(\omega_{I}^{R}\right)^{n+1}$ is a semi- $(n+1)$-absorbing preradical, by Proposition 4.3. If $\left(\omega_{I}^{R}\right)^{n+1}$ is a semi- n-absorbing preradical, then $\left(\omega_{I}^{R}\right)^{n+1}=\left(\omega_{I}^{R}\right)^{n}$, and so $I^{n+1}=I^{n}$, by Corollary 3.1. Consequently, for any prime number $p,\left(\omega_{p \mathbb{Z}}^{\mathbb{Z}}\right)^{n+1}$ is a semi- $(n+1)$-absorbing preradical in \mathbb{Z}-pr which is not a semi- n-absorbing preradical.
Proposition 4.6. Let $\sigma \in R-p r, \sigma \neq 1$ be an idempotent radical. If σ is such that for any $\mu \in R$-pr, we have $\mu^{n+1} \preceq \sigma \preceq \mu \Rightarrow \mu^{n} \preceq \sigma$, then σ is semi-n-absorbing.
Proof. The proof is similar to that of Proposition 3.9(1).
Proposition 4.7. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} \in R$-pr be semi-2-absorbing preradicals. Then $\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ is a semi- $\left(3^{n}-1\right)$-absorbing preradical.
Proof. Suppose that $\mu^{3^{n}} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n}$ for some $\mu \in R$-pr. For every $1 \leq i \leq n, \mu^{3^{n}} \preceq \sigma_{i}$ and σ_{i} is semi-2-absorbing, then $\mu^{2^{n}} \preceq \sigma_{i}$. Therefore $\mu^{n 2^{n}} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n}$. On the other hand, $n 2^{n} \leq 3^{n}-1$. So $\mu^{3^{n}-1} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n}$ which shows that $\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ is semi- $\left(3^{n}-1\right)$ absorbing.

Theorem 4.8. If σ_{i} is a semi- n_{i}-absorbing preradical in R-pr for every $1 \leq i \leq k$, then $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$ is a semi-($n-1$)-absorbing preradical for $n=\prod_{i=1}^{k}\left(n_{i}+1\right)$.
Proof. Let $\mu \in R$-pr be such that $\mu^{n} \preceq \sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$. Then for every $1 \leq i \leq k$, $\left(\mu^{m}\right)^{\left(n_{i}+1\right)} \preceq \sigma_{i}$, where $\left.m=\prod_{j=1, j \neq i^{k}\left(n_{j}+1\right)}\right)$. Since σ_{i} 's are semi- n_{i}-absorbing, then, for each $1 \leq i \leq k, \mu^{n_{i} m} \preceq \sigma_{i}$. Note that for every $1 \leq i \leq k, n_{i} m \leq \prod_{i=1}^{k}\left(n_{i}+1\right)-1=n-1$. So we have $\mu^{n-1} \preceq \sigma_{i}$ for every $1 \leq i \leq k$. Hence $\mu^{n-1} \preceq \sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$ which implies that $\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{k}$ is a semi- $(n-1)$-absorbing preradical.
Proposition 4.9. Let $\sigma_{1}, \sigma_{2} \in R$-pr and m, n be positive integers.
(1) If σ_{1} is quasi-m-absorbing and σ_{2} is semi-n-absorbing, then $\sigma_{1} \sigma_{2}$ is semi- $(n(m+$ 1) $+m$)-absorbing.
(2) If σ_{1} is quasi-(2m)-absorbing and σ_{2} is semi-m-absorbing, then $\sigma_{1} \sigma_{2}$ is semi($m(m+2)$)-absorbing.
Proof. (1) Assume that $\mu^{(n+1)(m+1)} \preceq \sigma_{1} \sigma_{2}$ for some $\mu \in R$-pr. Since σ_{1} is quasi- m absorbing and $\mu^{(n+1)(m+1)} \preceq \sigma_{1}$, then $\mu^{m} \preceq \sigma_{1}$. On the other hand, σ_{2} is semi- n absorbing and $\mu^{(n+1)(m+1)} \preceq \sigma_{2}$, then $\mu^{n(m+1)} \preceq \sigma_{2}$. Consequently $\mu^{n(m+1)+m} \preceq$ $\sigma_{1} \sigma_{2}$, and so $\sigma_{1} \sigma_{2}$ is semi- $(n(m+1)+m)$-absorbing.
(2) Suppose that $\mu^{(m+1)^{2}} \preceq \sigma_{1} \sigma_{2}$ for some $\mu \in R$-pr. Since σ_{1} is quasi-($\left.2 m\right)$-absorbing and $\mu^{(m+1)^{2}} \preceq \sigma_{1}$, then $\mu^{2 m} \preceq \sigma_{1}$. Since σ_{2} is semi- m-absorbing and $\mu^{(m+1)^{2}} \preceq \sigma_{2}$,
then $\mu^{m^{2}} \preceq \sigma_{2}$. Hence $\mu^{m^{2}+2 m} \preceq \sigma_{1} \sigma_{2}$ which shows that $\sigma_{1} \sigma_{2}$ is semi- $(m(m+2))$ absorbing.

Proposition 4.10. Let R be a ring. The following statements are equivalent:
(1) For every preradical $\sigma \in R-p r, \sigma^{n+1}=\sigma^{n}$;
(2) For all preradicals $\sigma_{1} \sigma_{2}, \ldots, \sigma_{n+1} \in R$-pr we have $\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n+1}\right)^{n} \preceq$ $\sigma_{1} \sigma_{2} \cdots \sigma_{n+1}$
(3) Every preradical $1 \neq \sigma \in R$-pr is semi-n-absorbing.

Proof. (1) $\Rightarrow(2)$ If $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n+1} \in R$-pr, then from (1),

$$
\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n+1}\right)^{n}=\left(\sigma_{1} \wedge \sigma_{2} \wedge \cdots \wedge \sigma_{n+1}\right)^{n+1} \preceq \sigma_{1} \sigma_{2} \cdots \sigma_{n+1}
$$

$(2) \Rightarrow(1)$ For a preradical $\sigma \in R$-pr, we get from $(2), \sigma^{n}=(\overbrace{\sigma \wedge \cdots \wedge \sigma}^{n+1 \text { times }})^{n} \preceq \sigma^{n+1}$. So we have that $\sigma^{n+1}=\sigma^{n}$.
$(1) \Leftrightarrow(3)$ It is obvious.
Remark 4.11. Let $\left\{\sigma_{\alpha}\right\}_{\alpha \in I} \subseteq R$-pr. If σ_{α} is semi- n-absorbing for every $\alpha \in I$, then $\bigwedge_{\alpha \in I} \sigma_{\alpha}$ is semi- n-absorbing.

The following remark shows that the two concepts of semi- n-absorbing preradicals and of quasi- n-absorbing (n-absorbing) preradicals are different in general.

Remark 4.12. Let p, q be distinct prime numbers. By Remark 4.11, $\omega_{p^{n} \mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q \mathbb{Z}}^{\mathbb{Z}}$ is a semi- n-absorbing preradical, but it is not quasi- n-absorbing, by Remark 3.12.

Proposition 4.13. Let $\sigma \in R$-pr be idempotent. If σ is semi-n-absorbing, then $c(\sigma)$ is semi-n-absorbing.

Proof. Is similar to the proof of Proposition 3.15.
In Proposition 17 of [14], it was shown that $\sigma_{0}:=\bigwedge\{\sigma \in R$-pr $\mid \sigma$ is semiprime $\}$ is the unique least semiprime preradical.
Proposition 4.14. There exists in R-pr a unique least semi-n-absorbing preradical.
Proof. Set $\sigma_{0}^{(n)}=\bigwedge\{\sigma \in R$-pr $\mid \sigma$ is semi- n-absorbing $\}$. By Remark 4.11, $\sigma_{0}^{(n)}$ is the least semi- n-absorbing preradical.

By notation in the the proof of the previous proposition we have that $\sigma_{0}^{(1)}=\sigma_{0}$.
Remark 4.15. As ρ is a semiprime preradical, then $\sigma_{0} \preceq \rho$. Also ρ^{n} is a semi- n-absorbing preradical, by Proposition 4.3. Therefore, $\sigma_{0}^{(n)} \preceq \rho^{n}$.

Proposition 4.16. The following statements hold:
(1) $\sigma_{0}=\bigvee_{n \geq 1} \sigma_{0}^{(n)}$.
(2) $\sigma_{0}^{(n k)} \preceq \sigma_{0}^{(n)}$ for every positive integer k.
(3) $\sigma_{0}^{(n)} \preceq \sigma^{n}$ for every semiprime preradical σ.

Proof. (1) By Corollary 4.2(6), every semiprime preradical is semi- n-absorbing for every $n \geq 1$. Then $\sigma_{0}^{(n)} \preceq \sigma_{0}$ for every $n \geq 1$.
(2) By Corollary 4.2(5).
(3) By Proposition 4.3.

In Proposition 20 of [14] it was shown that $\nu^{0} \preceq \sigma_{0}$, where $\nu^{0}=\bigvee\{\tau \mid \tau \in R$ pr, τ is nilpotent $\}$.

The following proposition is straightforward.

Proposition 4.17. Suppose that $\nu_{(n)}^{0}=\bigvee\left\{\tau^{n} \mid \tau \in R-p r, \tau^{n+1}=0\right\}$. Then:
(1) $\nu_{(n)}^{0} \preceq \sigma_{0}^{(n)}$.
(2) $\nu_{(1)}^{0} \preceq \nu^{0}$.

Corollary 4.18. The following statements hold:
(1) If $\rho^{n+1}=0$, then $\nu_{(n)}^{0}=\sigma_{0}^{(n)}=\sigma_{0}^{n}=\rho^{n}$.
(2) If $\rho^{2}=0$, then $\nu_{(1)}^{0}=\sigma_{0}=\rho=\nu^{0}$.

Proof. (1) By Remark 4.15 and Proposition 4.17 we have that $\nu_{(n)}^{0} \preceq \sigma_{0}^{(n)} \preceq \sigma_{0}^{n} \preceq \rho^{n}$. If $\rho^{n+1}=0$, then $\rho^{n} \preceq \nu_{(n)}^{0}$, and so $\nu_{(n)}^{0}=\sigma_{0}^{(n)}=\sigma_{0}^{n}=\rho^{n}$.
(2) By part (1) and [14, Corollary 21].

Proposition 4.19. For a ring R the following statements are equivalent:
(1) For every $\mu \in R-p r, \mu^{n+1}=0$ implies that $\mu^{n}=0$;
(2) 0 is a semi-n-absorbing preradical;
(3) $\sigma_{0}^{(n)}=0$;
(4) $\nu_{(n)}^{0}=0$.

Proof. It can be easily proved.
Notation 4.20. Let $\tau \in R$-pr. Define

$$
S^{(n)}(\tau)=\bigwedge\{\sigma \in R \text {-pr } \mid \tau \preceq \sigma, \sigma \text { semi- } n \text {-absorbing }\}
$$

which is the unique least semi- n-absorbing preradical greater than or equal to τ. Notice that in [14], $S^{(1)}$ is denoted by S.

Proposition 4.21. Let R be a ring.
(1) $\sigma_{0}^{(n)}=S^{(n)}(0)=\bigwedge_{\tau \in R-p r} S^{(n)}(\tau)$.
(2) For each $\tau \in R-p r, \tau \preceq S^{(n)}(\tau)$.
(3) For each $\tau, \sigma \in R$-pr we have $\tau \preceq \sigma \Rightarrow S^{(n)}(\tau) \preceq S^{(n)}(\sigma)$.
(4) For each $\tau \in R-p r, S^{(n)}\left(\tau^{n+1}\right)=S^{(n)}\left(\tau^{n}\right)$.
(5) For each $\tau \in R$-pr, τ is semi-n-absorbing if and only if $\tau=S^{(n)}(\tau)$.
(6) $\{\tau \in R$-pr $\mid \tau$ is semi-n-absorbing $\}=\operatorname{Im} S^{(n)}=\left\{S^{(n)}(\sigma) \mid \sigma \in R\right.$-pr $\}$.
(7) $\left[S^{(n)}\right]^{2}=S^{(n)}$. Then, $S^{(n)}$ is a closure operator on R-pr.
(8) For each family $\left\{\tau_{\alpha}\right\}_{\alpha \in I} \subseteq R$-pr, we have $S^{(n)}\left(\bigvee_{\alpha \in I} \tau_{\alpha}\right)=S^{(n)}\left(\bigvee_{\alpha \in I} S^{(n)}\left(\tau_{\alpha}\right)\right)$.
(9) $S^{(n)}=\bigvee_{k \geq 1} S^{(n k)}$, in particular $S=\bigvee_{k \geq 1} S^{(k)}$.
(10) $S^{(n)}\left(\sigma^{n+1}\right)=S^{(n)}\left(\sigma^{n}\right)=\sigma^{n}$ for every semiprime preradical σ.

Proof. (1), (2), (3), (5) and (6) are evident.
(4) For every $\tau \in R$-pr, part (3) implies that $S^{(n)}\left(\tau^{n+1}\right) \preceq S^{(n)}\left(\tau^{n}\right)$. Since $S^{(n)}\left(\tau^{n+1}\right)$ is semi- n-absorbing (by Remark 4.11) and $\tau^{n+1} \preceq S^{(n)}\left(\tau^{n+1}\right)$, then $\tau^{n} \preceq S^{(n)}\left(\tau^{n+1}\right)$. Hence $S^{(n)}\left(\tau^{n}\right) \preceq S^{(n)}\left(\tau^{n+1}\right)$. Consequently the equality holds.
(7) Is a direct consequence of part (5).
(8) The proof is similar to that of [14, Proposition 25](5).
(9) Use Corollary 4.2(5).
(10) By Proposition 4.3 and parts (4), (5).

Now consider the operator $\widehat{(-)}$ in R-pr that assigns to each preradical σ the greatest idempotent below σ (see [15, p. 137]).

Lemma 4.22. Let $\sigma, \tau \in R$-pr such that σ is idempotent and τ is semi-n-absorbing. Then:
(1) $\sigma \preceq \widehat{S^{(n)}(\sigma)} \preceq S^{(n)}(\sigma)$.
(2) $S^{(n)}(\sigma)=S^{(n)}\left(\widehat{S^{(n)}(\sigma)}\right)$.
(3) $\widehat{\tau} \preceq S^{(n)}(\widehat{\tau}) \preceq \tau$.
(4) $\widehat{\tau}=\widehat{S^{(n)}(\widehat{\tau})}$.

Proof. Similar to the proof of [14, Lemma 26].
The following result is a direct consequence of the previous properties.
Proposition 4.23. Let R be a ring.
(1) The operator $\widehat{S^{(n)}(-)}$ defines a closure operator on the ordered class of idempotent preradicals.
(2) The operator $S^{(n)}(\widehat{(-)})$ defines an interior operator on the ordered class of semi-n-absorbing preradicals.
Notice that the "closed" idempotent preradicals associated with the closure operator $\xlongequal[S^{(n)}(-) \text { are }]{\text { Notice }}$

$$
\mathcal{C}_{i d}^{(n)}=\{\sigma \text { idempotent } \mid \sigma=\widehat{\tau} \text { for some semi- } n \text {-absorbing } \tau\} .
$$

The "open" semi- n-absorbing preradicals associated with the interior operator $S^{(n)}(\widehat{(-))}$ are

$$
\mathcal{O}_{s a}^{(n)}=\left\{\tau \text { semi- } n \text {-absorbing } \mid \tau=S^{(n)}(\sigma) \text { for some idempotent } \sigma\right\} .
$$

The following result is immediate.
Corollary 4.24. For a ring R the operators $S^{(n)}(-)$ and $\widehat{(-)}$ restrict to mutually inverse maps between $\mathfrak{C}_{i d}^{(n)}$ and $\mathcal{O}_{s a}^{(n)}$.
Definition 4.25. Let $\tau \in R$-pr. Define $S_{1}^{(n)}(\tau)=\bigvee\left\{\sigma^{n} \mid \sigma \in R\right.$-pr, $\left.\sigma^{n+1} \preceq \tau\right\}$.
Proposition 4.26. Let R be a ring.
(1) For each $\tau \in R-p r, \tau^{n} \preceq S_{1}^{(n)}(\tau)$.
(2) For each $\tau \in R$-pr, τ is semi-n-absorbing if and only if $S_{1}^{(n)}(\tau) \preceq \tau$.
(3) 0 is a semi-n-absorbing preradical if and only if $S_{1}^{(n)}(0)=0$.
(4) Let τ, $\sigma \in R$-pr. If $\tau \preceq \sigma$, then $S_{1}^{(n)}(\tau) \preceq S_{1}^{(n)}(\sigma)$.
(5) For each family $\left\{\tau_{\alpha}\right\}_{\alpha \in I} \subseteq R$-pr, $S_{1}^{(n)}\left(\bigwedge_{\alpha \in I} \tau_{\alpha}\right) \preceq \bigwedge_{\alpha \in I} S_{1}^{(n)}\left(\tau_{\alpha}\right)$ and $\bigvee_{\alpha \in I} S_{1}^{(n)}\left(\tau_{\alpha}\right)$

$$
\preceq S_{1}^{(n)}\left(\bigvee_{\alpha \in I} \tau_{\alpha}\right) .
$$

Proof. The assertions have straightforward verifications.
We apply an "Amitsur construction" to $S_{1}^{(n)}$ as follows:
Definition 4.27. Let $\tau \in R$-pr. We define recursively the preradical $S_{\lambda}^{(n)}(\tau)$ for each ordinal λ as follows:
(1) $S_{0}^{(n)}(\tau)=\tau$.
(2) $S_{\lambda+1}^{(n)}(\tau)=S_{1}^{(n)}\left(S_{\lambda}^{(n)}(\tau)\right)$.
(3) If λ is a limit ordinal, then $S_{\lambda}^{(n)}(\tau)=\bigvee_{\beta<\lambda} S_{\beta}^{(n)}(\tau)$.
(4) $S_{\Omega}^{(n)}(\tau)=\underset{\lambda \text { ordinal }}{\bigvee} S_{\lambda}^{(n)}(\tau)$.

Proposition 4.28. Let $\tau \in R$-pr. Then the following statements are equivalent:
(1) τ is semi-n-absorbing;
(2) For each ordinal $\lambda, S_{\lambda}^{(n)}(\tau) \preceq \tau$;
(3) $S_{\Omega}^{(n)}(\tau)=\tau$.

Proof. By Proposition 4.26 and applying transfinite induction we have the claim.
As is the case with $S_{1}^{(n)}$, all of the operators $S_{\lambda}^{(n)}$ preserve order between preradicals.
Proposition 4.29. Let $\tau, \sigma \in R$-pr be such that $\tau \preceq \sigma$. Then:
(1) For each ordinal $\lambda, S_{\lambda}^{(n)}(\tau) \preceq S_{\lambda}^{(n)}(\sigma)$.
(2) $S_{\Omega}^{(n)}(\tau) \preceq S_{\Omega}^{(n)}(\sigma)$.

Proposition 4.30. For each $\tau \in R-p r, S_{\Omega}^{(n)}(\tau) \preceq S^{(n)}(\tau)$.
Proof. Let $\tau \in R$-pr. By transfinite induction, we have that $S_{0}^{(n)}(\tau)=\tau \preceq S^{(n)}(\tau)$. Assume that λ is an ordinal such that $S_{\lambda}^{(n)}(\tau) \preceq S^{(n)}(\tau)$. Since $S^{(n)}(\tau)$ is semi- n-absorbing, $S_{\lambda+1}^{(n)}(\tau)=S_{1}^{(n)}\left(S_{\lambda}^{(n)}(\tau)\right) \preceq S_{1}^{(n)}\left(S^{(n)}(\tau)\right) \preceq S^{(n)}(\tau)$, by parts (2) and (4) of Proposition 4.26. If λ is a limit ordinal and $S_{\beta}^{(n)}(\tau) \preceq S^{(n)}(\tau)$ for each $\beta<\lambda$, then $S_{\lambda}^{(n)}(\tau)=$ $\underset{\beta<\lambda}{\bigvee} S_{\beta}^{(n)}(\tau) \preceq S^{(n)}(\tau)$.

In the following result we give equivalent conditions for the equality $S_{\Omega}^{(n)}(\tau)=S^{(n)}(\tau)$ to hold.

Proposition 4.31. For each $\tau \in R$-pr the following statements are equivalent:
(1) $S_{\Omega}^{(n)}(\tau)$ is semi-n-absorbing;
(2) $S_{1}^{(n)}\left(S_{\Omega}^{(n)}(\tau)\right) \preceq S_{\Omega}^{(n)}(\tau)$;
(3) For each ordinal λ we have $S_{\lambda}^{(n)}\left(S_{\Omega}^{(n)}(\tau)\right) \preceq S_{\Omega}^{(n)}(\tau)$;
(4) $S_{\Omega}^{(n)}\left(S_{\Omega}^{(n)}(\tau)\right)=S_{\Omega}^{(n)}(\tau)$;
(5) $S_{\Omega}^{(n)}(\tau)=S^{(n)}(\tau)$.

Proof. (1) \Rightarrow (2) By Proposition 4.26(2).
$(2) \Rightarrow(3)$ It follows by transfinite induction on λ.
$(3) \Rightarrow(4)$ Is easy.
$(4) \Rightarrow(1)$ By Proposition 4.28.
(1) \Rightarrow (5) Assume that $S_{\Omega}^{(n)}(\tau)$ is semi- n-absorbing. Since $\tau \preceq S_{\Omega}^{(n)}(\tau)$, the definition of $S^{(n)}(\tau)$ implies that $S^{(n)}(\tau) \preceq S_{\Omega}^{(n)}(\tau)$. On the other hand, $S_{\Omega}^{(n)}(\tau) \preceq S^{(n)}(\tau)$, by Proposition 4.30. So the equality holds.
$(5) \Rightarrow(1)$ Is straightforward.

5. Quasi- n-absorbing and semi- n-absorbing submodules

Remark 5.1. Let $M \in R$-Ass and N be a proper fully invariant submodule of M. Then, the following conditions hold:
(1) N is n-absorbing in $M \Rightarrow N$ is quasi- n-absorbing in $M \Rightarrow N$ is semi- n-absorbing in M.
(2) N is a quasi- 1 -absorbing submodule of M if and only if N is a prime submodule of M.
(3) N is a semi-1-absorbing submodule of M if and only if N is a semiprime submodule of M.

Proposition 5.2. Let $\sigma \in R$-pr. If for every $M \in R$ - $\operatorname{Mod}, \sigma(M)$ is a semiprime submodule of M, then σ is a semiprime preradical.

Proof. By hypothesis, [14, Theorem 14] implies that $\omega_{\sigma(M)}^{M}$ is a semiprime preradical. So $\sigma=\bigwedge\left\{\omega_{\sigma(M)}^{M} \mid M \in R\right.$-Mod $\}$ (see [12, Remark 1]) is a semiprime preradical.

Corollary 5.3. Let R be a ring. If every R-module is semiprime, then 0 is a semiprime preradical in R-pr.

Lemma 5.4 ([7, Lemma 3.4]). Let $M \in R$-Mod. Then for any submodules N, K of M, $\omega_{N \cap K}^{M}=\omega_{N}^{M} \wedge \omega_{K}^{M}$.

Proposition 5.5. Let $M \in R$-Mod. Suppose that $\left\{N_{i}\right\}_{i \in I}$ is a family of semiprime submodules of M. Then $N=\cap_{i \in I} N_{i}$ is a semiprime submodule of M.

Proof. Let $\left\{N_{i}\right\}_{i \in I}$ be a family of semiprime submodules of M. Then, by [14, Proposition 14], $\omega_{N_{j}}^{M}$ s are semiprime preradicals. Thus $\omega_{N}^{M}=\bigwedge_{i \in I} \omega_{N_{i}}^{M}$ (see Lemma 5.4) is a semiprime preradical. Again, by [14, Proposition 14], $N=\cap_{i \in I} N_{i}$ is a semiprime submodule of M.

Proposition 5.6. Let R be a ring and $\left\{M_{i}\right\}_{i \in I}$ be a family of semiprime R-modules. Then $M=\underset{i \in I}{ } M_{i}$ is a semiprime R-module.

Proof. Since for every $i \in I, M_{i}$ is a semiprime R-module, thus for every $i \in I, \omega_{0}^{M_{i}}$ is a semiprime preradical by [14, Proposition 14]. Therefore $\bigwedge_{i \in I} \omega_{0}^{M_{i}}=\omega_{0}^{M}$ is a semiprime preradical, and so, again by [14, Proposition 14], $M=\bigoplus_{i \in I} M_{i}$ is a semiprime R-module.
Proposition 5.7. For a ring R the following statements are equivalent:
(1) R is a left V-ring;
(2) 0 is a semiprime preradical;
(3) $\underset{S \in R \text {-simp }}{\oplus} E(S)$ is a semiprime R-module.

Proof. (1) \Leftrightarrow (2) By [14, Theorem 23].
$(2) \Leftrightarrow(3)$ Set $C=\underset{S \in R \text {-simp }}{\bigoplus} E(S)$. Notice that $\omega_{0}^{C}=0$, by [10, Lemma 6]. Now apply [14, Theorem 14].

The following result shows that the injective hull of a semiprime R-module may not be semiprime.

Corollary 5.8. Let R be a ring that is not a left V-ring. Then there exists a simple R-module $S \in R$-simp such that $E(S)$ is not semiprime.

Proof. By Proposition 5.6 and Proposition 5.7.
Theorem 5.9. Let $M \in R$-Ass and N be a fully invariant submodule of M. Consider the following statements:
(1) N is quasi- n-absorbing (resp. semi-n-absorbing) in M.
(2) ω_{N}^{M} is a quasi-n-absorbing (resp. semi-n-absorbing) preradical.

Then $(2) \Rightarrow(1)$, and if M satisfies the α-property, then $(1) \Rightarrow(2)$.
Proof. (1) \Rightarrow (2) Assume that N is quasi- n-absorbing in M and that $\eta(M) \cdot \mu(M)=$ $(\eta \mu)(M)$ for every $\eta, \mu \in R$-pr. Since $N \neq M$ we have $\omega_{N}^{M} \neq 1$. Now let $\eta, \mu \in R$-pr be such that $\eta^{n} \mu \preceq \omega_{N}^{M}$. In this case we have

$$
\eta(M)^{n} \cdot \mu(M)=\left(\eta^{n} \mu\right)(M) \leq \omega_{N}^{M}(M)=N .
$$

Since N is quasi- n-absorbing in M, by hypothesis we get $\eta^{n}(M)=\eta(M)^{n} \leq N$ or $\left(\eta^{n-1} \mu\right)(M)=\eta(M)^{n-1} \cdot \mu(M) \leq N$. It follows from [10, Proposition 5] that $\eta^{n} \preceq \omega_{N}^{M}$ or $\eta^{n-1} \mu \preceq \omega_{N}^{M}$, that is ω_{N}^{M} is quasi- n-absorbing.
(2) \Rightarrow (1) Assume that ω_{N}^{M} is a quasi- n-absorbing preradical. Since $\omega_{N}^{M} \neq 1$, we have $N \neq M$. Suppose that J, K are fully invariant submodules of M such that $J^{n} \cdot K \leq N$. Then we have

$$
J^{n} \cdot K=\left(\alpha_{J}^{M}\right)^{n}(K)=\left(\alpha_{J}^{M}\right)^{n} \alpha_{K}^{M}(M) .
$$

By [10, Proposition 5], we get $\left(\alpha_{J}^{M}\right)^{n} \alpha_{K}^{M} \preceq \omega_{J^{n} \cdot K}^{M} \preceq \omega_{N}^{M}$. Since ω_{N}^{M} is quasi- n-absorbing, we have $\left(\alpha_{J}^{M}\right)^{n} \preceq \omega_{N}^{M}$ or $\left(\alpha_{J}^{M}\right)^{n-1} \alpha_{K}^{M} \preceq \omega_{N}^{M}$. Therefore $J^{n}=\left(\alpha_{J}^{M}\right)^{n}(M) \leq N$ or $J^{n-1} \cdot K=\left(\alpha_{J}^{M}\right)^{n-1} \alpha_{K}^{M}(M) \leq N$.
A similar proof can be stated for semi- n-absorbing preradicals.
Remark 5.10. Note that in Theorem 5.9, for the case $n=2$ we can omit the condition $M \in R$-Ass, by the definition of quasi-2-absorbing (semi-2-absorbing) submodules.
Definition 5.11. Let $M \in R$-Ass. We say that M is a quasi- n-absorbing (resp. semi- n absorbing) module if its zero submodule 0 is a quasi- n-absorbing (resp. semi- n-absorbing) submodule of M.
Corollary 5.12. Let R be a ring. If R is a semisimple Artinian ring, then every R-module is quasi-i-absorbing for every $i \geq 2$.
Proof. By Proposition 3.5 and Theorem 5.9.
Example 5.13. Let R be a semisimple Artinian ring and $S_{1}, S_{2}, \ldots, S_{n+1} \in R$-simp be distinct. Then $\bigoplus_{i=1}^{n+1} S_{i}$ is quasi- n-absorbing by Corollary 5.12. But note that, by [19, Corollary 3.6] and Theorem 3.11, $\bigoplus_{i=1}^{n+1} S_{i}$ is not n-absorbing. This example shows that the two concepts of quasi- n-absorbing modules and of n-absorbing modules are different in general.
Proposition 5.14. Let $M_{1}, M_{2}, \ldots, M_{t}$ be projective R-modules. Suppose that $M_{1}, M_{2}, \ldots, M_{t}$ are quasi-n-absorbing R-modules that satisfy the α-property. Then $M=\oplus_{i=1}^{t} M_{i}$ is a quasi- $(n+t-1)$-absorbing R-module.
Proof. Let $M_{1}, M_{2}, \ldots, M_{t}$ be quasi- n-absorbing R-modules. Then, by Theorem 5.9 , $\omega_{M_{1}}^{M_{1}}, \omega_{M_{2}}^{M_{2}}, \ldots, \omega_{M_{t}}^{M_{t}}$ are quasi- n-absorbing preradicals, and so $\omega_{M}^{M}=\omega_{M_{1}}^{M_{1}} \wedge \omega_{M_{2}}^{M_{2}} \wedge \cdots \wedge \omega_{M_{t}}^{M_{t}}$ is a quasi- $(n+t-1)$-absorbing preradical by Proposition 3.14(2). Again, by Theorem 5.9, $M=\oplus_{i=1}^{t} M_{i}$ is a quasi- $(n+t-1)$-absorbing R-module.
Lemma 5.15. Let $M \in R$-Mod, $N \leq f i M$ and $K_{1}, K_{2}, K_{3} \leq M$.
(1) Suppose that $N \leq K_{i}$ such that $K_{i} / N \leq_{f i} M / N$ for every $1 \leq i \leq 3$. If $\left[\left(K_{1} / N\right) \cdot\left(K_{2} / N\right)\right] \cdot\left(K_{3} / N\right)=0$, then $\left[K_{1} \cdot K_{2}\right] \cdot K_{3} \leq N$. In particular, if $\left(K_{1} / N\right) \cdot\left(K_{2} / N\right)=0$, then $K_{1} \cdot K_{2} \leq N$.
(2) Let $K_{i} \leq{ }_{f i} M$ and $K_{i}^{*}=\left(K_{i}+N\right) / N$ for every $1 \leq i \leq 3$. If M is quasi-projective and $\left[K_{1} \cdot K_{2}\right] \cdot K_{3} \leq N$, then $\left[K_{1}^{*} \cdot K_{2}^{*}\right] \cdot K_{3}^{*}=0$. In particular, if $K_{1} \cdot K_{2} \leq N$, then $K_{1}^{*} \cdot K_{2}^{*}=0$.
Proof. (1) Assume that $\left[\left(K_{1} / N\right) \cdot\left(K_{2} / N\right)\right] \cdot\left(K_{3} / N\right)=0$. Notice that by [13, Lemma 17], $K_{i} / N \leq_{f i} M / N$ implies that $K_{i} \leq_{f i} M$. Since $\left[\left(K_{1} / N\right) \cdot\left(K_{2} / N\right)\right] \cdot\left(K_{3} / N\right)=0$, then $f\left(\left(K_{1} / N\right) \cdot\left(K_{2} / N\right)\right)=0$ for every $f \in \operatorname{Hom}_{R}\left(M / N, K_{3} / N\right)$. We get $g: M \rightarrow K_{3}$. Since $N \leq_{f i} M, g(N) \leq N$, thus g induces $\bar{g}: M / N \rightarrow K_{3} / N$ such that $\bar{g}\left(\left(K_{1} / N\right) \cdot\left(K_{2} / N\right)\right)=0$. Now, let $h: M \rightarrow K_{2}$, similarly h induces $\bar{h}: M / N \rightarrow K_{2} / N$. Therefore $\bar{g}\left(\bar{h}\left(K_{1} / N\right)\right)=0$, and thus $g h\left(K_{1}\right) \leq N$. Consequently,

$$
\left[K_{1} \cdot K_{2}\right] \cdot K_{3}=\sum\left\{g\left(h\left(K_{1}\right)\right) \mid g \in \operatorname{Hom}_{R}\left(M, K_{3}\right), h \in \operatorname{Hom}_{R}\left(M, K_{2}\right)\right\} \leq N .
$$

(2) Assume that M is quasi-projective and $\left[K_{1} \cdot K_{2}\right] \cdot K_{3} \leq N$. By [13, Lemma 17], $K_{i} \leq_{f i} M$ implies that $K_{i}^{*} \leq_{f i} M / N$. Let $f: M / N \rightarrow K_{3}^{*}$ and $g: M / N \rightarrow K_{2}^{*}$. Let $\pi: M \rightarrow M / N$ be the canonical projection and $\pi_{i}: K_{i} \rightarrow K_{i}^{*}$ be its restriction to K_{i} for $i=2,3$. Since M is quasi-projective, M is K_{i}-projective, for $i=2,3$. So there exist $h: M \rightarrow K_{3}$ and $t: M \rightarrow K_{2}$ such that $\pi_{3} h=f \pi$ and $\pi_{2} t=g \pi$. Since $\left[K_{1} \cdot K_{2}\right] \cdot K_{3} \leq N$, then $h t\left(K_{1}\right) \leq N$. Therefore $f g\left(K_{1}^{*}\right)=0$. Consequently,
$\left[K_{1}^{*} \cdot K_{2}^{*}\right] \cdot K_{3}^{*}=\sum\left\{f\left(g\left(K_{1}^{*}\right)\right) \mid f \in \operatorname{Hom}_{R}\left(M / N, K_{3}^{*}\right), g \in \operatorname{Hom}_{R}\left(M / N, K_{2}^{*}\right)\right\}=0$.
Proposition 5.16. Let M be a quasi-projective R-module and let $N \neq M$ be a fully invariant submodule of M. Then N is quasi-2-absorbing (resp. semi-2-absorbing) in M if and only if M / N is a quasi-2-absorbing (resp. semi-2-absorbing) module.

Proof. (\Rightarrow) Assume that N is quasi-2-absorbing in M and let $J / N, K / N$ be fully invariant submodules of M / N such that $(J / N)^{2} \cdot(K / N)=0$. By [13, Lemma 17], J, K are fully invariant submodules of M. We deduce from Lemma 5.15 that $J^{2} \cdot K \leq N$. Since N is quasi-2-absorbing in M, we have $J^{2} \leq N$ or $J \cdot K \leq N$. So $(J / N)^{2}=0$ or $(J / N) \cdot(K / N)=$ 0 , by Lemma 5.15 . Hence M / N is a quasi-2-absorbing module.
(\Leftarrow) Let J, K be fully invariant submodules of M such that $J^{2} \cdot K \leq N$. Then, by [13, Lemma 17], $J^{*}=(J+N) / N, K^{*}=(K+N) / N$ are fully invariant submodules of M / N. By Lemma $5.15, J^{* 2} \cdot K^{*}=0$. Since M / N is assumed to be a quasi-2-absorbing module, we get $J^{* 2}=0$ or $J^{*} \cdot K^{*}=0$. Hence $J^{2} \leq N$ or $J \cdot K \leq N$, by Lemma 5.15. Consequently, N is quasi-2-absorbing in M.

Theorem 5.17. Let $M \in R$-Ass that satisfies the α-property. The following statements are equivalent:
(1) M is quasi-n-absorbing;
(2) ω_{0}^{M} is quasi-n-absorbing;
(3) For each fully invariant submodule K of M and $\alpha \in R-p r, \alpha^{n} \preceq \omega_{0}^{K} \Rightarrow \alpha^{n-1} \preceq \omega_{0}^{K}$ or $\alpha^{n} \preceq \omega_{0}^{M}$;
(4) For each fully invariant submodule K of M and $\alpha \in R-p r, \alpha^{n}(K)=0 \Rightarrow$ $\alpha^{n-1}(K)=0$ or $\alpha^{n}(M)=0 ;$
(5) For each $\tau, \eta \in R$-pr, $M \in \mathbb{F}_{\tau^{n} \eta} \Rightarrow M \in \mathbb{F}_{\tau^{n}}$ or $M \in \mathbb{F}_{\tau^{n-1} \eta}$.

Proof. (1) $\Leftrightarrow(2)$ Is clear by Theorem 5.9.
$(2) \Rightarrow(3)$ Assume that K is a fully invariant submodule of M and $\alpha \in R$-pr such that $\alpha^{n} \preceq \omega_{0}^{K}$ and $\alpha^{n} \npreceq \omega_{0}^{M}$. Then $\alpha^{n}(K) \leqslant \omega_{0}^{K}(K)=0$, and so $\alpha^{n} \omega_{K}^{M}(M)=0$ which shows that $\alpha^{n} \omega_{K}^{M} \preceq \omega_{0}^{M}$. Now, since ω_{0}^{M} is quasi- n-absorbing and $\alpha^{n} \npreceq \omega_{0}^{M}$, then $\alpha^{n-1} \omega_{K}^{M} \preceq \omega_{0}^{M}$. Hence $\alpha^{n-1}(K)=\alpha^{n-1} \omega_{K}^{M}(M)=0$, and thus $\alpha^{n-1} \preceq \omega_{0}^{K}$.
(3) \Leftrightarrow (4) Is obvious.
(4) \Rightarrow (5) Let $\tau, \eta \in R$-pr such that $\tau^{n} \eta(M)=0$. Suppose that $\tau^{n-1} \eta(M) \neq 0$. By setting $K:=\eta(M)$ we have $\tau^{n}(K)=0, \tau^{n-1}(K) \neq 0$. Consequently, $\tau^{n}(M)=0$, by (4).
(5) $\Rightarrow(2)$ Let $\tau, \eta \in R$-pr such that $\tau^{n} \eta \preceq \omega_{0}^{M}$. Then, $\tau^{n} \eta(M)=0$, so by hypothesis $\tau^{n}(M)=0$ or $\tau^{n-1} \eta(M)=0$. Consequently, $\tau^{n} \preceq \omega_{0}^{M}$ or $\tau^{n-1} \eta \preceq \omega_{0}^{M}$, so ω_{0}^{M} is quasi- n absorbing.

Similarly we can prove the following theorem.
Theorem 5.18. Let $M \in R$-Ass that satisfies the α-property. The following statements are equivalent:
(1) M is semi-n-absorbing;
(2) ω_{0}^{M} is semi-n-absorbing;
(3) For each $\tau \in R$-pr, $M \in \mathbb{F}_{\tau^{n+1}} \Rightarrow M \in \mathbb{F}_{\tau^{n}}$.

Theorem 5.19. Let $M \in R$-Mod be such that, for each pair K, L of fully invariant submodules of M, we have $\alpha_{K}^{M} \alpha_{L}^{M}=\alpha_{K \cdot L}^{M}$. Then, for each quasi-n-absorbing (resp. semi-n-absorbing) preradical σ such that $\sigma(M) \neq M$, we have that $\sigma(M)$ is quasi- n-absorbing (resp. semi-n-absorbing) in M.
Proof. Let σ be a quasi- n-absorbing preradical such that $\sigma(M) \neq M$. If K, L are fully invariant submodules of M such that $K^{n} \cdot L \leq \sigma(M)$, then

$$
\left(\alpha_{K}^{M}\right)^{n} \alpha_{L}^{M}=\alpha_{K^{n} \cdot L}^{M} \preceq \alpha_{\sigma(M)}^{M} \preceq \sigma .
$$

Since σ is quasi- n-absorbing, then $\alpha_{K^{n}}^{M}=\left(\alpha_{K}^{M}\right)^{n} \preceq \sigma$ or $\alpha_{K^{n-1} \cdot L}^{M}=\left(\alpha_{K}^{M}\right)^{n-1} \alpha_{L}^{M} \preceq \sigma$. In the first case we have $K^{n}=\alpha_{K^{n}}^{M}(M) \leq \sigma(M)$; in the second case we have $K^{n-1} \cdot L=$ $\alpha_{K^{n-1} \cdot L}^{M}(M) \leq \sigma(M)$. Consequently, $\sigma(M)$ is quasi- n-absorbing.
Lemma 5.20. Let $M \in R$-Mod. If M is projective in $\sigma[M]$, then $\alpha_{K}^{M} \alpha_{L}^{M}=\alpha_{K \cdot L}^{M}$ for any fully invariant submodules K and N of M.
Proof. It follows from Proposition 2.3.
Corollary 5.21. Let σ be a quasi-n-absorbing (resp. semi-n-absorbing) preradical. Then $\sigma(R)$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.
Proof. Notice that if $\sigma(R)=R$, then by [4, Proposition 4(v)], $\sigma=1$ which is a contradiction. Now apply Theorem 5.19 and Lemma 5.20.
For two R-modules U, N, the submodule

$$
\operatorname{Rej}(N, U)=\bigcap\left\{\operatorname{Ker} f \mid f \in \operatorname{Hom}_{R}(N, U)\right\} \leq N
$$

is called the reject of U in N.
Corollary 5.22. Let $M \in R$-Ass that satisfies the α-property. If M is quasi-n-absorbing (resp. semi-n-absorbing), then $A n n_{R}(M)$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.
Proof. Note that for any R-module $M, \omega_{0}^{M}(R)=\operatorname{Rej}(R, M)=\operatorname{Ann}_{R}(M)$. Now apply Theorem 5.17 and Corollary 5.21.

References

[1] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39, 1646-1672, 2011.
[2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429, 2007.
[3] J. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (10), 46494676, 2002.
[4] L. Bican, P. Jambor, T. Kepka and P. Nemec, Preradicals, Comment. Math. Univ. Carolinae 15 (1), 75-83, 1974.
[5] L. Bican, P. Jambor, T. Kepka and P. Nemec, Prime and coprime modules, Fund. Math. 107, 33-45, 1980.
[6] L. Bican, T. Kepka, and P. Nemec, Rings, Modules and Preradicals, Marcel Dekker, New York, 1982.
[7] A.I. Kashu, On some operations in the lattice of submodules determined by preradicals, Bull. Acad. Stiinte Repub. Mold. Mat. 2 (66), 5-16, 2011.
[8] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Springer-Verlag, 1998.
[9] F. Raggi, J. Ríos, H. Rincón and R. Fernández-Alonso, Basic preradicals and main injective modules, J. Algebra Appl. 8 (1), 1-16, 2009.
[10] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice structure of preradicals, Comm. Algebra 30 (3), 1533-1544, 2002.
[11] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice structure of preradicals II: partitions, J. Algebra Appl. 1 (2), 201-214, 2002.
[12] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, The lattice structure of preradicals III: operators, J. Pure and Applied Algebra 190, 251-265, 2004.
[13] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4 (4), 451-466, 2005.
[14] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Semiprime preradicals, Comm. Algebra 37, 2811-2822, 2009.
[15] B. Stenström, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217, Springer Verlag, Berlin, 1975.
[16] D. Keskin Tütüncü and Y. Kuratomi, On mono-injective modules and mono-ojective modules, Math. J. Okayama Univ. 55, 117-129, 2013.
[17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
[18] A. Yousefian Darani, and H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14 (7), 1550113 (23 pages), 2015.
[19] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2), 1550017 (22 pages), 2015.
[20] A. Yousefian Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9 (3), 577-584, 2011.

[^0]: * Corresponding Author.

 Email addresses: h.mostafanasab@uma.ac.ir (H. Mostafanasab), yousefian@uma.ac.ir; youseffian@gmail.com (A. Yousefian Darani)
 Received: 16.03.2015; Accepted: 20.02.2018

