

RESEARCH ARTICLE

Quasi-*n*-absorbing and semi-*n*-absorbing preradicals

Hojjat Mostafanasab^(b), Ahmad Yousefian Darani^{*}^(b)

Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

Abstract

The aim of this paper is to introduce the notions of quasi-n-absorbing preradicals and of semi-n-absorbing preradicals. These notions are inspired by applying the concept of n-absorbing preradicals to semiprime preradicals. Also, we study the concepts of quasi-n-absorbing submodules and of semi-n-absorbing submodules and their relations with quasi-n-absorbing preradicals and semi-n-absorbing preradicals.

Mathematics Subject Classification (2010). Primary 16N99, 16S99; Secondary 06C05, 16N20

Keywords. lattice, preradical, quasi-n-absorbing, semi-n-absorbing

1. Introduction

The notion of 2-absorbing ideals of commutative rings was introduced by Badawi in [2], where a proper ideal I of a commutative ring R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. He proved that I is a 2-absorbing ideal of R if and only if whenever I_1, I_2, I_3 are ideals of R with $I_1 I_2 I_3 \subseteq I$, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$. And erson and Badawi [1] generalized the concept of 2-absorbing ideals to n-absorbing ideals. According to their definition, a proper ideal I of R is called an *n*-absorbing (resp. strongly *n*-absorbing) ideal if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$ (resp. $I_1 \cdots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of R), then there are n of the x_i 's (resp. n of the I_i 's) whose product is in I. In [20], the concept of 2-absorbing ideals was generalized to submodules of a module over a commutative ring. Let M be an R-module and N be a submodule of M. N is said to be a 2-absorbing submodule of M if whenever $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. In [13], Raggi et al. introduced the concepts of prime preradicals and prime submodules over noncommutative rings. The generalized notions of these, "2-absorbing preradicals" and "2-absorbing submodules" were investigated by Yousefian and Mostafanasab in [19]. Raggi et al. [14] defined the notions of semiprime preradicals and semiprime submodules. In this paper, we give the concepts of "quasi-*n*-absorbing preradicals" and "semi-*n*-absorbing

^{*}Corresponding Author.

Email addresses: h.mostafanasab@uma.ac.ir (H. Mostafanasab), yousefian@uma.ac.ir;

youseffian@gmail.com (A. Yousefian Darani)

Received: 16.03.2015; Accepted: 20.02.2018

preradicals". Also, investigation of "quasi-n-absorbing submodules" and "semi-n-absorbing submodules" is in this paper.

2. Preliminaries

Throughout this paper, R is an associative ring with identity, and R-Mod denotes the category of all the unitary left R-modules. A ring R is said to be left V-ring if all simple R-modules are injective. We denote by R-simp a complete set of representatives of isomorphism classes of simple left R-modules. We recall that R is a left local ring if and only if |R-simp| = 1. For $M \in R\text{-Mod}$, we denote by E(M) the injective hull of M. Let $U, N \in R$ -Mod, we say that N is generated by U (or N is U-generated) if there exists an epimorphism $U^{(\Lambda)} \to N$ for some index set Λ . Dually, we say that N is cogenerated by U (or N is U-cogenerated) if there exists a monomorphism $N \to U^{\Lambda}$ for some index set A. Also, we say that an R-module X is subgenerated by M (or X is M-subgenerated) if X is a submodule of an M-generated module. The category of M-subgenerated modules (the Wisbauer category) is denoted $\sigma[M]$ (see [17]). A preradical over the ring R is a subfunctor of the identity functor on R-Mod. Denote by R-pr the class of all preradicals over R. There is a natural partial ordering in R-pr given by $\sigma \preceq \tau$ if $\sigma(M) \leq \tau(M)$ for every $M \in R$ -Mod. It is proved in [10] that with this partial ordering, R-pr is an atomic and co-atomic big lattice. The smallest and the largest elements of R-pr are denoted 0 and 1, respectively.

Let $M \in R$ -Mod. Recall ([6] or [10]) that a submodule N of M is called *fully invariant* if $f(N) \leq N$ for each R-homomorphism $f: M \to M$. In this paper, the notation $N \leq_{fi} M$ means that "N is a fully invariant submodule of M". Obviously the submodule K of M is fully invariant if and only if there exists a preradical τ of *R*-Mod such that $K = \tau(M)$. If $N \leq M$, then the preradicals α_N^M and ω_N^M are defined as follows: For $K \in R$ -Mod,

- (1) $\alpha_N^M(K) = \sum \{f(N) | f \in \operatorname{Hom}_R(M, K)\}.$ (2) $\omega_N^M(K) = \bigcap \{f^{-1}(N) | f \in \operatorname{Hom}_R(K, M)\}.$

Using the preradicals α_N^M and ω_N^M , in the works [5], [7] and [13], two operations were introduced and studied.

- (1) α -product of submodules $K, N \leq M: K \cdot N = \alpha_K^M(N).$ (2) ω -product of submodules $K, N \leq M: K \odot N = \omega_K^M(N).$

Notice that for $\sigma \in R$ -pr and $M, N \in R$ -Mod we have that $\sigma(M) = N$ if and only if $N \leq_{fi} M$ and $\alpha_N^M \preceq \sigma \preceq \omega_N^M$. We have also that if $K \leq N \leq M$ with $K, N \leq_{fi} M$, then $\alpha_K^M \preceq \alpha_N^M$ and $\omega_K^M \preceq \omega_N^M$.

The atoms and coatoms of *R*-pr are, respectively, $\{\alpha_S^{E(S)} | S \in R\text{-simp}\}$ and $\{\omega_I^R | I \text{ is a maximal ideal of } R\}$ (See [10, Theorem 7]).

There are four classical operations in R-pr, namely, \wedge, \vee, \cdot and : which are defined as follows. For σ , $\tau \in R$ -pr and $M \in R$ -Mod:

- (1) $(\sigma \wedge \tau)(M) = \sigma M \cap \tau M$,
- (2) $(\sigma \lor \tau)(M) = \sigma M + \tau M$,
- (3) $(\sigma\tau)(M) = \sigma(\tau M)$ and
- (4) $(\sigma : \tau)(M)$ is determined by $(\sigma : \tau)(M)/\sigma M = \tau(M/\sigma M)$.

The meet \wedge and join \vee can be defined for arbitrary families of preradicals as in [10]. The operation defined in (3) is called *product*, and the operation defined in (4) is called *coproduct.* It is easy to show that for σ , $\tau \in R$ -pr, $\sigma\tau \preceq \sigma \land \tau \preceq \sigma \lor \tau \preceq (\sigma:\tau)$.

We denote $\sigma \sigma \cdots \sigma$ (*n* times) by σ^n . Recall that $\sigma \in R$ -pr is an *idempotent* if $\sigma^2 = \sigma$, while σ is a radical if $(\sigma : \sigma) = \sigma$. We say that σ is nilpotent if $\sigma^n = 0$ for some $n \ge 1$. Also σ is called a *t*-radical if $\sigma = \alpha_I^R$ for some ideal I of R. Note that σ is a radical if and only if, $\sigma(M/\sigma(M)) = 0$ for each $M \in R$ -Mod. Furthermore, σ is a t-radical if and only if, for each $M \in R$ -Mod, $\sigma(M) = \sigma(R)M$.

For any $\sigma \in R$ -pr, we will use the following class of R-modules:

$$\mathbb{F}_{\sigma} = \{ M \in R \text{-} \mathrm{Mod} \mid \sigma(M) = 0 \}$$

Let $\sigma \in R$ -pr. By [10, Theorem 8.2], the following classes of modules are closed under taking arbitrary meets and arbitrary joins:

 $\mathcal{A}_a = \{ \tau \in R \text{-pr} | \ \tau \sigma = 0 \}.$

 $\mathcal{A}_c = \{ \tau \in R \text{-pr} | (\sigma : \tau) = \sigma \}.$

As in [11], we define, for $\sigma \in R$ -pr, the following preradicals: $a(\sigma) = \bigvee \{\tau \in \mathcal{A}_a\} =$ the annihilator of σ . $c(\sigma) = \bigvee \{\tau \in \mathcal{A}_c\} =$ the co-equalizer of σ . Clearly, $a(\sigma)\sigma = 0$ and $(\sigma : c(\sigma)) = \sigma$.

In [13], Raggi et al. defined the notions of prime preradicals and prime submodules as follows:

Let $\sigma \in R$ -pr. σ is called *prime in* R-pr if $\sigma \neq 1$ and for any τ , $\eta \in R$ -pr, $\tau\eta \preceq \sigma$ implies that $\tau \preceq \sigma$ or $\eta \preceq \sigma$. Let $M \in R$ -Mod and let $N \neq M$ be a fully invariant submodule of M. The submodule N is said to be *prime in* M if whenever K, L are fully invariant submodules of M with $K \cdot L \leq N$, then $K \leq N$ or $L \leq N$. Also, Raggi et al. [14] defined a preradical σ semiprime in R-pr if $\sigma \neq 1$ and for any $\tau \in R$ -pr, $\tau^2 \preceq \sigma$ implies that $\tau \preceq \sigma$. They said that a proper fully invariant submodule N of M is semiprime in M if whenever K is a fully invariant submodule of M with $K \cdot K \leq N$, then $K \leq N$. In the special case, M is a *prime (resp. semiprime) module* if its zero submodule 0 is a prime (resp. semiprime) submodule.

Yousefian and Mostafanasab [19] introduced the notions of 2-absorbing preradicals and 2-absorbing submodules. Also, in [18] they defined the notions of co-2-absorbing preradicals and co-2-absorbing submodules. The preradical $\sigma \in R$ -pr is called 2-absorbing if $\sigma \neq 1$ and, for each $\eta, \mu, \nu \in R$ -pr, $\eta \mu \nu \preceq \sigma$ implies that $\eta \mu \preceq \sigma$ or $\eta \nu \preceq \sigma$ or $\mu \nu \preceq \sigma$. More generally, a preradical $1 \neq \sigma$ in R-pr is said to be an *n*-absorbing preradical if whenever $\eta_1\eta_2\ldots\eta_{n+1} \leq \sigma$ for $\eta_1,\eta_2,\ldots,\eta_{n+1} \in R$ -pr, there are $i_1,i_2,\ldots,i_n \in \{1,2,\ldots,n+1\}$ such that $i_1 < i_2 < \cdots < i_n$ and $\eta_{i_1} \eta_{i_2} \dots \eta_{i_n} \preceq \sigma$. They denoted by *R*-Ass the class of all *R*-modules M that the operation α -product is associative over fully invariant submodules of M, i.e., for any fully invariant submodules K, N, L of M, $(K \cdot N) \cdot L = K \cdot (N \cdot L)$. So we denote $(K \cdot N) \cdot L$ simply by $K \cdot N \cdot L$. In the special case $K \cdot K \cdots K$ (*n* times) is denoted by K^n . By Proposition 5.6 of [3], we can see that if an *R*-module *M* is projective in $\sigma[M]$, then $M \in R$ -Ass; in particular $R \in R$ -Ass. Let $M \in R$ -Ass and let $N \neq M$ be a fully invariant submodule of M. The submodule N is said to be 2-absorbing in M if whenever J, K, L are fully invariant submodules of M with $J \cdot K \cdot L \leq N$, then $J \cdot K \leq N$ or $J \cdot L \leq N$ or $L \cdot K \leq N$. A generalization of 2-absorbing submodules is that the submodule N is said *n*-absorbing in M if whenever $K_1 \cdot K_2 \cdots K_{n+1} \leq N$ for fully invariant submodules $K_1, K_2, ..., K_{n+1}$ of *M*, there are $i_1, i_2, ..., i_n \in \{1, 2, ..., n+1\}$ such that $i_1 < i_2 < \cdots < i_n$ and $K_{i_1} \cdot K_{i_2} \cdots K_{i_n} \leq N$. We say that a precadical $1 \neq \sigma \in R$ -pr is called a quasi-n-absorbing preradical if whenever $\mu^n \nu \preceq \sigma$ for $\mu, \nu \in R$ -pr, then $\mu^n \preceq \sigma$ or $\mu^{n-1}\nu \preceq \sigma$. A preradical $1 \neq \sigma \in R$ -pr is called a *semi-n-absorbing preradical* if whenever $\mu^{n+1} \preceq \sigma$ for $\mu \in R$ -pr, then $\mu^n \preceq \sigma$. Let $M \in R$ -Ass. We say that a proper fully invariant submodule N of M is quasi-n-absorbing in M if for every fully invariant submodules K, L of M, $K^n \cdot L \leq N$ implies that $K^n \leq N$ or $K^{n-1} \cdot L \leq N$. A proper fully invariant submodule N of M is called *semi-n-absorbing in* M if for every fully invariant submodule K of M, $K^{n+1} \leq N$ implies that $K^n \leq N$. Notice that for every ideals I_1 and I_2 of R, $I_1 \cdot I_2 = \alpha_{I_1}^R(I_2) = I_1 I_2$. Therefore, an ideal I of R is a quasi-*n*-absorbing submodule of $_{R}R$ if and only if for any ideals I_1 , I_2 of R, $I_1^n I_2 \leq I$ implies that $I_1^n \leq I$ or $I_1^{n-1}I_2 \leq I$. Also, I is a semi-n-absorbing submodule of _RR if and only if for any ideal J of $R, J^{n+1} \leq I$ implies that $J^n \leq I$. An R-module M is said to be satisfies the α -property if $\tau(M) \cdot \eta(M) = (\tau \eta)(M)$ for every $\tau, \eta \in R\text{-}pr$, [19].

A ring R is called *left hereditary* if all of its left ideals are projective (see [8]).

Corollary 2.1 ([19, Corollary 2.5]). Let R be a left hereditary ring. Then R satisfies the α -property.

We recall the definition of relative mono-injectivity (see [16]). Let M and N be modules. N is said to be mono-M-injective if, for any submodule K of M and any monomorphism $f: K \to N$, there exists a homomorphism $g: M \to N$ with $g \mid_K = f$.

Proposition 2.2 ([19, Proposition 2.8(1)]). Let $M \in R$ -Mod. If every fully invariant submodule of M is mono-M-injective, then M satisfies the α -property.

Proposition 2.3 ([3, Proposition 5.6]). Let $M \in R$ -Mod. Assume that M is projective in $\sigma[M]$, and let K and N be submodules of M. Then $(K \cdot N) \cdot X = K \cdot (N \cdot X)$ for any module $_{R}X \in \sigma[M]$.

In the next sections we frequently use the following proposition.

Proposition 2.4 ([9, Proposition 1.2]). Let $\{M_{\gamma}\}_{\gamma \in I}$ and $\{N_{\gamma}\}_{\gamma \in I}$ be families of modules in R-Mod such that for each $\gamma \in I$, $N_{\gamma} \leq M_{\gamma}$. Let $N = \bigoplus_{\gamma \in I} N_{\gamma}$, $M = \bigoplus_{\gamma \in I} M_{\gamma}$, $N' = \prod_{\gamma \in I} N_{\gamma}$ and $M' = \prod_{\gamma \in I} M_{\gamma}$.

(1) If $N \leq_{fi} M$, then for each $\gamma \in I$, $N_{\gamma} \leq_{fi} M_{\gamma}$ and $\alpha_N^M = \bigvee_{\gamma \in I} \alpha_{N_{\gamma}}^{M_{\gamma}}$. (2) If $N' \leq_{fi} M'$, then for each $\gamma \in I$, $N_{\gamma} \leq_{fi} M_{\gamma}$ and $\omega_{N'}^{M'} = \bigwedge_{\gamma \in I} \omega_{N_{\gamma}}^{M_{\gamma}}$.

3. Quasi-*n*-absorbing preradicals

Suppose that m, n are positive integers with m > n. A preradical $\sigma \neq 1$ is called a quasi-(m, n)-absorbing preradical if whenever $\mu^{m-1}\nu \preceq \sigma$ for $\mu, \nu \in R$ -pr, then $\mu^n \preceq \sigma$ or $\mu^{n-1}\nu \prec \sigma.$

Proposition 3.1. Let $\sigma \in R$ -pr and m > n be positive integers. Then σ is quasi-(m, n)absorbing if and only if σ is quasi-n-absorbing.

Proof. Assume that σ is quasi-(m, n)-absorbing. Let $\mu^n \nu \preceq \sigma$ for some $\mu, \nu \in R$ -pr. Since $n \leq m-1$, then $\mu^{m-1}\nu \preceq \sigma$. Therefore $\mu^n \preceq \sigma$ or $\mu^{n-1}\nu \preceq \sigma$. Consequently σ is quasi-nabsorbing. Now, suppose that σ is quasi-*n*-absorbing. Let $\mu^{m-1}\nu \preceq \sigma$ for some $\mu, \nu \in R$ -pr. Therefore $\mu^n \mu^{(m-1-n)}\nu \preceq \sigma$. Hence $\mu^n \preceq \sigma$ or $\mu^{n-1}\mu^{(m-1-n)}\nu = \mu^{(m-2)}\nu \preceq \sigma$. Repeating this argument we obtain $\mu^n \preceq \sigma$ or $\mu^{n-1}\nu \preceq \sigma$. Thus σ is quasi-(m, n)-absorbing.

Remark 3.2. Let $\sigma \in R$ -pr.

- (1) σ is prime if and only if σ is quasi-1-absorbing if and only if σ is 1-absorbing.
- (2) If σ is quasi-*n*-absorbing, then it is quasi-*i*-absorbing for all $i \geq n$.
- (3) If σ is prime, then it is quasi-*n*-absorbing for all $n \geq 1$.
- (4) If σ is quasi-*n*-absorbing for some $n \geq 1$, then there exists the least $n_0 \geq 1$ such that σ is quasi- n_0 -absorbing. In this case, σ is quasi-n-absorbing for all $n \geq n_0$ and it is not quasi-*i*-absorbing for $n_0 > i > 0$.

Proposition 3.3. Let \mathcal{P} be a family of prime preradicals. Then $\bigwedge_{\sigma \in \mathcal{P}} \sigma$ is a quasi-iabsorbing preradical for every $i \geq 2$.

Proof. Let $\tau = \bigwedge_{\sigma \in \mathcal{P}} \sigma$. By part (2) of Remark 3.2, it is sufficient to show that τ is a quasi-2-absorbing preradical. Suppose that $\mu^2 \nu \preceq \tau$ for some $\mu, \nu \in R$ -pr. Since every $\sigma \in \mathcal{P}$ is prime and $\mu^2 \nu \preceq \sigma$, then $\mu \preceq \sigma$ or $\nu \preceq \sigma$. Therefore $\mu \nu \preceq \tau$, and so, we conclude that τ is a quasi-2-absorbing preradical.

Let $\rho = \wedge \{\omega_0^S \mid S \in R\text{-simp}\}$. Notice that for every *R*-module M, $\rho(M) = \operatorname{Rad}(M)$. As in [14], ρ is called the Jacobson radical.

As a direct consequence of Proposition 3.3 we have the following result.

Proposition 3.4. ρ is a quasi-i-absorbing preradical for every $i \geq 2$.

Proof. By [13, Corollary 24], for each simple *R*-module S, ω_0^S is prime. So by Proposition 3.3, we have the claim.

Proposition 3.5. If R is a semisimple Artinian ring, then every preradical $1 \neq \sigma \in R$ -pr is a quasi-i-absorbing preradical for every $i \geq 2$.

Proof. Suppose that R is a semisimple Artinian ring. According to [13, Remark 3], every coatom ω_I^R (I is a maximal ideal of R) is a prime preradical. On the other hand, [10, Theorem 11] implies that $\sigma = \bigwedge \{ \omega_I^R \mid I \text{ is a maximal ideal of } R, \ \omega_I^R \succeq \sigma \}$. Therefore, every preradical $1 \neq \sigma \in R$ -pr is quasi-*i*-absorbing for every $i \ge 2$, by Proposition 3.3.

Remark 3.6. Let $S_1, S_2, \ldots, S_{n+1} \in R$ -simp be distinct simple modules. Then by Proposition 3.3, $\omega_0^{S_1} \wedge \omega_0^{S_2} \wedge \cdots \wedge \omega_0^{S_{n+1}}$ is a quasi-*i*-absorbing preradical in *R*-pr for every $i \ge 2$. But, [19, Corollary 3.6] implies that $\omega_0^{S_1} \wedge \omega_0^{S_2} \wedge \cdots \wedge \omega_0^{S_{n+1}}$ is not an *n*-absorbing preradical. This remark shows that the two concepts of quasi-*n*-absorbing preradicals and of *n*-absorbing preradicals are different in general.

Corollary 3.7. If R is a ring such that every quasi-n-absorbing preradical in R-pr is n-absorbing, then $|R\text{-simp}| \leq n$.

Proposition 3.8. Let R be a ring. The following statements are equivalent:

- (1) For every preradicals $\mu, \nu \in R$ -pr, $\mu^n \nu = \mu^n$ or $\mu^n \nu = \mu^{n-1} \nu$;
- (2) For every preradicals $\sigma_1, \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr, $(\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_n)^n \preceq \sigma_1 \sigma_2 \cdots \sigma_{n+1}$ or $(\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_n)^{n-1} \sigma_{n+1} \preceq \sigma_1 \sigma_2 \cdots \sigma_{n+1};$
- (3) Every preradical $1 \neq \sigma \in R$ -pr is quasi-n-absorbing.

Proof. (1) \Rightarrow (2) If $\sigma_1, \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr, then we get from (1),

$$\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_n)^n = (\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_n)^n \sigma_{n+1} \preceq \sigma_1 \sigma_2 \cdots \sigma_{n+1},$$

or

$$(\sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n)^{n-1} \sigma_{n+1} = (\sigma_1 \wedge \sigma_2 \wedge \dots \wedge \sigma_n)^n \sigma_{n+1} \preceq \sigma_1 \sigma_2 \cdots \sigma_{n+1}.$$

(2) \Rightarrow (1) For preradicals $\mu, \nu \in R$ -pr, we have from (2), $\mu^n = (\mu \wedge \cdots \wedge \mu)^n \preceq \mu^n \nu$ or *n* times

 $\mu^{n-1}\nu = (\overbrace{\mu \wedge \cdots \wedge \mu}^{n-1}\nu \preceq \mu^n \nu.$ So we have that $\mu^n \nu = \mu^n$ or $\mu^n \nu = \mu^{n-1}\nu.$ (1) \Leftrightarrow (3) is trivial.

Proposition 3.9. Let $1 \neq \sigma \in R$ -pr be an idempotent radical.

- (1) If σ is such that for any $\mu, \nu \in R$ -pr, we have $\mu^n \nu \preceq \sigma \preceq \mu \land \nu \Rightarrow [\mu^n \preceq \sigma \text{ or } \mu^{n-1}\nu \preceq \sigma]$, then σ is quasi-n-absorbing.
- (2) If σ is such that for any $\mu_1, \mu_2, \ldots, \mu_{n+1} \in R$ -pr, we have

$$\mu_1\mu_2\cdots\mu_{n+1} \preceq \sigma \preceq \mu_1 \land \mu_2 \land \cdots \land \mu_{n+1} \Rightarrow$$
$$[\mu_1\cdots\hat{\mu_i}\cdots\mu_{n+1} \preceq \sigma, \text{ for some } 1 \leq i \leq n+1]$$

then σ is an n-absorbing preradical.

Proof. (1) Let $\sigma \neq 1$ be an idempotent radical that satisfies the hypothesis stated in (1). Let $\tau^n \lambda \preceq \sigma$ for some $\tau, \lambda \in R$ -pr. Then, by [10, Theorem 8(3)] we have

$$(\sigma:\tau)^n(\sigma:\lambda) = (\sigma:\tau^n\lambda) \preceq (\sigma:\sigma) = \sigma \preceq (\sigma:\tau) \land (\sigma:\lambda)$$

So, by hypothesis we have $\tau^n \preceq (\sigma : \tau^n) = (\sigma : \tau)^n \preceq \sigma$ or $\tau^{n-1}\lambda \preceq (\sigma : \tau^{n-1}\lambda) = (\sigma : \tau)^{n-1}(\sigma : \lambda) \preceq \sigma$. Therefore σ is quasi-*n*-absorbing.

(2) The proof is similar to that of (1).

Proposition 3.10. Let \mathcal{P} be a chain of quasi-*n*-absorbing preradicals, that is, a subclass of quasi-*n*-absorbing preradicals which is linearly ordered. Then $\bigwedge_{\sigma \in \mathcal{P}} \sigma$ is a quasi-*n*-absorbing preradical.

Proof. Let $\tau = \bigwedge_{\sigma \in \mathcal{P}} \sigma$ and suppose that $\mu^n \nu \leq \tau$ for some $\mu, \nu \in R$ -pr. If $\mu^n \leq \sigma$ for each $\sigma \in \mathcal{P}$, then $\mu^n \leq \tau$. If there is $\sigma_0 \in \mathcal{P}$ such that $\mu^n \not\leq \sigma_0$, then $\mu^n \not\leq \sigma$ for each $\sigma \leq \sigma_0$. Since all preradicals in \mathcal{P} are quasi-*n*-absorbing, it follows that $\mu^{n-1}\nu \leq \sigma$ for each $\sigma \leq \sigma_0$. Thus $\mu^{n-1}\nu \leq \sigma$ for each $\sigma \in \mathcal{P}$, so that $\mu^{n-1}\nu \leq \tau$. We conclude that τ is a quasi-*n*-absorbing preradical.

Theorem 3.11. Let $M \in R$ -Ass and N be a fully invariant submodule of M. Consider the following statements:

- (1) N is n-absorbing in M.
- (2) ω_N^M is an n-absorbing preradical. Then (2) \Rightarrow (1), and if M satisfies the α -property, then (1) \Rightarrow (2).

Proof. Similar to the proof of [19, Theorem 4.2].

We recall that the commutative hereditary domains are precisely the Dedekind domains. The following remark shows that the two concepts of quasi-(n + 1)-absorbing preradicals ((n + 1)-absorbing preradicals) and of quasi-*n*-absorbing preradicals are different in

general. Also, in this remark we can observe that the intersection of two quasi-n-absorbing

preradicals may not be quasi-*n*-absorbing. **Remark 3.12.** Let p, q be distinct prime numbers. By [13, Theorem 15], $\omega_{p\mathbb{Z}}^{\mathbb{Z}}$ is a prime preradical in \mathbb{Z} -pr. On the other hand, $\omega_{p^n\mathbb{Z}}^{\mathbb{Z}}$ is an *n*-absorbing preradical, by [1, p. 1650] and Theorem 3.11. Hence, [19, Proposition 3.5] implies that $\omega_{p^n\mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q\mathbb{Z}}^{\mathbb{Z}}$ is an (n + 1)-absorbing preradical, and so it is quasi-(n + 1)-absorbing preradical. If $\omega_{p^n\mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q\mathbb{Z}}^{\mathbb{Z}}$ is a quasi-*n*-absorbing preradical, $\left(\omega_{p\mathbb{Z}}^{\mathbb{Z}}\right)^n \omega_{q\mathbb{Z}}^{\mathbb{Z}} \preceq \omega_{p^n\mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q\mathbb{Z}}^{\mathbb{Z}}$ implies that either $\left(\omega_{p\mathbb{Z}}^{\mathbb{Z}}\right)^n \preceq \omega_{q\mathbb{Z}}^{\mathbb{Z}}$ or

 $\left(\omega_{p\mathbb{Z}}^{\mathbb{Z}}\right)^{n-1}\omega_{q\mathbb{Z}}^{\mathbb{Z}} \preceq \omega_{p^n\mathbb{Z}}^{\mathbb{Z}}$. Therefore, by Corollary 2.1 we have that $p^n \in q\mathbb{Z}$ or $p^{n-1}q \in p^n\mathbb{Z}$. These contradictions show that $\omega_{p^n\mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q\mathbb{Z}}^{\mathbb{Z}}$ is not quasi-*n*-absorbing.

Proposition 3.13. If σ_i is a quasi- n_i -absorbing prevadical in R-pr for every $1 \le i \le k$, then $\sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$ is a quasi-n-absorbing prevadical for $n = n_1 + \cdots + n_k$.

Proof. Let $\mu, \nu \in R$ -pr be such that $\mu^n \nu \preceq \sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$. Note that σ_i is quasi- n_i -absorbing, for every $1 \le i \le k$. Then for every $1 \le i \le k$, σ_i is $(n+1,n_i)$ -absorbing, by Proposition 3.1. Hence, for every $1 \le i \le k$, either $\mu^{n_i} \preceq \sigma_i$ or $\mu^{n_i-1}\nu \preceq \sigma_i$. If for every $1 \le i \le k$, $\mu^{n_i} \preceq \sigma_i$, then $\mu^n \preceq \sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$. If for every $1 \le i \le k$, $\mu^{n_i-1}\nu \preceq \sigma_i$, then $\mu^{n-1}\nu \preceq \sigma_i \land \sigma_i$. Otherwise, without loss of generality we may assume that there exists $1 \le j < k$ such that $\mu^{n_i} \preceq \sigma_i$ for every $1 \le i \le j$ and $\mu^{n_i-1}\nu \preceq \sigma_i$ for every $j+1 \le i \le k$. Hence, $\mu^{n-1}\nu \preceq \sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$ which shows that $\sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$ is a quasi-n-absorbing prevadical.

Proposition 3.14. Let $\sigma_1, \sigma_2, \ldots, \sigma_t \in R$ -pr.

- (1) If σ_1 is a quasi-n-absorbing preradical and σ_2 is a quasi-m-absorbing preradical for m < n, then $\sigma_1 \wedge \sigma_2$ is a quasi-(n + 1)-absorbing preradical.
- (2) If $\sigma_1, \sigma_2, \ldots, \sigma_t$ are quasi-*n*-absorbing preradicals, then $\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_t$ is a quasi-(n+t-1)-absorbing preradical.
- (3) If σ_i is a quasi- n_i -absorbing preradical for every $1 \le i \le t$ with $n_1 < n_2 < \cdots < n_t$ and t > 2, then $\sigma_1 \land \sigma_2 \land \cdots \land \sigma_t$ is a quasi- $(n_t + 1)$ -absorbing preradical.

- **Proof.** (1) Let $\mu, \nu \in R$ -pr be such that $\mu^{n+1}\nu \preceq \sigma_1 \land \sigma_2$. Since σ_1 is quasiabsorbing, then, by Proposition 3.1, σ_1 is quasi-(n+2, n)-absorbing. Hence, either $\mu^n \preceq \sigma_1$ or $\mu^{n-1}\nu \preceq \sigma_1$. Also, σ_2 is quasi-*m*-absorbing, so, again by Proposition 3.1, either $\mu^m \preceq \sigma_2$ or $\mu^{m-1}\nu \preceq \sigma_2$. There are four cases. **Case 1.** Suppose that $\mu^n \preceq \sigma_1$ and $\mu^m \preceq \sigma_2$. Then $\mu^n \preceq \sigma_1 \land \sigma_2$. **Case 2.** Suppose that $\mu^n \preceq \sigma_1$ and $\mu^{m-1}\nu \preceq \sigma_2$. Then $\mu^n\nu \preceq \sigma_1 \land \sigma_2$. **Case 3.** Suppose that $\mu^{n-1}\nu \preceq \sigma_1$ and $\mu^m \preceq \sigma_2$. Then $\mu^{n-1}\nu \preceq \sigma_1 \land \sigma_2$.
 - **Case 4.** Suppose that $\mu^{n-1}\nu \leq \sigma_1$ and $\mu^{m-1}\nu \leq \sigma_2$. Then $\mu^{n-1}\nu \leq \sigma_1 \wedge \sigma_2$. Consequently $\sigma_1 \wedge \sigma_2$ is quasi-(n+1)-absorbing.
 - (2) We use induction on t. For t = 1 there is nothing to prove. Let t > 1 and assume that for t-1 the claim holds. Then $\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_{t-1}$ is quasi-(n+t-1)-absorbing. Since σ_t is quasi-n-absorbing, then it is quasi-(n + t 2)-absorbing, by Remark 3.2(2). Therefore $\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_t$ is quasi-(n + t 1)-absorbing by part (1).
 - (3) Induction on t. For t = 3 apply parts (1) and (2). Let t > 3 and suppose that for t-1 the claim holds. Hence $\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_{t-1}$ is quasi- $(n_{t-1}+1)$ -absorbing. We consider the following cases:

Case 1. Let $n_{t-1} + 1 < n_t$. In this case $\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_t$ is quasi- $(n_t + 1)$ -absorbing by part (1).

Case 2. Let $n_{t-1} + 1 = n_t$. Thus $\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_t$ is quasi- $(n_t + 1)$ -absorbing by part (2).

Proposition 3.15. Let $\sigma \in R$ -pr be idempotent. If σ is quasi-n-absorbing, then $c(\sigma)$ is quasi-n-absorbing.

Proof. Assume that σ is quasi-*n*-absorbing, and let $\mu^n \nu \leq c(\sigma)$ for some $\mu, \nu \in R$ -pr. Then $(\sigma : \mu)^n (\sigma : \nu) \leq (\sigma : \mu^n \nu) \leq (\sigma : c(\sigma)) = \sigma$. Since σ is quasi-*n*-absorbing and idempotent either $(\sigma : \mu)^n = (\sigma : \mu^n) \leq \sigma$ or $(\sigma : \mu)^{n-1} (\sigma : \nu) = (\sigma : \mu^{n-1} \nu) \leq \sigma$, and so either $(\sigma : \mu^n) = \sigma$ or $(\sigma : \mu^{n-1} \nu) = \sigma$. By definition of co-equalizer either $\mu^n \leq c(\sigma)$ or $\mu^{n-1}\nu \leq c(\sigma)$. Consequently, $c(\sigma)$ is quasi-*n*-absorbing.

The annihilator operator can be generalized to a relative annihilator, which can be considered also as an operator $\mathbf{r}.\mathbf{a}_{\tau}: R\text{-}\mathrm{pr} \to R\text{-}\mathrm{pr}.$

Definition 3.16. Let σ , $\tau \in R$ -pr. The right annihilator of σ relative to τ is $\mathbf{r}.\mathbf{a}_{\tau}(\sigma) = \bigvee \{\rho \in R$ -pr| $\sigma \rho \leq \tau \}$. The operator $\mathbf{r}.\mathbf{a}_0$ is denoted by $\mathbf{r}.\mathbf{a}$, and $\mathbf{r}.\mathbf{a}(\sigma)$ is called the right annihilator of σ .

Each $\sigma \in R$ -pr has a unique pseudocomplement σ^{\perp} such that if $\tau \in R$ -pr and $\sigma \wedge \tau = 0$ then $\tau \leq \sigma^{\perp}$, [12, Theorem 4]. This pseudocomplement can be described as $\sigma^{\perp} = \bigwedge \{\omega_0^{E(S)} \mid S \in R \text{-simp } \sigma(E(S)) \neq 0\}$ (see [11]).

Proposition 3.17. Let $\sigma \in R$ -pr. If σ is quasi-n-absorbing, then for each $\tau \in R$ -pr with $\tau^n \not\preceq \sigma$, $\mathbf{r}.\mathbf{a}_{\sigma}(\tau^n) = \mathbf{r}.\mathbf{a}_{\sigma}(\tau^{n-1})$. Moreover $\tau^{n-1}(\tau^n)^{\perp} \preceq \sigma$.

Proof. Suppose that σ is quasi-*n*-absorbing and let $\tau \in R$ -pr such that $\tau^n \not\preceq \sigma$. If $\rho \in R$ -pr is such that $\tau^n \rho \preceq \sigma$, then $\tau^{n-1}\rho \preceq \sigma$, since σ is quasi-*n*-absorbing. Therefore $\mathbf{r}.\mathbf{a}_{\sigma}(\tau^n) \preceq \mathbf{r}.\mathbf{a}_{\sigma}(\tau^{n-1})$. On the other hand, $\mathbf{r}.\mathbf{a}_{\sigma}(\tau^{n-1}) \preceq \mathbf{r}.\mathbf{a}_{\sigma}(\tau^n)$. So the equality holds. Note that $\tau^n(\tau^n)^{\perp} \preceq \tau^n \land (\tau^n)^{\perp} = 0$. Thus $\tau^{n-1}(\tau^n)^{\perp} \preceq \sigma$, since σ is quasi-*n*-absorbing and $\tau^n \not\preceq \sigma$.

Corollary 3.18. Let R be a ring. If 0 is a quasi-n-absorbing preradical in R-pr, then for each $\tau \in R$ -pr, either $\tau^n = 0$ or $\mathbf{r.a}(\tau^n) = \mathbf{r.a}(\tau^{n-1})$.

Proof. By Proposition 3.17.

4. Semi-*n*-absorbing preradicals

Suppose that m, n are positive integers with n > m. A more general concept than semin-absorbing preradicals is the concept of semi-(n, m)-absorbing preradicals. A preradical $\sigma \neq 1$ is called a *semi-*(n, m)-*absorbing preradical* if whenever $\mu^n \preceq \sigma$ for $\mu \in R$ -pr, then $\mu^m \prec \sigma$.

Note that a semiprime preradical is just a semi-1-absorbing preradical.

Theorem 4.1. Let $\sigma \in R$ -pr and m, n be positive integers with n > m.

- (1) If σ is quasi-(n, m)-absorbing, then it is semi-(n, m)-absorbing.
- (2) σ is semi-(n, m)-absorbing if and only if σ is semi-(n, k)-absorbing for each $n > k \ge m$ if and only if σ is semi-(i, j)-absorbing for each $n \ge i > j \ge m$.
- (3) If σ is semi-(n, m)-absorbing, then it is semi-(nk, mk)-absorbing for every positive integer k.
- (4) If σ is semi-(n, m)-absorbing and semi-(r, s)-absorbing for some positive integers r > s, then it is semi-(nr, ms)-absorbing.

Proof. (1) Is trivial.

- (2) Straightforward.
- (3) Assume that σ is semi-(n, m)-absorbing. Let $\mu \in R$ -pr and let k be a positive integer such that $\mu^{nk} \preceq \sigma$. Then $(\mu^k)^n \preceq \sigma$. Since σ is semi-(n, m)-absorbing, $(\mu^k)^m = \mu^{mk} \preceq \sigma$, and so σ is semi-(nk, mk)-absorbing.
- (4) Suppose that σ is semi-(n, m)-absorbing and semi-(r, s)-absorbing for some positive integers r > s. Let μ^{nr} ≤ σ. Since σ is semi-(n, m)-absorbing, μ^{mr} ≤ σ, and since σ is semi-(r, s)-absorbing, μ^{ms} ≤ σ. Hence σ is semi-(nr, ms)-absorbing.

Corollary 4.2. Let $\sigma \in R$ -pr and n be a positive integer.

- (1) If σ is quasi-*n*-absorbing, then it is semi-*n*-absorbing.
- (2) Let $t \leq n$ be an integer. If σ is semi-(n+1,t)-absorbing, then it is semi-(nk+i,tk)-absorbing for all $k \geq i \geq 1$.
- (3) If σ is semi-n-absorbing, then it is semi-(nk + i, nk)-absorbing for all $k \ge i \ge 1$.
- (4) If σ is semi-n-absorbing, then it is semi-(nk + j)-absorbing for all $k > j \ge 0$.
- (5) If σ is semi-n-absorbing, then it is semi-(nk)-absorbing for every positive integer k.
- (6) If σ is semiprime, then it is semi-k-absorbing for every positive integer k.
- (7) If σ is semiprime, then for every $k \ge 1$ and every $\mu \in R$ -pr, $\mu^k \preceq \sigma$ implies that $\mu \preceq \sigma$.
- (8) If σ is semi-n-absorbing, then it is semi-($(n+1)^t, n^t$)-absorbing for all $t \ge 1$.
- (9) If σ is semiprime, then it is quasi-k-absorbing for every k > 1.

Proof. (1) By Theorem 4.1(1).

- (2) Let σ be semi-(n+1, t)-absorbing. Then, by Theorem 4.1(3), σ is semi-(nk+k, tk)-absorbing, for every positive integer k. Hence, by Theorem 4.1(2), σ is semi-(nk+i, tk)-absorbing for every $k \ge i \ge 1$.
- (3) In part (2) get t = n.
- (4) By part (3).
- (5) Is a special case of (4).
- (6) Is a direct consequence of (5).
- (7) By part (6).
- (8) By Theorem 4.1(4).
- (9) Assume that σ is semiprime. Let $\mu^k \nu \preceq \sigma$ for some $\mu, \nu \in R$ -pr and some k > 1. Then $(\mu \nu)^k \preceq \mu^k \nu \preceq \sigma$. Therefore $\mu \nu \preceq \sigma$, by part (7). So σ is quasi-k-absorbing.

Proposition 4.3. Let $\sigma_1, \sigma_2, \ldots, \sigma_n \in R$ -pr. If for every $1 \le i \le n$, σ_i is a semiprime preradical, then $\sigma_1 \sigma_2 \cdots \sigma_n$ is a semi-n-absorbing preradical. In particular, if σ is a semiprime preradical, then σ^n is a semi-n-absorbing preradical.

Proof. Use Corollary 4.2 (7).

Lemma 4.4. Let $\sigma \in R$ -pr. If σ^{n+1} is a semi-n-absorbing preradical, then $\sigma^{n+1} = \sigma^n$. In particular, if σ^2 is a semiprime preradical, then σ is idempotent.

The following remark shows that the two concepts of semi-*n*-absorbing preradicals and of semi-(n + 1)-absorbing preradicals are different in general.

Remark 4.5. Let n > 1, R be a left hereditary ring and I be a two-sided prime ideal of R. Since ω_I^R is a prime preradical, $(\omega_I^R)^{n+1}$ is a semi-(n+1)-absorbing preradical, by Proposition 4.3. If $(\omega_I^R)^{n+1}$ is a semi-n-absorbing preradical, then $(\omega_I^R)^{n+1} = (\omega_I^R)^n$, and so $I^{n+1} = I^n$, by Corollary 3.1. Consequently, for any prime number p, $(\omega_{p\mathbb{Z}}^{\mathbb{Z}})^{n+1}$ is a semi-(n+1)-absorbing preradical in \mathbb{Z} -pr which is not a semi-n-absorbing preradical.

Proposition 4.6. Let $\sigma \in R$ -pr, $\sigma \neq 1$ be an idempotent radical. If σ is such that for any $\mu \in R$ -pr, we have $\mu^{n+1} \preceq \sigma \preceq \mu \Rightarrow \mu^n \preceq \sigma$, then σ is semi-n-absorbing.

Proof. The proof is similar to that of Proposition 3.9(1).

Proposition 4.7. Let $\sigma_1, \sigma_2, \ldots, \sigma_n \in R$ -pr be semi-2-absorbing preradicals. Then $\sigma_1 \sigma_2 \cdots \sigma_n$ is a semi- $(3^n - 1)$ -absorbing preradical.

Proof. Suppose that $\mu^{3^n} \preceq \sigma_1 \sigma_2 \cdots \sigma_n$ for some $\mu \in R$ -pr. For every $1 \leq i \leq n$, $\mu^{3^n} \preceq \sigma_i$ and σ_i is semi-2-absorbing, then $\mu^{2^n} \preceq \sigma_i$. Therefore $\mu^{n2^n} \preceq \sigma_1 \sigma_2 \cdots \sigma_n$. On the other hand, $n2^n \leq 3^n - 1$. So $\mu^{3^n - 1} \preceq \sigma_1 \sigma_2 \cdots \sigma_n$ which shows that $\sigma_1 \sigma_2 \cdots \sigma_n$ is semi- $(3^n - 1)$ -absorbing.

Theorem 4.8. If σ_i is a semi- n_i -absorbing preradical in R-pr for every $1 \le i \le k$, then $\sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$ is a semi-(n-1)-absorbing preradical for $n = \prod_{i=1}^k (n_i+1)$.

Proof. Let $\mu \in R$ -pr be such that $\mu^n \preceq \sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$. Then for every $1 \leq i \leq k$, $(\mu^m)^{(n_i+1)} \preceq \sigma_i$, where $m = \prod_{j=1, j \neq i^k(n_j+1)}$). Since σ_i 's are semi- n_i -absorbing, then, for

each $1 \leq i \leq k$, $\mu^{n_i m} \preceq \sigma_i$. Note that for every $1 \leq i \leq k$, $n_i m \leq \prod_{i=1}^k (n_i + 1) - 1 = n - 1$. So we have $\mu^{n-1} \preceq \sigma_i$ for every $1 \leq i \leq k$. Hence $\mu^{n-1} \preceq \sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$ which implies that $\sigma_1 \land \sigma_2 \land \cdots \land \sigma_k$ is a semi-(n-1)-absorbing prevadical.

Proposition 4.9. Let $\sigma_1, \sigma_2 \in R$ -pr and m, n be positive integers.

- (1) If σ_1 is quasi-m-absorbing and σ_2 is semi-n-absorbing, then $\sigma_1\sigma_2$ is semi-(n(m + 1) + m)-absorbing.
- (2) If σ_1 is quasi-(2m)-absorbing and σ_2 is semi-m-absorbing, then $\sigma_1\sigma_2$ is semi-(m(m+2))-absorbing.
- **Proof.** (1) Assume that $\mu^{(n+1)(m+1)} \leq \sigma_1 \sigma_2$ for some $\mu \in R$ -pr. Since σ_1 is quasi-*m*-absorbing and $\mu^{(n+1)(m+1)} \leq \sigma_1$, then $\mu^m \leq \sigma_1$. On the other hand, σ_2 is semi-*n*-absorbing and $\mu^{(n+1)(m+1)} \leq \sigma_2$, then $\mu^{n(m+1)} \leq \sigma_2$. Consequently $\mu^{n(m+1)+m} \leq \sigma_1 \sigma_2$, and so $\sigma_1 \sigma_2$ is semi-(n(m+1)+m)-absorbing.
 - (2) Suppose that $\mu^{(m+1)^2} \leq \sigma_1 \sigma_2$ for some $\mu \in R$ -pr. Since σ_1 is quasi-(2m)-absorbing and $\mu^{(m+1)^2} \leq \sigma_1$, then $\mu^{2m} \leq \sigma_1$. Since σ_2 is semi-m-absorbing and $\mu^{(m+1)^2} \leq \sigma_2$,

then $\mu^{m^2} \leq \sigma_2$. Hence $\mu^{m^2+2m} \leq \sigma_1 \sigma_2$ which shows that $\sigma_1 \sigma_2$ is semi-(m(m+2))absorbing.

- (1) For every preradical $\sigma \in R$ -pr, $\sigma^{n+1} = \sigma^n$;
- (2) For all preradicals $\sigma_1 \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr we have $(\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_{n+1})^n \preceq$ $\sigma_1 \sigma_2 \cdots \sigma_{n+1};$
- (3) Every preradical $1 \neq \sigma \in R$ -pr is semi-n-absorbing.

Proof. (1) \Rightarrow (2) If $\sigma_1, \sigma_2, \ldots, \sigma_{n+1} \in R$ -pr, then from (1),

$$(\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_{n+1})^n = (\sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_{n+1})^{n+1} \preceq \sigma_1 \sigma_2 \cdots \sigma_{n+1}.$$

(2) \Rightarrow (1) For a precadical $\sigma \in R$ -pr, we get from (2), $\sigma^n = (\overbrace{\sigma \land \cdots \land \sigma}^{n+1})^n \preceq \sigma^{n+1}$. So we have that $\sigma^{n+1} = \sigma^n$. \square

 $(1) \Leftrightarrow (3)$ It is obvious.

Remark 4.11. Let $\{\sigma_{\alpha}\}_{\alpha \in I} \subseteq R$ -pr. If σ_{α} is semi-*n*-absorbing for every $\alpha \in I$, then $\bigwedge_{\alpha \in I} \sigma_{\alpha}$ is semi-*n*-absorbing.

The following remark shows that the two concepts of semi-*n*-absorbing preradicals and of quasi-n-absorbing (n-absorbing) preradicals are different in general.

Remark 4.12. Let p, q be distinct prime numbers. By Remark 4.11, $\omega_{p^n\mathbb{Z}}^{\mathbb{Z}} \wedge \omega_{q\mathbb{Z}}^{\mathbb{Z}}$ is a semi-*n*-absorbing preradical, but it is not quasi-*n*-absorbing, by Remark 3.12.

Proposition 4.13. Let $\sigma \in R$ -pr be idempotent. If σ is semi-n-absorbing, then $c(\sigma)$ is semi-n-absorbing.

Proof. Is similar to the proof of Proposition 3.15.

In Proposition 17 of [14], it was shown that $\sigma_0 := \bigwedge \{ \sigma \in R \text{-pr} \mid \sigma \text{ is semiprime} \}$ is the unique least semiprime preradical.

Proposition 4.14. There exists in R-pr a unique least semi-n-absorbing preradical.

Proof. Set $\sigma_0^{(n)} = \bigwedge \{ \sigma \in R \text{-pr} \mid \sigma \text{ is semi-}n\text{-absorbing} \}$. By Remark 4.11, $\sigma_0^{(n)}$ is the least semi-*n*-absorbing preradical.

By notation in the proof of the previous proposition we have that $\sigma_0^{(1)} = \sigma_0$.

Remark 4.15. As ρ is a semiprime preradical, then $\sigma_0 \leq \rho$. Also ρ^n is a semi-*n*-absorbing preradical, by Proposition 4.3. Therefore, $\sigma_0^{(n)} \leq \rho^n$.

Proposition 4.16. The following statements hold:

(1)
$$\sigma_0 = \bigvee_{n \ge 1} \sigma_0^{(n)}$$
.
(2) $\sigma_0^{(nk)} \preceq \sigma_0^{(n)}$ for every positive integer k.
(3) $\sigma_0^{(n)} \preceq \sigma^n$ for every semiprime prenadical σ .

Proof. (1) By Corollary 4.2(6), every semiprime preradical is semi-*n*-absorbing for every $n \geq 1$. Then $\sigma_0^{(n)} \preceq \sigma_0$ for every $n \geq 1$.

(2) By Corollary 4.2(5).

(3) By Proposition 4.3.

In Proposition 20 of [14] it was shown that $\nu^0 \preceq \sigma_0$, where $\nu^0 = \bigvee \{\tau \mid \tau \in R\}$ pr. τ is nilpotent}.

The following proposition is straightforward.

 \square

Proposition 4.17. Suppose that $\nu_{(n)}^0 = \bigvee \{\tau^n \mid \tau \in R\text{-}pr, \ \tau^{n+1} = 0\}$. Then:

(1) $\nu_{(n)}^0 \preceq \sigma_0^{(n)}$. (2) $\nu_{(1)}^0 \preceq \nu^0$.

Corollary 4.18. The following statements hold:

(1) If $\rho^{n+1} = 0$, then $\nu^0_{(n)} = \sigma^{(n)}_0 = \sigma^n_0 = \rho^n$. (2) If $\rho^2 = 0$, then $\nu^0_{(1)} = \sigma_0 = \rho = \nu^0$.

Proof. (1) By Remark 4.15 and Proposition 4.17 we have that $\nu_{(n)}^0 \preceq \sigma_0^{(n)} \preceq \sigma_0^n \preceq \rho^n$. If $\rho^{n+1} = 0$, then $\rho^n \preceq \nu_{(n)}^0$, and so $\nu_{(n)}^0 = \sigma_0^{(n)} = \sigma_0^n = \rho^n$.

(2) By part (1) and [14, Corollary 21].

Proposition 4.19. For a ring R the following statements are equivalent:

(1) For every $\mu \in R$ -pr, $\mu^{n+1} = 0$ implies that $\mu^n = 0$; (2) 0 is a semi-n-absorbing preradical; (3) $\sigma_0^{(n)} = 0;$ (4) $\nu_{(n)}^0 = 0.$

Proof. It can be easily proved.

Notation 4.20. Let $\tau \in R$ -pr. Define

$$S^{(n)}(\tau) = \bigwedge \{ \sigma \in R \text{-pr} \mid \tau \preceq \sigma, \ \sigma \text{ semi-}n\text{-absorbing} \},\$$

which is the unique least semi-*n*-absorbing preradical greater than or equal to τ . Notice that in [14], $S^{(1)}$ is denoted by S.

Proposition 4.21. Let R be a ring.

(1)
$$\sigma_0^{(n)} = S^{(n)}(0) = \bigwedge_{\tau \in R\text{-}pr} S^{(n)}(\tau).$$

- (2) For each $\tau \in R$ -pr, $\tau \preceq S^{(n)}(\tau)$.
- (3) For each $\tau, \sigma \in R$ -pr we have $\tau \preceq \sigma \Rightarrow S^{(n)}(\tau) \preceq S^{(n)}(\sigma)$. (4) For each $\tau \in R$ -pr, $S^{(n)}(\tau^{n+1}) = S^{(n)}(\tau^n)$.
- (5) For each $\tau \in R$ -pr, τ is semi-n-absorbing if and only if $\tau = S^{(n)}(\tau)$.
- (6) $\{\tau \in R\text{-}pr \mid \tau \text{ is semi-n-absorbing}\} = Im S^{(n)} = \{S^{(n)}(\sigma) \mid \sigma \in R\text{-}pr\}.$
- (7) $[S^{(n)}]^2 = S^{(n)}$. Then, $S^{(n)}$ is a closure operator on R-pr.
- (8) For each family $\{\tau_{\alpha}\}_{\alpha\in I}\subseteq R$ -pr, we have $S^{(n)}(\bigvee_{\alpha\in I}\tau_{\alpha})=S^{(n)}(\bigvee_{\alpha\in I}S^{(n)}(\tau_{\alpha})).$
- (9) $S^{(n)} = \bigvee_{k \ge 1} S^{(nk)}$, in particular $S = \bigvee_{k \ge 1} S^{(k)}$.

(10) $S^{(n)}(\sigma^{n+1}) = S^{(n)}(\sigma^n) = \sigma^n$ for every semiprime prevadical σ .

Proof. (1), (2), (3), (5) and (6) are evident.

(4) For every $\tau \in R$ -pr, part (3) implies that $S^{(n)}(\tau^{n+1}) \preceq S^{(n)}(\tau^n)$. Since $S^{(n)}(\tau^{n+1})$ is semi-n-absorbing (by Remark 4.11) and $\tau^{n+1} \preceq S^{(n)}(\tau^{n+1})$, then $\tau^n \preceq S^{(n)}(\tau^{n+1})$. Hence $S^{(n)}(\tau^n) \preceq S^{(n)}(\tau^{n+1})$. Consequently the equality holds.

(7) Is a direct consequence of part (5).

- (8) The proof is similar to that of [14, Proposition 25](5).
- (9) Use Corollary 4.2(5).
- (10) By Proposition 4.3 and parts (4), (5).

Now consider the operator (_) in R-pr that assigns to each preradical σ the greatest idempotent below σ (see [15, p. 137]).

Lemma 4.22. Let $\sigma, \tau \in R$ -pr such that σ is idempotent and τ is semi-n-absorbing. Then:

(1) $\sigma \prec \widehat{S^{(n)}(\sigma)} \prec S^{(n)}(\sigma)$. (2) $S^{(n)}(\sigma) = S^{(n)}(\widehat{S^{(n)}(\sigma)})$. (3) $\widehat{\tau} \preceq S^{(n)}(\widehat{\tau}) \preceq \tau$.

(4)
$$\tau = S^{(n)}(\tau)$$
.

Proof. Similar to the proof of [14, Lemma 26].

The following result is a direct consequence of the previous properties.

Proposition 4.23. Let R be a ring.

- (1) The operator $S^{(n)}(-)$ defines a closure operator on the ordered class of idempotent preradicals.
- (2) The operator $S^{(n)}(\widehat{(-)})$ defines an interior operator on the ordered class of semi*n*-absorbing preradicals.

Notice that the "closed" idempotent preradicals associated with the closure operator $S^{(n)}(_)$ are

 $\mathcal{C}_{id}^{(n)} = \{ \sigma \text{ idempotent } | \ \sigma = \hat{\tau} \text{ for some semi-}n\text{-absorbing } \tau \}.$

The "open" semi-*n*-absorbing preradicals associated with the interior operator $S^{(n)}(\widehat{(-)})$ are

 $\mathcal{O}_{sa}^{(n)} = \{\tau \text{ semi-}n\text{-absorbing} \mid \tau = S^{(n)}(\sigma) \text{ for some idempotent } \sigma\}.$

The following result is immediate.

Corollary 4.24. For a ring R the operators $S^{(n)}(_)$ and $\widehat{(_)}$ restrict to mutually inverse maps between $C_{id}^{(n)}$ and $O_{sa}^{(n)}$.

Definition 4.25. Let $\tau \in R$ -pr. Define $S_1^{(n)}(\tau) = \bigvee \{ \sigma^n \mid \sigma \in R$ -pr, $\sigma^{n+1} \preceq \tau \}$.

Proposition 4.26. Let R be a ring.

- (1) For each $\tau \in R$ -pr, $\tau^n \preceq S_1^{(n)}(\tau)$.
- (2) For each $\tau \in R$ -pr, τ is semi-n-absorbing if and only if $S_1^{(n)}(\tau) \preceq \tau$.
- (3) 0 is a semi-n-absorbing preradical if and only if $S_1^{(n)}(0) = 0$.
- (4) Let τ , $\sigma \in R$ -pr. If $\tau \preceq \sigma$, then $S_1^{(n)}(\tau) \preceq S_1^{(n)}(\sigma)$. (5) For each family $\{\tau_{\alpha}\}_{\alpha \in I} \subseteq R$ -pr, $S_1^{(n)}(\bigwedge_{\alpha \in I} \tau_{\alpha}) \preceq \bigwedge_{\alpha \in I} S_1^{(n)}(\tau_{\alpha})$ and $\bigvee_{\alpha \in I} S_1^{(n)}(\tau_{\alpha})$ $\leq S_1^{(n)}(\bigvee_{\alpha\in I}\tau_\alpha).$

Proof. The assertions have straightforward verifications.

We apply an "Amitsur construction" to $S_1^{(n)}$ as follows:

Definition 4.27. Let $\tau \in R$ -pr. We define recursively the preradical $S_{\lambda}^{(n)}(\tau)$ for each ordinal λ as follows:

(1)
$$S_0^{(n)}(\tau) = \tau.$$

- (2) $S_{\lambda+1}^{(n)}(\tau) = S_1^{(n)}(S_{\lambda}^{(n)}(\tau)).$
- (3) If λ is a limit ordinal, then $S_{\lambda}^{(n)}(\tau) = \bigvee_{\beta < \lambda} S_{\beta}^{(n)}(\tau)$.

(4)
$$S_{\Omega}^{(n)}(\tau) = \bigvee_{\lambda \text{ ordinal}} S_{\lambda}^{(n)}(\tau)$$

Proposition 4.28. Let $\tau \in R$ -pr. Then the following statements are equivalent:

- (1) τ is semi-n-absorbing;
- (2) For each ordinal λ , $S_{\lambda}^{(n)}(\tau) \preceq \tau$;
- (3) $S_{\Omega}^{(n)}(\tau) = \tau.$

Proof. By Proposition 4.26 and applying transfinite induction we have the claim. \Box

As is the case with $S_1^{(n)}$, all of the operators $S_{\lambda}^{(n)}$ preserve order between preradicals.

Proposition 4.29. Let τ , $\sigma \in R$ -pr be such that $\tau \preceq \sigma$. Then:

(1) For each ordinal λ , $S_{\lambda}^{(n)}(\tau) \preceq S_{\lambda}^{(n)}(\sigma)$. (2) $S_{\Omega}^{(n)}(\tau) \preceq S_{\Omega}^{(n)}(\sigma)$.

Proposition 4.30. For each $\tau \in R$ -pr, $S_{\Omega}^{(n)}(\tau) \preceq S^{(n)}(\tau)$.

Proof. Let $\tau \in R$ -pr. By transfinite induction, we have that $S_0^{(n)}(\tau) = \tau \preceq S^{(n)}(\tau)$. Assume that λ is an ordinal such that $S_{\lambda}^{(n)}(\tau) \preceq S^{(n)}(\tau)$. Since $S^{(n)}(\tau)$ is semi-*n*-absorbing, $S_{\lambda+1}^{(n)}(\tau) = S_1^{(n)}(S_{\lambda}^{(n)}(\tau)) \preceq S_1^{(n)}(S^{(n)}(\tau)) \preceq S^{(n)}(\tau)$, by parts (2) and (4) of Proposition 4.26. If λ is a limit ordinal and $S_{\beta}^{(n)}(\tau) \preceq S^{(n)}(\tau)$ for each $\beta < \lambda$, then $S_{\lambda}^{(n)}(\tau) = \bigvee_{\beta < \lambda} S_{\beta}^{(n)}(\tau) \preceq S^{(n)}(\tau)$.

In the following result we give equivalent conditions for the equality $S_{\Omega}^{(n)}(\tau) = S^{(n)}(\tau)$ to hold.

Proposition 4.31. For each $\tau \in R$ -pr the following statements are equivalent:

 $\begin{array}{ll} (1) \ S_{\Omega}^{(n)}(\tau) \ is \ semi-n-absorbing; \\ (2) \ S_{1}^{(n)}(S_{\Omega}^{(n)}(\tau)) \preceq S_{\Omega}^{(n)}(\tau); \\ (3) \ For \ each \ ordinal \ \lambda \ we \ have \ S_{\lambda}^{(n)}(S_{\Omega}^{(n)}(\tau)) \preceq S_{\Omega}^{(n)}(\tau); \\ (4) \ S_{\Omega}^{(n)}(S_{\Omega}^{(n)}(\tau)) = S_{\Omega}^{(n)}(\tau); \\ (5) \ S_{\Omega}^{(n)}(\tau) = S^{(n)}(\tau). \end{array}$

Proof. $(1) \Rightarrow (2)$ By Proposition 4.26(2).

- $(2) \Rightarrow (3)$ It follows by transfinite induction on λ .
- $(3) \Rightarrow (4)$ Is easy.
- $(4) \Rightarrow (1)$ By Proposition 4.28.

(1) \Rightarrow (5) Assume that $S_{\Omega}^{(n)}(\tau)$ is semi-*n*-absorbing. Since $\tau \leq S_{\Omega}^{(n)}(\tau)$, the definition of $S^{(n)}(\tau)$ implies that $S^{(n)}(\tau) \leq S_{\Omega}^{(n)}(\tau)$. On the other hand, $S_{\Omega}^{(n)}(\tau) \leq S^{(n)}(\tau)$, by Proposition 4.30. So the equality holds. (5) \Rightarrow (1) Is straightforward.

5. Quasi-*n*-absorbing and semi-*n*-absorbing submodules

Remark 5.1. Let $M \in R$ -Ass and N be a proper fully invariant submodule of M. Then, the following conditions hold:

- (1) N is n-absorbing in $M \Rightarrow N$ is quasi-n-absorbing in $M \Rightarrow N$ is semi-n-absorbing in M.
- (2) N is a quasi-1-absorbing submodule of M if and only if N is a prime submodule of M.
- (3) N is a semi-1-absorbing submodule of M if and only if N is a semiprime submodule of M.

Proposition 5.2. Let $\sigma \in R$ -pr. If for every $M \in R$ -Mod, $\sigma(M)$ is a semiprime submodule of M, then σ is a semiprime preradical.

Proof. By hypothesis, [14, Theorem 14] implies that $\omega_{\sigma(M)}^M$ is a semiprime preradical. So $\sigma = \bigwedge \{ \omega_{\sigma(M)}^M \mid M \in R\text{-Mod} \}$ (see [12, Remark 1]) is a semiprime preradical. \Box

Corollary 5.3. Let R be a ring. If every R-module is semiprime, then 0 is a semiprime preradical in R-pr.

Lemma 5.4 ([7, Lemma 3.4]). Let $M \in R$ -Mod. Then for any submodules N, K of M, $\omega_{N\cap K}^M = \omega_N^M \wedge \omega_K^M$.

Proposition 5.5. Let $M \in R$ -Mod. Suppose that $\{N_i\}_{i \in I}$ is a family of semiprime submodules of M. Then $N = \bigcap_{i \in I} N_i$ is a semiprime submodule of M.

Proof. Let $\{N_i\}_{i \in I}$ be a family of semiprime submodules of M. Then, by [14, Proposition 14], $\omega_{N_j}^M$'s are semiprime preradicals. Thus $\omega_N^M = \bigwedge_{i \in I} \omega_{N_i}^M$ (see Lemma 5.4) is a semiprime preradical. Again, by [14, Proposition 14], $N = \bigcap_{i \in I} N_i$ is a semiprime submodule of M.

Proposition 5.6. Let R be a ring and $\{M_i\}_{i \in I}$ be a family of semiprime R-modules. Then $M = \bigoplus_{i \in I} M_i$ is a semiprime R-module.

Proof. Since for every $i \in I$, M_i is a semiprime *R*-module, thus for every $i \in I$, $\omega_0^{M_i}$ is a semiprime preradical by [14, Proposition 14]. Therefore $\bigwedge_{i \in I} \omega_0^{M_i} = \omega_0^M$ is a semiprime preradical, and so, again by [14, Proposition 14], $M = \bigoplus_{i \in I} M_i$ is a semiprime *R*-module. \Box

Proposition 5.7. For a ring R the following statements are equivalent:

- (1) R is a left V-ring;
- (2) 0 is a semiprime preradical;
- (3) $\bigoplus_{S \in R\text{-simp}} E(S)$ is a semiprime *R*-module.

Proof. (1) \Leftrightarrow (2) By [14, Theorem 23].

(2) \Leftrightarrow (3) Set $C = \bigoplus_{S \in R\text{-simp}} E(S)$. Notice that $\omega_0^C = 0$, by [10, Lemma 6]. Now apply [14, Theorem 14].

The following result shows that the injective hull of a semiprime R-module may not be semiprime.

Corollary 5.8. Let R be a ring that is not a left V-ring. Then there exists a simple R-module $S \in R$ -simp such that E(S) is not semiprime.

Proof. By Proposition 5.6 and Proposition 5.7.

Theorem 5.9. Let $M \in R$ -Ass and N be a fully invariant submodule of M. Consider the following statements:

- (1) N is quasi-n-absorbing (resp. semi-n-absorbing) in M.
- (2) ω_N^M is a quasi-n-absorbing (resp. semi-n-absorbing) preradical. Then (2) \Rightarrow (1), and if M satisfies the α -property, then (1) \Rightarrow (2).

Proof. (1) \Rightarrow (2) Assume that N is quasi-n-absorbing in M and that $\eta(M) \cdot \mu(M) = (\eta\mu)(M)$ for every η , $\mu \in R$ -pr. Since $N \neq M$ we have $\omega_N^M \neq 1$. Now let $\eta, \mu \in R$ -pr be such that $\eta^n \mu \preceq \omega_N^M$. In this case we have

$$\eta(M)^n \cdot \mu(M) = (\eta^n \mu)(M) \le \omega_N^M(M) = N.$$

Since N is quasi-n-absorbing in M, by hypothesis we get $\eta^n(M) = \eta(M)^n \leq N$ or $(\eta^{n-1}\mu)(M) = \eta(M)^{n-1} \cdot \mu(M) \leq N$. It follows from [10, Proposition 5] that $\eta^n \preceq \omega_N^M$ or $\eta^{n-1}\mu \leq \omega_N^M$, that is ω_N^M is quasi-*n*-absorbing. (2) \Rightarrow (1) Assume that ω_N^M is a quasi-*n*-absorbing preradical. Since $\omega_N^M \neq 1$, we have

 $N \neq M$. Suppose that J, K are fully invariant submodules of M such that $J^n \cdot K \leq N$. Then we have

$$J^{n} \cdot K = \left(\alpha_{J}^{M}\right)^{n} (K) = \left(\alpha_{J}^{M}\right)^{n} \alpha_{K}^{M}(M).$$

By [10, Proposition 5], we get $(\alpha_J^M)^n \alpha_K^M \preceq \omega_{J^n \cdot K}^M \preceq \omega_N^M$. Since ω_N^M is quasi-*n*-absorbing, we have $(\alpha_J^M)^n \preceq \omega_N^M$ or $(\alpha_J^M)^{n-1} \alpha_K^M \preceq \omega_N^M$. Therefore $J^n = (\alpha_J^M)^n (M) \leq N$ or $J^{n-1} \cdot K = \left(\alpha_J^M\right)^{n-1} \alpha_K^M(M) \le N.$

A similar proof can be stated for semi-*n*-absorbing preradicals.

Remark 5.10. Note that in Theorem 5.9, for the case n = 2 we can omit the condition $M \in R$ -Ass, by the definition of quasi-2-absorbing (semi-2-absorbing) submodules.

Definition 5.11. Let $M \in R$ -Ass. We say that M is a quasi-n-absorbing (resp. semi-nabsorbing) module if its zero submodule 0 is a quasi-*n*-absorbing (resp. semi-*n*-absorbing) submodule of M.

Corollary 5.12. Let R be a ring. If R is a semisimple Artinian ring, then every R-module is quasi-i-absorbing for every i > 2.

Proof. By Proposition 3.5 and Theorem 5.9.

Example 5.13. Let R be a semisimple Artinian ring and $S_1, S_2, \ldots, S_{n+1} \in R$ -simp be distinct. Then $\bigoplus_{i=1}^{n+1} S_i$ is quasi-*n*-absorbing by Corollary 5.12. But note that, by [19, Corollary 3.6] and Theorem 3.11, $\bigoplus_{i=1}^{n+1} S_i$ is not *n*-absorbing. This example shows that the two concepts of quasi-n-absorbing modules and of n-absorbing modules are different in general.

Proposition 5.14. Let M_1, M_2, \ldots, M_t be projective *R*-modules. Suppose that M_1, M_2, \ldots, M_t are quasi-n-absorbing R-modules that satisfy the α -property. Then $M = \bigoplus_{i=1}^{t} M_i$ is a quasi-(n + t - 1)-absorbing R-module.

Proof. Let M_1, M_2, \ldots, M_t be quasi-*n*-absorbing *R*-modules. Then, by Theorem 5.9, $\omega_{M_1}^{M_1}, \omega_{M_2}^{M_2}, \ldots, \omega_{M_t}^{M_t}$ are quasi-*n*-absorbing preradicals, and so $\omega_M^M = \omega_{M_1}^{M_1} \wedge \omega_{M_2}^{M_2} \wedge \cdots \wedge \omega_{M_t}^{M_t}$ is a quasi-(n+t-1)-absorbing preradical by Proposition 3.14(2). Again, by Theorem 5.9, $M = \bigoplus_{i=1}^{t} M_i$ is a quasi-(n + t - 1)-absorbing *R*-module.

Lemma 5.15. Let $M \in R$ -Mod, $N \leq_{fi} M$ and $K_1, K_2, K_3 \leq M$.

- (1) Suppose that $N \leq K_i$ such that $K_i/N \leq_{fi} M/N$ for every $1 \leq i \leq 3$. If $[(K_1/N) \cdot (K_2/N)] \cdot (K_3/N) = 0$, then $[K_1 \cdot K_2] \cdot K_3 \leq N$. In particular, if $(K_1/N) \cdot (K_2/N) = 0$, then $K_1 \cdot K_2 \leq N$.
- (2) Let $K_i \leq_{fi} M$ and $K_i^* = (K_i + N)/N$ for every $1 \leq i \leq 3$. If M is quasi-projective and $[K_1 \cdot K_2] \cdot K_3 \leq N$, then $[K_1^* \cdot K_2^*] \cdot K_3^* = 0$. In particular, if $K_1 \cdot K_2 \leq N$, then $K_1^* \cdot K_2^* = 0.$

Proof. (1) Assume that $[(K_1/N) \cdot (K_2/N)] \cdot (K_3/N) = 0$. Notice that by [13, Lemma 17], $K_i/N \leq_{fi} M/N$ implies that $K_i \leq_{fi} M$. Since $[(K_1/N) \cdot (K_2/N)] \cdot (K_3/N) = 0$, then $f((K_1/N) \cdot (K_2/N)) = 0$ for every $f \in \operatorname{Hom}_R(M/N, K_3/N)$. We get $g: M \to K_3$. Since $N \leq_{fi} M, g(N) \leq N$, thus g induces $\bar{g}: M/N \to K_3/N$ such that $\bar{g}((K_1/N) \cdot (K_2/N)) = 0$. Now, let $h: M \to K_2$, similarly h induces $\bar{h}: M/N \to K_2/N$. Therefore $\bar{g}(\bar{h}(K_1/N)) = 0$, and thus $gh(K_1) \leq N$. Consequently,

$$[K_1 \cdot K_2] \cdot K_3 = \sum \{g(h(K_1)) \mid g \in \operatorname{Hom}_R(M, K_3), h \in \operatorname{Hom}_R(M, K_2)\} \le N.$$

(2) Assume that M is quasi-projective and $[K_1 \cdot K_2] \cdot K_3 \leq N$. By [13, Lemma 17], $K_i \leq_{fi} M$ implies that $K_i^* \leq_{fi} M/N$. Let $f: M/N \to K_3^*$ and $g: M/N \to K_2^*$. Let $\pi: M \to M/N$ be the canonical projection and $\pi_i: K_i \to K_i^*$ be its restriction to K_i for i = 2, 3. Since M is quasi-projective, M is K_i -projective, for i = 2, 3. So there exist $h: M \to K_3$ and $t: M \to K_2$ such that $\pi_3 h = f\pi$ and $\pi_2 t = g\pi$. Since $[K_1 \cdot K_2] \cdot K_3 \leq N$, then $ht(K_1) \leq N$. Therefore $fg(K_1^*) = 0$. Consequently,

 $[K_1^* \cdot K_2^*] \cdot K_3^* = \sum \{ f(g(K_1^*)) \mid f \in \operatorname{Hom}_R(M/N, K_3^*), g \in \operatorname{Hom}_R(M/N, K_2^*) \} = 0.$

Proposition 5.16. Let M be a quasi-projective R-module and let $N \neq M$ be a fully invariant submodule of M. Then N is quasi-2-absorbing (resp. semi-2-absorbing) in M if and only if M/N is a quasi-2-absorbing (resp. semi-2-absorbing) module.

Proof. (\Rightarrow) Assume that N is quasi-2-absorbing in M and let J/N, K/N be fully invariant submodules of M/N such that $(J/N)^2 \cdot (K/N) = 0$. By [13, Lemma 17], J, K are fully invariant submodules of M. We deduce from Lemma 5.15 that $J^2 \cdot K \leq N$. Since N is quasi-2-absorbing in M, we have $J^2 \leq N$ or $J \cdot K \leq N$. So $(J/N)^2 = 0$ or $(J/N) \cdot (K/N) = 0$, by Lemma 5.15. Hence M/N is a quasi-2-absorbing module.

(⇐) Let J, K be fully invariant submodules of M such that $J^2 \cdot K \leq N$. Then, by [13, Lemma 17], $J^* = (J + N)/N$, $K^* = (K + N)/N$ are fully invariant submodules of M/N. By Lemma 5.15, $J^{*2} \cdot K^* = 0$. Since M/N is assumed to be a quasi-2-absorbing module, we get $J^{*2} = 0$ or $J^* \cdot K^* = 0$. Hence $J^2 \leq N$ or $J \cdot K \leq N$, by Lemma 5.15. Consequently, N is quasi-2-absorbing in M.

Theorem 5.17. Let $M \in R$ -Ass that satisfies the α -property. The following statements are equivalent:

- (1) M is quasi-n-absorbing;
- (2) ω_0^M is quasi-n-absorbing;
- (3) For each fully invariant submodule K of M and $\alpha \in R$ -pr, $\alpha^n \preceq \omega_0^K \Rightarrow \alpha^{n-1} \preceq \omega_0^K$ or $\alpha^n \preceq \omega_0^M$;
- (4) For each fully invariant submodule K of M and $\alpha \in R$ -pr, $\alpha^n(K) = 0 \Rightarrow \alpha^{n-1}(K) = 0$ or $\alpha^n(M) = 0$;
- (5) For each $\tau, \eta \in R$ -pr, $M \in \mathbb{F}_{\tau^n \eta} \Rightarrow M \in \mathbb{F}_{\tau^n}$ or $M \in \mathbb{F}_{\tau^{n-1} \eta}$.

Proof. (1) \Leftrightarrow (2) Is clear by Theorem 5.9.

(2) \Rightarrow (3) Assume that K is a fully invariant submodule of M and $\alpha \in R$ -pr such that $\alpha^n \preceq \omega_0^K$ and $\alpha^n \not\preceq \omega_0^M$. Then $\alpha^n(K) \leqslant \omega_0^K(K) = 0$, and so $\alpha^n \omega_K^M(M) = 0$ which shows that $\alpha^n \omega_K^M \preceq \omega_0^M$. Now, since ω_0^M is quasi-*n*-absorbing and $\alpha^n \not\preceq \omega_0^M$, then $\alpha^{n-1}\omega_K^M \preceq \omega_0^M$. Hence $\alpha^{n-1}(K) = \alpha^{n-1}\omega_K^M(M) = 0$, and thus $\alpha^{n-1} \preceq \omega_0^K$. (3) \Leftrightarrow (4) Is obvious.

 $(4) \Rightarrow (5)$ Let $\tau, \eta \in R$ -pr such that $\tau^n \eta(M) = 0$. Suppose that $\tau^{n-1} \eta(M) \neq 0$. By setting $K := \eta(M)$ we have $\tau^n(K) = 0, \tau^{n-1}(K) \neq 0$. Consequently, $\tau^n(M) = 0$, by (4).

(5) \Rightarrow (2) Let $\tau, \eta \in R$ -pr such that $\tau^n \eta \preceq \omega_0^M$. Then, $\tau^n \eta(M) = 0$, so by hypothesis $\tau^n(M) = 0$ or $\tau^{n-1}\eta(M) = 0$. Consequently, $\tau^n \preceq \omega_0^M$ or $\tau^{n-1}\eta \preceq \omega_0^M$, so ω_0^M is quasi-*n*-absorbing.

Similarly we can prove the following theorem.

Theorem 5.18. Let $M \in R$ -Ass that satisfies the α -property. The following statements are equivalent:

- (1) M is semi-n-absorbing;
- (2) ω_0^M is semi-n-absorbing;
- (3) For each $\tau \in R$ -pr, $M \in \mathbb{F}_{\tau^{n+1}} \Rightarrow M \in \mathbb{F}_{\tau^n}$.

Theorem 5.19. Let $M \in R$ -Mod be such that, for each pair K, L of fully invariant submodules of M, we have $\alpha_K^M \alpha_L^M = \alpha_{K.L}^M$. Then, for each quasi-n-absorbing (resp. semin-absorbing) preradical σ such that $\sigma(M) \neq M$, we have that $\sigma(M)$ is quasi-n-absorbing (resp. semi-n-absorbing) in M.

Proof. Let σ be a quasi-*n*-absorbing precadical such that $\sigma(M) \neq M$. If K, L are fully invariant submodules of M such that $K^n \cdot L \leq \sigma(M)$, then

$$\left(\alpha_K^M\right)^n \alpha_L^M = \alpha_{K^n \cdot L}^M \preceq \alpha_{\sigma(M)}^M \preceq \sigma$$

Since σ is quasi-*n*-absorbing, then $\alpha_{K^n}^M = (\alpha_K^M)^n \preceq \sigma$ or $\alpha_{K^{n-1}.L}^M = (\alpha_K^M)^{n-1} \alpha_L^M \preceq \sigma$. In the first case we have $K^n = \alpha_{K^n}^M(M) \leq \sigma(M)$; in the second case we have $K^{n-1} \cdot L = \alpha_{K^{n-1}.L}^M(M) \leq \sigma(M)$. Consequently, $\sigma(M)$ is quasi-*n*-absorbing.

Lemma 5.20. Let $M \in R$ -Mod. If M is projective in $\sigma[M]$, then $\alpha_K^M \alpha_L^M = \alpha_{K \cdot L}^M$ for any fully invariant submodules K and N of M.

Proof. It follows from Proposition 2.3.

Corollary 5.21. Let σ be a quasi-n-absorbing (resp. semi-n-absorbing) preradical. Then $\sigma(R)$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. Notice that if $\sigma(R) = R$, then by [4, Proposition 4(v)], $\sigma = 1$ which is a contradiction. Now apply Theorem 5.19 and Lemma 5.20.

For two R-modules U, N, the submodule

$$\operatorname{Rej}(N,U) = \bigcap \{\operatorname{Ker} f | f \in \operatorname{Hom}_R(N,U)\} \le N$$

is called the *reject of* U *in* N.

Corollary 5.22. Let $M \in R$ -Ass that satisfies the α -property. If M is quasi-n-absorbing (resp. semi-n-absorbing), then $Ann_R(M)$ is a quasi-n-absorbing (resp. semi-n-absorbing) ideal of R.

Proof. Note that for any *R*-module M, $\omega_0^M(R) = \operatorname{Rej}(R, M) = \operatorname{Ann}_R(M)$. Now apply Theorem 5.17 and Corollary 5.21.

References

- D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39, 1646–1672, 2011.
- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417–429, 2007.
- [3] J. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (10), 4649–4676, 2002.
- [4] L. Bican, P. Jambor, T. Kepka and P. Nemec, *Preradicals*, Comment. Math. Univ. Carolinae 15 (1), 75–83, 1974.
- [5] L. Bican, P. Jambor, T. Kepka and P. Nemec, *Prime and coprime modules*, Fund. Math. 107, 33–45, 1980.
- [6] L. Bican, T. Kepka, and P. Nemec, *Rings, Modules and Preradicals*, Marcel Dekker, New York, 1982.
- [7] A.I. Kashu, On some operations in the lattice of submodules determined by preradicals, Bull. Acad. Stiinte Repub. Mold. Mat. 2 (66), 5–16, 2011.
- [8] T.Y. Lam, *Lectures on Modules and Rings*, Graduate Texts in Mathematics, Springer-Verlag, 1998.
- [9] F. Raggi, J. Ríos, H. Rincón and R. Fernández-Alonso, Basic preradicals and main injective modules, J. Algebra Appl. 8 (1), 1–16, 2009.

- [10] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, *The lattice structure of preradicals*, Comm. Algebra **30** (3), 1533–1544, 2002.
- [11] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, *The lattice structure of preradicals II*: partitions, J. Algebra Appl. 1 (2), 201–214, 2002.
- [12] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, *The lattice structure of preradicals III*: operators, J. Pure and Applied Algebra 190, 251–265, 2004.
- [13] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Prime and irreducible preradicals, J. Algebra Appl. 4 (4), 451–466, 2005.
- [14] F. Raggi, J. Ríos, H. Rincón, R. Fernández-Alonso and C. Signoret, Semiprime preradicals, Comm. Algebra 37, 2811–2822, 2009.
- [15] B. Stenström, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217, Springer Verlag, Berlin, 1975.
- [16] D. Keskin Tütüncü and Y. Kuratomi, On mono-injective modules and mono-ojective modules, Math. J. Okayama Univ. 55, 117–129, 2013.
- [17] R. Wisbauer, *Foundations of Module and Ring Theory*, Gordon and Breach, Philadelphia, 1991.
- [18] A. Yousefian Darani, and H. Mostafanasab, Co-2-absorbing preradicals and submodules, J. Algebra Appl. 14 (7), 1550113 (23 pages), 2015.
- [19] A. Yousefian Darani and H. Mostafanasab, On 2-absorbing preradicals, J. Algebra Appl. 14 (2), 1550017 (22 pages), 2015.
- [20] A. Yousefian Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submoduels, Thai J. Math. 9 (3), 577–584, 2011.