

RESEARCH ARTICLE

Simple continuous modules

Yongduo Wang

Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, Gansu, P. R. China

Abstract

A module M is called a simple continuous module if it satisfies the conditions $(min - C_1)$ and $(min - C_2)$. A module M is called singular simple-direct-injective if for any singular simple submodules A, B of M with $A \cong B \mid M$, then $A \mid M$. Various basic properties of these modules are proved, and some well-studied rings are characterized using simple continuous modules and singular simple-direct-injective modules. For instance, it is shown that a ring R is a right V-ring if and only if every right R-module is a simple continuous modules, and that a regular ring R is a right GV-ring if and only if every cyclic right R-module is a singular simple-direct-injective module.

Mathematics Subject Classification (2010). 16D50, 16E50

Keywords. simple continuous module, singular simple-direct-injective module, V-ring, GV-ring

1. Introduction and Preliminaries

Throughout this paper, R is an associative ring with identity and all modules are unital right R-modules. For a module M, we denote by Soc(M) and E(M) the socle and the injective hull of M, respectively. We write $N \leq M$ if N is a submodule of M, $N \leq_e M$ if N is an essential submodule of M, $N \mid M$ if N is a direct summand of M, and $N \leq_c M$ if N is a closed submodule of M.

Recall the following conditions for a module M:

 (C_1) If each submodule A of M is essential in a direct summand of M;

 (C_2) If a submodule A of M is isomorphic to a direct summand of M, then A is a direct summand of M;

 (C_3) $K \oplus L$ is a direct summand of M whenever K and L are direct summands of M with $K \cap L = 0$;

 $(min - C_1)$ If each simple submodule A of M is essential in a direct summand of M;

 $(min - C_2)$ If a simple submodule A of M is isomorphic to a direct summand of M, then A is a direct summand of M.

Let M be a module. M is called a CS module if it satisfies the condition (C_1) ; M is called a direct-injective module if it satisfies the condition (C_2) ; M is called a continuous module if it satisfies the conditions (C_1) and (C_2) ; M is called a simple-direct-injective module [5] if it satisfies the condition $(min - C_2)$.

Email address: ydwang@lut.cn

Received: 31.07.2017; Accepted: 05.03.2018

Extending modules (CS-modules) play important roles in rings and categories of modules, their generalizations and related modules have been studied extensively by many authors. The concept of simple-direct-injective modules was introduced by V. Camillo, Y. Ibrahim, M. Yousif and Y. Q. Zhou [5], and some well-studied rings are characterized using simple-direct-injective modules. Motivated by this, simple continuous modules are given in Section 2 and V-rings are characterized in terms of simple continuous modules. It is shown that a ring R is a right V-ring (i.e., every simple right R-module is injective) if and only if every right *R*-module is a simple continuous module. In [5], the authors proved that a ring R is a right V-ring if and only if every right R-module is a simple-direct-injective module. As a proper generalization of V-rings, the notion of GV-rings was posed by V. S. Ramamurthi, K. M. Rangaswamy [14]. A ring R is called a right GV-ring if every singular simple right *R*-module is injective. Inspired by those, singular simple-direct-injective modules are introduced in Section 5. It is shown that a ring R is a right GV-ring if and only if every right R-module is a singular simple-direct-injective module and a regular ring R is a right GV-ring if and only if every cyclic right R-module is a singular simple-direct-injective module. For standard definitions we refer to [3, 4, 6-12, 15-17].

2. Simple continuous modules

In this section, the notion of simple continuous modules are introduced and some basic properties of simple continuous modules are proved.

Definition 2.1. A module M is called a simple continuous module if it satisfies the conditions $(min - C_1)$ and $(min - C_2)$.

Example 2.2.

(1) $\mathbb{Z}_{\mathbb{Z}}$ is a simple continuous module, but not a continuous module.

(2) Let $M = \mathbb{Z}_p \oplus \mathbb{Q}$, where p is a prime. Then M is a simple continuous \mathbb{Z} -module, but not continuous.

We do not know whether a direct summand of a simple continuous module is a simple continuous module. We have the following.

Recall that a submodule X of M is called fully invariant if for every $h \in S$, $h(X) \subseteq X$, where S = End(M), [13].

Proposition 2.3. Any fully invariant direct summand of a simple continuous module is a simple continuous module.

Proof. Let M be a simple continuous module and K a fully invariant direct summand of M. It is easy to see that K satisfies the condition $(min - C_2)$. Next we shall show that K satisfies the condition $(min - C_1)$. Let S be a simple submodule of K. Since M satisfies the condition $(min - C_1)$, there is a direct summand H of M such that $S \leq_e H$. Write $M = H \oplus H'$, then $S \oplus H' \leq_e M$, and hence $S \oplus (H' \cap K) \leq_e K$. So $S \leq_e H \cap K$. Since K is a fully invariant direct summand of M and $M = H \oplus H'$, $K = (H \cap K) \oplus (H' \cap K)$ by [13, Lemma 2.1], as required.

Recall that a module M is called a (weakly) duo module if any (direct summand) submodule is a fully invariant submodule of M, [13].

Corollary 2.4. Any direct summand of a simple continuous (weakly) duo is a simple continuous module.

A module M is said to be a UC-module if every submodule of M has a unique closure in M, [16].

Proposition 2.5. Let M be a simple continuous UC module. Then any summand of M is a simple continuous module.

Y. Wang

Proof. Let M be a simple continuous UC module and K a direct summand of M. It is easy to see that K satisfies the condition $(min - C_2)$. Next we shall show that K satisfies the condition $(min - C_1)$. Let S be a simple submodule of K. Since M satisfies the condition $(min - C_1)$, there exists a direct summand H of M such that $S \leq_e H$. Let L denote the closure of S in K. So that $S \leq_e L \leq_c K$, and hence $L \leq_c M$. Thus $S \leq_e L \leq_c M$ and $S \leq_e H \leq_c M$. Since M is a UC module, L = H. Since H is a direct summand of M, L is a direct summand of K. Therefore S is essential in a direct summand L of K, as desired.

Example 2.6. \mathbb{Z}_2 and \mathbb{Z}_8 are simple continuous \mathbb{Z} -modules, but $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ is not a simple continuous \mathbb{Z} -module because the non-summand $0 \oplus \mathbb{Z}(4+8\mathbb{Z})$ is isomorphic to the simple summand $\mathbb{Z}_2 \oplus 0$.

Example 2.7. ([11, Example 2.9]) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is any field. Let $A = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}$. It is clear that A and B are simple continuous as R-

modules. However $R = A \oplus B$ is not simple continuous.

The above two examples show that a direct sum of simple continuous modules need not be a simple continuous module, so we have the following.

Proposition 2.8. Let $M = M_1 \oplus M_2$, where M_1 and M_2 satisfy the condition $(min - C_1)$ and M_1 is M_2 -injective, then M satisfies the condition $(min - C_1)$.

Proof. Let S be a simple submodule of M. We shall prove that S is essential in a direct summand of M by considering two cases.

Case 1: $S \cap M_1 = 0$. In this case, since M_1 is M_2 -injective, there exists a direct summand N of M such that $N \cong M_2$, $S \leq N$ and $M = M_1 \oplus N$. Then N satisfies the condition $(min - C_1)$, and so there is a direct summand K of N such that $S \leq_e K$, as required.

Case 2: $S \cap M_1 \neq 0$. Since S is simple, $S \leq M_1$. The rest is obvious.

Lemma 2.9 ([5, Lemma 3.3]). If M is an indecomposable module that is not simple, then $M \oplus E(M)$ is simple-direct-injective.

Corollary 2.10. If M is a uniform module that is not simple, then $M \oplus E(M)$ is a simple continuous module.

Proof. It follows by Proposition 2.8 and Lemma 2.9.

The following examples reveal the relationships among simple-direct-injective modules, modules satisfying the condition $(min - C_1)$ and modules satisfying the condition (C_1) .

Example 2.11.

(1) Let p be any rational prime and $M_1 = \mathbb{Z}_p$, $M_2 = \mathbb{Z}_\infty$. Then $M = M_1 \oplus M_2$ satisfies the condition $(min - C_1)$, but not the condition (C_1) .

(2) Let $R = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z} \end{pmatrix}$ be the upper triangular generalized triangular matrix ring.

Then R_R satisfies the condition $(min - C_1)$, but not the condition (C_1) .

(3) $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ satisfies the condition $(min - C_1)$, but it is not a simple-direct-injective module because the non-summand $0 \oplus \mathbb{Z}(4 + 8\mathbb{Z})$ is isomorphic to the simple summand $\mathbb{Z}_2 \oplus 0$.

(4) Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is any field. Then R_R satisfies the condition $(min - C_1)$, but it is not a simple-direct-injective module. As $Soc(R_R)$ is projective, if R_R is a simple-direct-injective module, then R is a miniple-direct ring by [5, P44]. It is impossible.

1338

(5) (Björk example) Let F be a field and assume that $a \mapsto \bar{a}$ is an isomorphism $F \to \bar{F} \subseteq F$, where the subfield $\bar{F} \neq F$. Let R denote the left vector space on basis $\{1, t\}$, and make R into an F-algebra by defining $t^2 = 0$ and $ta = \bar{a}t$ for all $a \in F$. Then R is a right minipactive ring, and hence R_R is a simple-direct-injective module. However, R_R does not satisfy the condition $(min - C_1)$.

3. Simple continuous modules and V-rings

In this section, some connections between right V-rings and simple continuous modules are presented.

Theorem 3.1. The following conditions are equivalent for a ring R:

- (1) R is a right V-ring.
- (2) Every right R-module is a simple continuous module.
- (3) Every finitely cogenerated right R-module is a simple continuous module.
- (4) Direct sums of simple continuous modules are simple continuous modules.
- (5) Every 2-generated right R-module is a simple continuous module.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ and $(1) \Rightarrow (5)$. They are clear.

 $(3) \Rightarrow (1)$ Let S be a simple right R-module. Since $S \oplus E(S)$ is finitely cogenerated, it is a simple continuous module by hypothesis. Thus $S \oplus E(S)$ is simple-direct-injective, and hence S = E(S) by [5, Proposition 2.1]. Therefore S is injective and R is a right V-ring.

 $(4) \Rightarrow (1)$ Let S be a simple right R-module. Since S and E(S) are simple continuous modules, $S \oplus E(S)$ is a simple continuous module by hypothesis. Thus $S \oplus E(S)$ is simpledirect-injective, and hence S = E(S) by [5, Proposition 2.1]. Therefore S is injective and R is a right V-ring.

 $(5) \Rightarrow (1)$ Let S = xR be a simple right *R*-module and $0 \neq y \in E(S)$. Then $xR \leq_e yR$. By hypothesis, $xR \oplus yR$ is a simple continuous module, and so it is simple-direct-injective. Thus, xR = yR by [5, Proposition 2.1] and hence S = E(S). Therefore *S* is injective and *R* is a right *V*-ring.

It is well known that a ring R is semisimple if and only if every right R-module is a continuous module. From Theorem 3.1, if a ring R is a right V-ring which is not semisimple, then there is a simple continuous module which is not a continuous module. See the following example.

Example 3.2. Let \mathbb{F} be a field and \mathfrak{J} be an infinite index set. Let $R = \prod_{i \in \mathfrak{J}} F_i$, where $F_i = \mathbb{F}$ for each $i \in \mathfrak{J}$. Then R is a right V-ring which is not semisimple, and hence there is a simple continuous module which is not a continuous module.

Proposition 3.3. A regular ring R is a right V-ring if and only if every cyclic right R-module is a simple continuous module.

Proof. " \Rightarrow ". This is clear by Theorem 3.1.

" \Leftarrow ". Since every cyclic right *R*-module is a simple continuous module, it is simpledirect-injective. The rest is obvious by [5, Theorem 4.4].

Lemma 3.4. Any direct sum of injective modules is a simple continuous module.

Proof. It is clear by [5, Lemma 3.1].

A module M is called strongly soc-injective if for any module N and any semisimple submodule K of N, every homomorphism $f: K \to M$ extends to N, [2].

Lemma 3.5 ([2, Proposition 16]). A module M is strongly soc-injective if and only if $M = E \oplus T$, where E is injective and Soc(T) = 0.

Proposition 3.6. The following are equivalent for a ring R:

- (1) R is a right noetherian right V-ring;
- (2) Every simple continuous module is strongly Soc-injective.

Proof. Similar to [5, Proposition 4.3].

4. When are simple continuous modules continuous?

We characterize the rings whose simple continuous modules are continuous.

Lemma 4.1 ([1, Corollary 2.4 and 2.6]). (1) If $M = A_1 \oplus A_2$ is a C_3 -module and $f: A_1 \to A_2$ is an *R*-monomorphism, then Imf is a direct summand of A_2 . (2) If $M \oplus M$ is a C_3 -module, then M is a C_2 -module.

A module is uniserial if the lattice of its submodules is totally ordered under inclusion. A ring R is called left uniserial if $_{R}R$ is a uniserial module. A ring R is called serial if both modules $_{R}R$ and R_{R} are direct sums of uniserial modules.

A ring R is said to satisfy the condition (*) if every finitely generated right R-module satisfies the condition $(min - C_1)$. For instance, a dedekind domain satisfies the condition (*).

Theorem 4.2. The following are equivalent for a ring R with the condition (*):

- (1) Every simple continuous right R-module is a C_3 -module.
- (2) Every simple continuous right R-module is continuous.
- (3) Every simple continuous right R-module is quasi-injective.
- (4) Every right R-module is a direct sum of a semisimple module and a family of injective uniserial modules of length 2.
- (5) R is an artinian serial ring with $J(R)^2 = 0$.

Proof. $(3) \Rightarrow (2) \Rightarrow (1)$ They are clear.

 $(1) \Rightarrow (4)$ We claim that R is right artinian. First we show that R is right semiartinian. Assume on the contrary that M is a right R-module with Soc(M) = 0. If $0 \neq N \leq M$, then $Soc(N \oplus M) = 0$ and $N \oplus M$ is a simple continuous module. Thus $N \oplus M$ is a C_3 -module by hypothesis, and the inclusion map $i : N \hookrightarrow M$ splits by Lemma 4.1. This shows that M is semisimple, a contradiction. Thus $Soc(M) \neq 0$ for every right R-module M, and hence R is right semiartinian. Next we show that R is right noetherian. It suffices to show that, for any family $K_i(i \in I)$ of simple right R-modules, $M = \bigoplus_{i \in I} E(K_i)$ is injective. By Lemma 3.4, $M \oplus E(M)$ is a simple continuous module, so $M \oplus E(M)$ is a C_3 -module by hypothesis. By Lemma 4.1, the inclusion map $i : M \hookrightarrow E(M)$ splits, and hence M = E(M) is injective, as required. So R is right noetherian, and hence R is right artinian.

We next show that every indecomposable injective right *R*-module *E* has a unique composition series of length at most 2. Note that *E* has a simple socle *X* and E = E(X). If E = X, we are done. Suppose that $X \subset Y \subseteq E$. It suffices to show that Y = E. Let $M = Y \oplus E$. Then *M* is a simple continuous module by Corollary 2.10, and hence *M* is a C_3 -module. So Y = E by Lemma 4.1, as desired.

We now show that every finitely generated indecomposable right R-module has a unique composition series of length at most 2. To see this, let M be a finitely generated indecomposable right R-module. If M is simple, we are done. If M is not simple, since Rsatisfies the condition (*), M satisfies the condition $(min - C_1)$, and hence $M \oplus E(M)$ satisfies the condition $(min - C_1)$ by Proposition 2.8. Therefore $M \oplus E(M)$ is a simple continuous module by Lemma 2.9. Thus $M \oplus E(M)$ is a C_3 -module by hypothesis, and so M = E(M) is injective by Lemma 4.1. Thus M is an indecomposable injective right R-module, and, as above, it has a unique composition series of length at most 2.

Finally, consider an arbitrary right *R*-module *M*. Since *R* is right noetherian, *M* contains a maximal injective submodule *N*. Write $M = N \oplus K$, where *K* contains no nonzero injective submodules. The injective module *N* is a direct sum of indecomposable injective modules each of which has a unique composition series of length at most 2. Thus there is a decomposition $N = E_1 \oplus E_2$, where E_1 is semisimple and E_2 is a direct sum of injective uniserial modules of length 2. So, to finish the proof, it suffices to show that *K* is semisimple. Without loss of generality, we may assume that *K* is a cyclic module. Since *R* is right artinian, *K* is artinian, so it is a direct sum of indecomposable modules. Therefore we can further assume that *K* is a cyclic indecomposable module. As above, *K* is a uniserial module of length at most 2. If *K* is of length 2, then K = E(K) because E(K) is a uniserial module of length at most 2. This contradicts the fact that *K* contains no nonzero injective submodules. Hence *K* is simple, as desired.

The rest follow by [5, Theorem 3.4].

Corollary 4.3. A dedekind domain R is semisimple artinian if and only if every simple continuous module is injective.

Proof. " \Rightarrow " is clear.

" \Leftarrow " if every simple continuous module is injective, then R is a V-ring. But R is artinian by Theorem 4.2, so R is semisimple artinian.

5. Singular simple-direct-injective modules and GV-rings

In [5], the authors proved that a ring R is a right V-ring if and only if every right R-module is a simple-direct-injective module. As a generalization of V-rings, the notion of GV-rings was posed by V. S. Ramamurthi, K. M. Rangaswamy [14]. A ring R is called a right GV-ring if every singular simple right R-module is injective. Inspired by those, singular simple-direct-injective modules are introduced in this Section. It is shown that a ring R is a right GV-ring if and only if every right R-module is a singular simple-direct-injective module and a regular ring R is a right GV-ring if and only if every right R-module is a singular simple-direct-injective module and a regular ring R is a right GV-ring if and only if every right R-module is a singular simple-direct-injective module.

Definition 5.1 ([14]). A ring R is a right GV-ring if each simple right R-module is either projective or injective if and only if every singular simple right R-module is injective.

Proposition 5.2. The following are equivalent for a module M:

- (1) For any singular simple submodules A, B of M with $A \cong B \mid M, A \mid M$.
- (2) For any singular simple summands A, B of M with $A \cap B = 0$, $A \oplus B \mid M$.
- (3) If $M = A_1 \oplus A_2$ with A_1 singular simple and $f : A_1 \to A_2$ an R-homomorphism, then $Imf \mid A_2$.

Proof. (1) \Rightarrow (2) Let A, B be singular simple summands of M with $A \cap B = 0$. Write $M = A \oplus T$ for a submodule $T \leq M$, and let $\pi : A \oplus T \to T$ be the canonical projection. Clearly $A \oplus B = A \oplus \pi(B)$. Since $\pi(B) \cong B$ and B is a singular simple summand of M, $\pi(B) \mid M$ by hypothesis, and so $\pi(B) \mid T$. Thus $M = A \oplus T = A \oplus \pi(B) \oplus K = A \oplus B \oplus K$ for a submodule $K \leq T \leq M$. Therefore $A \oplus B \mid M$.

 $(2) \Rightarrow (3)$ Without loss of generality we may assume that $f \neq 0$. This means that f is an R-monomorphism. Let $T = \{a + f(a) : a \in A_1\}$ be the graph submodule of M. We claim that $M = T \oplus A_2$. For, if $x \in M$, then x = a + b, where $a \in A_1$, $b \in A_2$. Now $x = a + f(a) - f(a) + b \in T + A_2$, and so $M = T + A_2$. If $x \in T \cap A_2$, then x = a + f(a)for some $a \in A_1$, and consequently $a = x - f(a) \in A_1 \cap A_2 = 0$. This shows that x = 0, so $M = T \oplus A_2$, and $T \mid M$. Next we show that $A_1 \cap T = 0$. For, if $x \in A_1 \cap T$, then x = a + f(a) for some $a \in A_1$, and consequently $x - a = f(a) \in A_1 \cap A_2 = 0$. Now, since f is monic, a = 0, and hence x = 0. Since $T \cong M/A_2 \cong A_1$ is singular simple, $A_1 \oplus T \mid M$ by hypothesis. Finally we show that $A_1 \oplus T = A_1 \oplus Imf$. For, if $x \in Imf$, then x = f(a) for some $a \in A_1$, and so $x = -a + a + f(a) \in A_1 + T$, and hence $A_1 \oplus T = A_1 \oplus Imf$. Since $A_1 \oplus T \mid M$, $A_1 \oplus Imf \mid M$, and so $Imf \mid A_2$, as required.

(3) \Rightarrow (1) Let A, B be singular simple submodules of M with $B \stackrel{\circ}{\cong} A \mid M$. We need to show that $B \mid M$. If $A \cap B \neq 0$, there is nothing to prove. Otherwise, assume that $A \cap B = 0$, and write $M = A \oplus T$ for some submodule T of M. If $\pi : A \oplus T \to T$ be the canonical projection, then clearly $A \oplus B = A \oplus \pi(B)$ and $\pi(B) \cong B$ is singular simple. Now, since A is singular simple, $M = A \oplus T$, and $\pi \mid_B \sigma^{-1} : A \to T$ is monic with $Im(\pi \mid_B \sigma^{-1}) = \pi(B)$. By hypothesis, $\pi(B) \mid T$. If $T = \pi(B) \oplus K$ for some submodule K of T, then $M = A \oplus T = A \oplus \pi(B) \oplus K = A \oplus B \oplus K$ and $B \mid M$, as desired.

Definition 5.3. A module M is called singular simple-direct-injective if M satisfies the equivalent conditions of Proposition 5.2.

Theorem 5.4. The following conditions are equivalent for a ring R:

- (1) R is a right GV-ring.
- (2) Every right R-module is a singular simple-direct-injective module.
- (3) Every finitely cogenerated right R-module is a singular simple-direct-injective module.
- (4) Direct sums of singular simple-direct-injective modules are singular simple-directinjective modules.
- (5) Every 2-generated right R-module is a singular simple-direct-injective module.

Proof. Similar to Theorem 3.1.

Example 5.5. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is any field. Then R is a right GV-ring and not a right V-ring. Since a ring R is a right V-ring if and only if every right R-module is simple-direct-injective, there is a singular simple-direct-injective module is not simple-direct-injective by Theorem 5.4.

Theorem 5.6. A regular ring R is a right GV-ring if and only if every cyclic right R-module is singular simple-direct-injective.

Proof. " \Rightarrow " is clear by Theorem 5.4.

" \Leftarrow " Let S be a singular simple right R-module and E = E(S) the injective hull of S. Assume to the contrary, there is a nonzero element $x \in E$ such that $x \in S$. Clearly, $S \leq_e xR$. Define the epimorphism $f: R \to xR$ by $f(r) = xr, r \in R$, and set X = Kerf. Now the map f induces an isomorphism $\sigma: xR \to R/X$. If $T/X = \sigma(S)$ is singular simple, then T/X = (tR+X)/X for some nonzero element $t \in R$. Since R is regular, there is $s \in R$ such that tst = t. If we set e = ts, then $e^2 = e$ and T/X = (tR+X)/X = (eR+X)/X. Inasmuch as $S \leq_e xR$, we infer that T/X is a minimal essential right ideal of R/X. If $M = \{r \in R : er \in X\}$, then $R/M \cong T/X$ and M is a maximal right ideal of R.

Now we claim that, for $N = M \cap X$, $X/N \cong R/M$. To see this, observe first since (eR + X)/X is a singular simple essential submodule of R/X and ((1 - e)R + X)/X is a nonzero submodule of R/X, it follows that $(eR + X)/X \subseteq ((1 - e)R + X)/X$, and hence e + X = (1 - e)(-r) + X for some $r \in R$. Therefore $y = e + (1 - e)r \in X$, and if we multiply on the left by e, we get ey = e. Now $N = M \cap X \subseteq X \subset T$, and if $y \in N$, then $y \in M$, which implies that $ey \in X$, and so $e \in X$, a contradiction. Thus $y \in N$, and it follows that X is not contained in M. Now $X/N = X/(M \cap X) \cong (X + M)/M = R/M$.

Next we show that $(eR + N)/N \cong R/M$. If $g: R \to (eR + N)/N$ is given by g(r) = er + N, where $r \in R$, then g is a well-defined R-epimorphism. Since M is a maximal right ideal of R and $M \subseteq Kerg$, we infer that M = Kerg and $(eR + N)/N \cong R/M$, as required.

Next we show that $((1 - e)yR + N)/N \cong R/M$. Observe first that if $m \in M$, then it follows, from the definition of M and the fact ey = e, that $em = eym \in X$, and hence

 $ym \in M$. Therefore $ym \in M \cap X = N$, and so $yM \subseteq N$. Since $eM \subseteq N$ and ey = e, it follows that $eyM \subseteq N$, and consequently $(1-e)yM \subseteq yM + eyM \subseteq N$. Now if we define $h: R \to ((1-e)yR+N)/N$ by h(r) = (1-e)yr+N, where $r \in R$, then h is a well-defined R-epimorphism. Since $(1-e)yM \subseteq N$, it follows that $R/M \cong ((1-e)yR+N)/N$, as desired. Therefore $((1-e)yR+N)/N \cong (eR+N)/N \cong R/M \cong X/N \cong (eR+X)/X \cong T/X \cong S$ are singular simple.

As $eM \subseteq N$, $eN \subseteq eM \subseteq N$ and N is invariant under left multiplication by e. Therefore $R/N = (eR + N)/N \oplus ((1 - e)R + N)/N$. Since $((1 - e)yR + N)/N \cong (eR + N)/N$ and (eR + N)/N is a singular simple summand of R/N, ((1 - e)yR + N)/N is a singular simple summand of R/N by hypothesis, and hence ((1 - e)yR + N)/N is a singular simple summand of ((1 - e)R + N)/N. Thus $R/N = (eR + N)/N \oplus ((1 - e)yR + N)/N \oplus A/N$, where $A/N \leq R/N$.

Finally, we only need to show that $R/N = (eR + N)/N \oplus X/N$. Since if this happens, then $(R/N)_R$ has uniform dimension 2. So A/N must be zero and $R/N = (eR + N)/N \oplus ((1 - e)yR + N)/N$, and consequently $R/X \cong (eR + N)/N$ is singular simple, a contradiction. First, we have $(eR + N)/N \cap X/N = 0$. To see this, let $er + N = x + N \in (eR + N)/N \cap X/N$, $r \in R, x \in X$, then $er - x \in N$, and since $N \subseteq X$, it follows that $er \in X$. This means $r \in M$, and hence $er \in N$. Therefore $(eR + N)/N \cap X/N = 0$. Since (eR + N)/N and X/N are singular simple submodules of R/N and $X/N \cong (eR + N)/N | R/N, (eR + N)/N \oplus X/N$ is a direct summand of R/N by hypothesis. Hence it suffices to show that $(eR + N)/N \oplus X/N \leq_e R/N$. Now, let $(aR + N)/N \oplus X/N$. Otherwise, assume that $a \in X$. In this case (aR + X)/X is a nonzero submodule of R/X. Consequently, since (eR + X)/X is a singular simple essential submodule of R/X, it follows that $(eR + X)/X \subseteq (aR + X)/X$. Therefore, $e + X = ar + X, r \in R$. Thus ar = e + l for some $l \in X$ and $0 + N \neq ar + N = (e+N) + (l+N) \in (eR+N)/N \oplus X/N$, as desired. \Box

Acknowledgment. The author is supported by the Natural Science Foundation of Gansu Province (No. 1310RJZA029) and the fundamental research funds for the universities in Gansu Province.

References

- [1] I. Amin, Y. Ibrahim and M.F. Yousif, C3-modules, Algebra Colloq. 22, 655-670, 2015.
- [2] I. Amin, M.F. Yousif and N. Zeyada, Soc-injective rings and modules, Comm. Algebra 33, 4229-4250, 2005.
- [3] F.W. Anderson and K.R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, Berlin, New York, 1974.
- [4] J.-E. Björk, Rings satisfying certain chain conditions, J. Reine Angew. Math. 245, 63-73, 1970.
- [5] V. Camillo, Y. Ibrahim, M.F. Yousif and Y.Q. Zhou, Simple-direct-injective modules, J. Algebra 420, 39-53, 2014.
- [6] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules*, Birkhäuser Basel, 2006.
- [7] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, *Extending Modules*, Longman Scientific and Technical, 1994.
- [8] C. Faith, Algebra II: Ring Theory, Springer-Verlag, Berlin, New York, 1976.
- [9] J.W. Fisher, Von Neumann regular rings versus V-rings, in: Lect. Notes Pure Appl. Math. 7, 101-119, Dekker, New York, 1974.
- [10] F. Kasch, Modules and Rings, London Math. Soc. Monogr. 17, Academic Press, New York, 1982.
- [11] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge, UK, 1990.

- [12] W.K. Nicholson and M.F. Yousif, *Quasi-Frobenius Rings*, Cambridge Tracts in Math. 158, Cambridge Univ. Press, Cambridge, UK, 2003.
- [13] A.C. Özcan, A. Harmanci and P.F. Smith, *Duo modules*, Glasgow Math. J. 48, 533-545, 2006.
- [14] V.S. Ramamurthi and K.M. Rangaswamy, Generalized V-rings, Math. Scand. 31, 69-77, 1972.
- [15] P.F. Smith, CS-modules and Weak CS-modules, Non-commutative Ring Theory, 99-115, Springer LNM 1448, 1990.
- [16] P.F. Smith, Modules for which every submodule has a unique closure, in: Ring Theory, 303-313, World Scientific, Singapore, 1993.
- [17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.