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Abstract
We apply the reproducing kernel Hilbert space method to a nonlinear system in this work.
We utilize this technique to overcome the nonlinearity of the problem. We obtain accurate
results. We demonstrate our results by tables and figures. We prove the efficiency of the
method.
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1. Introduction
Implementations of the kernel methods have been investigated by many authors [3]. Ap-

proximation of stochastic partial differential equations [9], numerical solution of integral
equations [14], multiple solutions of nonlinear boundary value problems [1] and applica-
tions to machine learning algorithms [11]. The reproducing kernel Hilbert space methods
have been applied successfully to several nonlinear problems such as, nonlinear singular
Lane–Emden type equations and singular nonlinear two-point periodic boundary value
problem [3]. For more details see [2, 13].

The governing equations for mass, momentum and energy in unsteady two-dimensional
flow of a nano-fluid [8, 15,16] are:
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v = vw = dh

dt
, T = TH at y = h(t),

v = ∂u

∂y
= ∂T

∂y
= 0 at y = 0. (1.5)

Let us define the similarity transform as below:

η = y

[l(1 − αt)1/2]
, u = αx

[2(1 − αt)]
f ′(η),

v = − αl

[2(1 − αt)]
f(η), θ = T

TH

A1 = (1 − α) + ϕ
ρs

ρf
. (1.6)

Eq. (1.6) easily satisfies Eq. (1.1). The similarity transformation (1.6) reduces the
momentum and energy equations, and the boundary conditions (1.5) respectively to

f iv − SA1(1 − ϕ)2.5(ηf ′′′ + 3f ′′ + f ′f ′′ − ff ′′′) = 0,

θ′′ + PrS

(
A2
A3

)
(fθ′ − ηθ′) + PrEc

A3(1 − ϕ)2.5 (f ′′2 + 4δ2f ′2) = 0

f(0) = 0, f ′′(0) = 0, f(1) = 1, f ′(1) = 0,

θ′(0) = 0, θ(1) = 1,

where
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2vf
, P r = µf (ρCp)f

ρfKf
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x
.

We investigate the following problem in this paper:

f (iv) − SA1(1 − ϕ)2.5(ηf ′′′ + 3f ′′ + f ′f ′′ − ff ′′′) = 0,

θ′′ + PrS
(

A2
A3

)
(f − η)θ′ + P rEc

A3(1−ϕ)2.5 (f ′′2 + 4δ2f ′2) = 0,

f(0) = 0, f ′′(0) = 0, f(1) = 1, f ′(1) = 0,
θ′(0) = 0, θ(1) = 1.

(1.7)
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Ordinary differential systems are important for actual–physical problems. These systems
were used for a lot of problems [4–6,12]. Biswas et al. investigated systems by some varied
techniques [7].

In this work, we obtain the solutions of (1.7) by reproducing kernel Hilbert space method
(RKHSM). We assume that (1.7) has one solution. (1.7) can be written as:{

Pu = M(f, θ), 0 ≤ x ≤ 1,
u(0) = 0 = u(1),

(1.8)

where M = (M1,M2)T , u ∈ V 5
2 [0, 1]⊕V 5

2 [0, 1], M ∈ V 1
2 [0, 1]⊕V 1

2 [0, 1]. The space V 5
2 [0, 1]⊕

V 5
2 [0, 1] is defined as

V 5
2 [0, 1] ⊕ V 5

2 [0, 1] = {u = (f, θ)T | f, θ ∈ V 5
2 [0, 1]}.

The inner product and norm are presented as:

⟨m,n⟩ =
2∑

i=1
⟨mi, ni⟩V 5

2
, ∥m∥ =

( 2∑
i=1

∥mi∥2
) 1

2

, m, n ∈ V 5
2 [0, 1] ⊕ V 5

2 [0, 1].

V 5
2 [0, 1]⊕V 5

2 [0, 1] is a reproducing kernel Hilbert space. V 1
2 [0, 1]⊕V 1

2 [0, 1] can be identified
in a similar way.

This work is arranged as: Section 2 gives some reproducing kernel Hilbert spaces. Solu-
tions in V 5

2 [0, 1]⊕V 5
2 [0, 1] and a related linear operator are shown in Section 3. Numerical

experiments are demonstrated in Section 4. The last section includes conclusions.

2. Some useful kernels
Definition 2.1. We define V 5

2 [0, 1] by:

V 5
2 [0, 1] = {m ∈ AC[0, 1] : m′,m′′,m(3),m(4) ∈ AC[0, 1], m(5) ∈ L2[0, 1],

m(0) = m′′(0) = m(1) = m′(1) = 0}.
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2
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∫ 1

0
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2
=
√
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2
, m ∈ V 5
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are inner product and norm in V 5
2 [0, 1].

Theorem 2.2. Reproducing kernel Ãy of V 5
2 [0, 1] is acquired as:

Ãy(x) =


∑10

i=1 ci(y)xi−1, x ≤ y,

∑10
i=1 di(y)xi−1, x > y.

(2.1)

Proof. We get〈
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〉
V 5

2
=
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(i)
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∫ 1

0
v(5)(x)Ãy

(5)
(x)dx, v, Ãy ∈ V 5

2 [0, 1]

by Definition 2.1.
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We obtain〈
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〉
V 5

2
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(4)

(0)

+ v(4)(1)Ãy
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(7)

(0)

− v′(1)Ãy
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(2.2)

by integrating by parts.By reproducing property, we have

⟨v, Ãy⟩V 5
2

= v(y). (2.3)

Since Ãy ∈ V 5
2 [0, 1], we get

Ãy(0) = Ã′′
y(0) = Ãy(1) = Ã′

y(1) = 0. (2.4)

If 

Ãy
′
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then (2.2) gives

Ãy
(10)

(x) = −δ(x− y).
When x ̸= y,

Ãy
(10)

(x) = 0,
therefore

Ãy(x) =


∑10

i=1 ci(y)xi−1, x ≤ y,

∑10
i=1 di(y)xi−1, x > y.

(2.6)

Since
Ãy

(10)
(x) = δ(x− y),

we get
∂kÃy+(y) = ∂kÃy−(y), k = 0, 1, . . . , 8 (2.7)

and
∂9Ãy+(y) − ∂9Ãy−(y) = −1. (2.8)

ci(y) and di(y) (i = 1, 2, . . . , 10) can be obtained by (2.4)–(2.8). So the proof is completed.
�
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Definition 2.3. V 1
2 [0, 1] is described by

V 1
2 [0, 1] = {m ∈ AC[0, 1] : m′ ∈ L2[0, 1]}.

⟨m,n⟩V 1
2

= m(0)n(0) +
∫ 1

0
m′(t)n′(t)dt, m, n ∈ V 1

2 [0, 1]

and
∥m∥V 1

2
=
√

⟨m,m⟩V 1
2
, m ∈ V 1

2 [0, 1].

are inner product and the norm in V 1
2 [0, 1], respectively.

Lemma 2.4. Kernel function Q̃z of V 1
2 [0, 1] is gotten as [10]:

Q̃z(t) =
{

1 + t, 0 ≤ t ≤ z ≤ 1,
1 + z, 0 ≤ z < t ≤ 1.

3. Solutions in V 5
2 [0, 1] ⊕ V 5

2 [0, 1]
Lemma 3.1. P : V 5

2 [0, 1] ⊕ V 5
2 [0, 1] → V 1

2 [0, 1] ⊕ V 1
2 [0, 1] is a bounded linear operator.

Proof. We get

∥Pu∥ =

 2∑
i=1

∥
2∑

j=1
Pijvj∥2

 1
2

≤

 2∑
i=1

 2∑
j=1

∥Pij∥∥vj∥

2


1
2

≤

 2∑
i=1

 2∑
j=1

∥Pij∥2

 2∑
j=1

∥vj∥2

 1
2

=

 2∑
i=1

2∑
j=1

∥Pij∥2

 1
2

∥v∥.

P is bounded by the boundedness of Pij . �

Now, put

φij(x) = Q̃xi(x)−→ej =
{

(Q̃xi(x), 0)T , j = 1,
(0, Q̃xi(x))T , j = 2,

and ψij(x) = P ∗φij(x), i = 1, 2, . . . , j = 1, 2. The orthonormal system of {ψ̂ij(x)}(∞,2)
(1,1) of

V 5
2 [0, 1] ⊕ V 5

2 [0, 1] is acquired as:

ψ̂ij(x) =
i∑

z=1

j∑
q=1

βij
zqψzq(x), i = 1, 2, . . . , j = 1, 2.

Theorem 3.2. Suppose that {pη}∞
η=1 is dense in [0, 1]. Thus, {ψητ (p)}(∞,2)

(1,1) is a complete
system in V 5

2 [0, 1] ⊕ V 5
2 [0, 1].

Proof. Let ⟨v(p), ψητ (p)⟩ = 0 (η = 1, 2, . . .). We obtain

⟨Pv(p), φητ (p)⟩ = 0. (3.1)
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We have

v(p) =
2∑

τ=1
vτ (p)−→eτ =

2∑
τ=1

⟨v(.), Pp(.)−→eτ ⟩−→eτ .

Thus, we get

Av(pη) =
2∑

τ=1
⟨Pv(y), φητ (y)⟩−→eτ = 0 (η = 1, 2, . . .).

We take (Pv)(p) = 0. In conclusion, {ψητ (p)}(∞,2)
(1,1) is a complete system in V 5

2 [0, 1] ⊕
V 5

2 [0, 1]. �
Theorem 3.3. If {pη}∞

η=1 is dense in [0, 1], the solution of (1.8) fulfills

v =
∞∑

η=1

2∑
τ=1

i∑
z=1

τ∑
q=1

βητ
zqM(pz, f(pz), θ(pz)). (3.2)

Proof. We get

v =
∞∑

η=1

2∑
τ=1

⟨v(p), ψ̂ητ (p)⟩ψ̂ij(p)

=
∞∑

η=1

2∑
τ=1

⟨v(p),
η∑

z=1

τ∑
q=1

βητ
zq ψ̂zq(p)⟩ψ̂ij(p)

=
∞∑

η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητ
zq ⟨v(p), P ∗φzq(p)⟩ψ̂ητ (p)

=
∞∑

η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητ
zq ⟨Pv(p), φzq(p)⟩ψ̂ij(p)

=
∞∑

η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητ
zqM(pz, f(pz), θ(pz))ψ̂ητ (p).

�
The approximate solution vn can be found as:

vn =
n∑

η=1

2∑
τ=1

η∑
z=1

τ∑
q=1

βητ
zqM(pz, f(pz), θ(pz)). (3.3)

4. Numerical results
We consider (1.7) in the reproducing kernel Hilbert space in this paper. After homog-

enizing the conditions we obtained the numerical results for different values of S, Pr,Ec
and ϕ. We showed our results by Figures 1–5 and Table 1.

Heat transfer in the unsteady nano-fluid flow (1.7) is studied using reproducing kernel
method. After homogenizing the conditions we obtained the numerical results for different
values of S, Pr,Ec and ϕ. We showed our results by Figures 1-5 and Table 1. To show
the influence of inserting physical parameters on the temperature, Figs. 1-5 have been
plotted.
From Fig. 1, we can observe that temperature distribution is decreasing for increasing
values of ϕ. Fig. 2 shows the effect of positive and negative squeeze number on the
temperature distribution. The aim of squeeze number (S) describes the movement of the
Plates. The effect of increasing the squeeze number can be described in following ways:
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I . decrease in the kinematic viscosity
II . an increase in the distance between the plates

III . an increase in the speed at which the plates move
Fig. 3 demonstrates the effect of Eckert number, squeeze number and volume fraction on.
temperature
The influence of Eckert number and Prandtl number on the temperature θ are illustrated
in Figs. 4 and 5. The small values of Pr (< 1) typify liquid materials, which have high
thermal diffusivity but low viscosity.

x f(x) θ(x)
0.0 0.000000000 1.033181642
0.1 0.141886354 1.033171580
0.2 0.281700570 1.033086792
0.3 0.417232198 1.032745865
0.4 0.546087818 1.031853184
0.5 0.665616612 1.030014629
0.6 0.772815346 1.026840287
0.7 0.864226829 1.022250044
0.8 0.935830527 1.016245974
0.9 0.982924803 1.008829154
1.0 1.000000000 1.000000000

Table 1. Approximate solutions of f(x) and θ(x) for S = 1, P r = 6.2, Ec =
0.01, ϕ = 0.02 and δ = 0.01.

Figure 1. Approximate solutions of θ(x) for Pr = 6.2, δ = 0.1, Ec = 0.5, and S = 1.0.
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Figure 2. Approximate solutions of θ(x) for Pr = 6.2, δ = 0.1, Ec = 0.5, and ϕ = 0.06.

Figure 3. Approximate solutions of θ(x) for Pr = 6.2 and δ = 0.1.
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Figure 4. Approximate solutions of θ(x) for S = Pr = 1.0 and δ = 0.1.

Figure 5. Approximate solutions of θ(x) for S = Ec = 1.0 and δ = 0.1.

5. Conclusion
We obtained solutions of nonlinear system in this paper. We supplied evidence that

the reproducing kernel Hilbert space method is a very powerful method. Moreover, this
method is practical and proper to solve many problems.

6. Nomenclature
• ρnf Effective density of fluid

• µnf effective dynamic viscosity
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• (ρCp)nf effective heat capacity

• knf effective thermal conductivity

• f dimensionless velocity profile

• θ dimensionless temperature

• p pressure

• T Fluid Temperature

• A2 and A3 Dimensionless constants

• u velocity component in x direction

• v velocity component in y direction

• η Independent dimensionless parameter

• S Squeeze number

• Pr Prandtl number

• Ec Eckert number

• ϕ nanoparticle volume fraction
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