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Abstract
In this paper, we introduce the notion of a group-2-groupoid as a group object in the
category of 2-groupoids. We also obtain a 2G-crossed module by using the structure of
a group-2-groupoid. Then we prove that the category Gp2Gd of group-2-groupoids and
the category 2GXMod of 2G-crossed modules are equivalent.
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1. Introduction
A groupoid is a small category whose all morphisms are invertible [7, 9]. A groupoid

can be thought of as a group with many objects and also a group is a groupoid with a
single object [6]. A group object in the category of groupoids is called a 2-group [4], (resp.
"G-groupoid" in [7] and "group-groupoid" in [11]). For further information on the 2-group,
see [3–5,7,12,14]. This definition was generalized to ring-groupoid in [11] and to R-Module
groupoid in [1]. Recently the concepts of normal and quotient objects in the category of
2-groups have been obtained by Mucuk et al. [13].

Crossed modules defined by Whitehead can be viewed as 2-dimensional groups [16,17].
In [7], Brown and Spencer proved that the category of 2-groups is equivalent to the category
of crossed modules of groups. And so a crossed module is essentially the same thing as
a 2-group. This result was generalized to the crossed modules and internal groupoids in
some algebraic categories including groups in [15]. Also this result was proved for the
category of topological 2-groups and the category of topological crossed modules in [5].

A 2-group can be thought of as a 2-category with one object in which all 1-morphisms
and 2-morphisms are invertible [3,14]. The 2-categorical approach to 2-groups is a powerful
conceptual tool. However, for explicit calculations it is often useful to treat 2-groups as
crossed modules[3].

In Section 3, we have inspired by the work of Brown and Spencer [7], and then we
define the group-2-groupoid as a group object in the category of 2-categories. The main
goal of this paper is to investigate how a group-2-groupoid corresponds to an algebraic
structure similar to crossed modules. For this purpose, we first introduce 2G-crossed
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modules as an analogue of crossed modules given in [7]. Then we also define morphisms of
group-2-groupoids and 2G-crossed modules. Finally, we prove that the category Gp2Gd
of group-2-groupoids and the category 2GXMod of 2G-crossed modules are equivalent.

2. Preliminaries
The following definition is given in [3].

Definition 2.1. A 2-category C consists of
• objects X,Y, Z, ...

• 1-morphisms: X
f // Y

• 2-morphisms: X

f
((

f ′
66

�� ��
�� α Y

1-morphisms can be composed as in a category, and 2-morphisms can be composed in
two distinct ways: horizontally:

X

f
))

f ′
66

�� ��
�� α Y

g
((

g′
66

�� ��
�� β Z = X

g◦f
((

g′◦f ′
66

�� ��
�� β◦hα Z

and vertically:

X

f

!!
�� ��
�� α

??

f ′′

�� ��
�� α′

f ′ // Y = X

f
))

f ′′
55

�� ��
�� α′◦vα Y

A few simple axioms must hold for this to be a 2-category:
• Composition of 1-morphisms must be associative, and every object X must have

a 1-morphism

X
1X // X

serving as an identity for composition, just as in an ordinary category.

• Vertical composition must be associative, and every 1-morphism X
f // Y must

have a 2-morphism

X

f
((

f

66
�� ��
�� 1f Y

serving as an identity for vertical composition.
• Horizontal composition must be associative, and the 2-morphism

X

1X
))

1X

55
�� ��
�� 11X X

must serve as an identity for horizontal composition.
• Vertical composition and horizontal composition of 2-morphisms must satisfy the

following interchange law:

(β′ ◦v β) ◦h (α′ ◦v α) = (β′ ◦h α
′) ◦v (β ◦h α).
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so that diagrams of the form

X

f

##
�� ��
�� α

<<

f ′′

�� ��
�� α′

f ′ / / Y

g

##
�� ��
�� β

<<

g′′

�� ��
�� β′

g′ // Z

define unambiguous 2-morphisms.

Here are some examples of 2-categories.
• The category of small categories Cat is a 2-category whose objects are small

categories, 1-morphisms are functors and 2-morphisms are natural transformations
between functors [2].

• The category of topological spaces Top form a 2-category with homotopies between
maps as 2-morphisms [2].

• Every category is a 2-category whose 2-morphisms are identity [14].
A 2-functor F : C → D between two 2-categories C and D is a triple of functions sending

objects 1-morphisms and 2-morphisms of C to items of the same types in D so as to preserve
all the categorical structures (source, target, identities, and composites) [10].

Thus, small 2-categories and 2-functors between them form a category which is denoted
by 2Cat [14].

A 2-groupoid is a 2-category G in which every 1-morphism and every 2-morphism have
inverses [14]. So a 2-groupoid G = (G0, G1, G2) has a set G0 of objects, a set G1 of
1-morphisms and a set G2 of 2-morphisms together with the source and target maps

x

a
''

b

77
�� ��
�� α y

s1, t1 : G1 −→ G0, s1(a) = x, t1(a) = y,

s2, t2 : G2 −→ G0, s2(α) = x, t2(α) = y,

s3, t3 : G2 −→ G1, s3(α) = a, t3(α) = b,

and the identity maps
ε1 : G0 −→ G1, ε1(x) = 1x,

ε2 : G0 −→ G2, ε2(x) = 11x ,

ε3 : G1 −→ G2, ε3(a) = 1a,

such that the following diagram commute for all objects

G2
s2 //
t2

//

t3

��3
33

33
33

33
33

33

s3

��3
33

33
33

33
33

33
G0

ε2
rr

ε1

��G1

t1

EE�������������

s1

EE�������������

ε3

TT

If a, b ∈ G1, s1(b) = t1(a) and α, α′, β ∈ G2, s2(β) = t2(α) and s3(α′) = t3(α) then the
composition maps

◦ : G1 s1×t1G1 −→ G1,

◦h : G2 s2×t2G2 −→ G2,

◦v : G2 s3×t3G2 −→ G2,
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exist such that, s1(b ◦ a) = s1(a), t1(b ◦ a) = t1(b), s2(β ◦h α) = s2(α), t2(β ◦h α) = s2(β),
s3(α′ ◦v α) = s3(α) and t3(α′ ◦v α) = t3(α′). Further, these partial compositions are
associative, for x ∈ G0 and a ∈ G1 the elements ε1(x) = 1x, ε2(x) = 11x and ε3(a) = 1a

act as the identities and each 1-morphism a has an inverse ā and each 2-morphism α has
a horizontal inverse ᾱh and a vertical inverse ᾱv such that

x

a
''

b

77
�� ��
�� α y

ā
''

b̄

77
�� ��
�� ᾱh x = x

1x
''

1x

77
�� ��
�� 11x x

x

a

""
�� ��
�� α

<<

a

�� ��
�� ᾱv
b // y = x

a
''

a

77
�� ��
�� 1a y .

The maps
η1 : G1 −→ G1, η1(a) = ā,

η2 : G2 −→ G2, η2(α) = ᾱh,

η3 : G2 −→ G2, η3(α) = ᾱv

are called the inversions.

Example 2.2. Let G0, G1 and G2 be the sets Zn, Zn × Z and Zn × Z × Z, respectively.
We assume that both pairs (x, y) and (x, y + kn) are 1-morphisms from x to x+ y (for
k ∈ Z) and the triple (x, y, y + kn) is a 2-morphism from (x, y) to (x, y + kn) as follows:

x

(x,y)
,,

(x,y+kn)
22

�� ��
�� (x,y,y+kn) x+ y .

Then we can define the composition of 1-morphisms by

(x+ y, z) ◦ (x, y) = (x, y + z),

the vertical composition of 2-morphisms (for any ki ∈ Z) by

(x, y + k2n, y + k3n) ◦v (x, y + k1n, y + k2n) = (x, y + k1n, y + k3n),

and the horizontal composition by

(x+ y, z, z + k2n) ◦h (x, y, y + k1n) =
(
x, y + z, y + z + (k1 + k2)n

)
.

It is easy to prove that the vertical and horizontal compositions satisfy interchange law.
For x ∈ G0 and (x, y) ∈ G1, the identity morphisms are 1x = (x, 0) and 11x

= (x, 0, 0)
and 1(x,y) = (x, y, y). The inverse of (x, y) under ◦ is (x, y) = (x+ y,−y), the in-
verse of (x, y, y + kn) under ◦h is (x, y, y + kn)h = (x+ y,−y,−y − kn) and under ◦v

is (x, y, y + kn)v = (x, y + kn, y). Thus the triple (G0, G1, G2) is a 2-groupoid.

A morphism of 2-groupoids is simply a 2-functor between the underlying 2-categories.
Hence small 2-groupoids and their morphisms form a category which is denoted by 2Gpd
[14].
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3. Group-2-groupoids and 2G-crossed modules
We now define the group object in 2Cat similar to group object in Cat as follows:

Definition 3.1. A group object G in 2Cat is a small 2-category G equipped with the
following 2-functors satisfying group axioms

(1) the product m : G × G −→ G,

x

a
''

b

77
�� ��
�� α y , x′

a′
((

b′
66

�� ��
�� α′ y′ 7→ xx′

aa′
))

bb′
55

�� ��
�� αα′ yy′

(2) the inverse inv : G −→ G,

x

a
''

b

77
�� ��
�� α y 7→ x−1

a−1
**

b−1
44

�� ��
�� α−1 y−1

(3) the unit ε : {∗} −→ G (where {∗} is the terminal object in 2Cat).

Remark 3.2. The one-object discrete category (i.e. every morphism is an identity) is the
terminal object of the category of small categories Cat [8]. Similarly, the category {∗}
which is defined as terminal object of 2Cat above, is the one-object discrete 2-category
(i.e. every 1-morphism and every 2-morphism is an identity).

In terms of group object in 2Cat, a group-2-groupoid can be obtained in the following
way:

Proposition 3.3. A group object G in 2Cat is a 2-groupoid.

Proof. Let G be a group object in 2Cat. Then 2-functors m : G × G → G called prod-
uct, inv : G → G called inverse and ε : {∗} → G (where {∗} is the terminal object in

2Cat ) called unit satisfying the usual group axioms. The product of x

a
''

b

77
�� ��
�� α y and

x′
a′

((

b′
66

�� ��
�� α′ y′ is written as xx′

aa′
))

bb′
55

�� ��
�� αα′ yy′ , the inverse of x

a
''

b

77
�� ��
�� α y is written as

x−1
a−1

**

b−1
44

�� ��
�� α−1 y−1 .

Let ◦, ◦h and ◦v be the composition of 1-morphisms, the horizontal composition and the
vertical compositions of 2-morphisms in G, respectively. To prove G is a 2-groupoid, we
have to show that all 1-morphisms and 2-morphisms in G have inverses for compositions
◦, ◦h and ◦v.

The 2-functor m gives interchange laws

(c ◦ a)(c′ ◦ a′) = (cc′) ◦ (aa′),

(β ◦h α)(β′ ◦h α
′) = (ββ′) ◦h (αα′)

(δ ◦v α)(δ′ ◦v α
′) = (δδ′) ◦v (αα′)

whenever c ◦ a, c′ ◦ a′, β ◦h α, β′ ◦h α
′, δ ◦v α and δ′ ◦v α

′ are defined.
In [7], it was proved that c ◦ a = a1−1

y c = c1−1
y a and a = 1xa

−11y is the inverse of a
under ◦.

We also give the following relations for the horizontal and vertical composition of 2-
morphisms just the same way as in [7];



Group-2-groupoids and 2G-crossed modules 1393

For horizontal composition, we have
β ◦h α = (β11e) ◦h (11y 1−1

1y
α) = (β ◦h 11y )(11e ◦h (1−1

1y
α)) = β1−1

1y
α (3.1)

and similarly
β ◦h α = α1−1

1y
β. (3.2)

So it is easy to see from (3.1) and (3.2) that αh = 11xα
−111y is the inverse of α under ◦h.

For the vertical composition, we have
δ ◦v α = (δ11e) ◦v (1b1−1

b α) = (δ ◦v 1b)(11e ◦v 1−1
b α) = δ1−1

b α (3.3)
and

δ ◦v α = α1−1
b δ. (3.4)

And also it is easy to see from (3.3) and (3.4) that αv = 1bα
−11a is the inverse of α under

◦v.
Hence any group object in 2Cat is a 2-groupoid.
Furthermore, if y = e, then αβ = βα; hence the elements of Kers2 and Kert2 commute

under the group operation. In [7], it was proved that if a, a1 ∈ Kers1 and t1(a) = x, then

aa1a
−1 = 1xa11−1

x .

Similarly, we show that if α, α1 ∈ Kers2 and t2(α) = x, then

αα1α
−1 = 11xα11−1

1x
. (3.5)

�
Definition 3.4. A group object in the category of 2-groupoids is called a group-2-groupoid.

Example 3.5. G = (Zn,Zn × Z,Zn × Z × Z) is a group-2-groupoid with the following
2-functors:

• ⊕ : G × G −→ G, (x1, y1, z1) ⊕ (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z2

)
• inv : G −→ G, (x, y, z)−1 = (n− x,−y,−z)
• ε : {∗} −→ G, e = 0, 1e = (0, 0), 11e = (0, 0, 0).

Definition 3.6. Let G = (G0, G1, G2) and H = (H0,H1,H2) be group-2-groupoids and
let F = (f0, f1, f2) : G → H be a 2-functor. If F preserves the group structures, then it is
called a morphism of group-2-groupoids.

So group-2-groupoids and morphisms of them form a category which is denoted by
Gp2Gd.

The following theorem was proved by Brown and Spencer in [7]:

Theorem 3.7. The category of 2-groups and the category of crossed modules are equiva-
lent.

Remark 3.8. Let G = (G0, G1, G2) be a group-2-groupoid and s1, t1 be the source and
target maps from G1 to G0. Let M =Kers1, N = G0 and ∂1 = t1|M . It was proved in
Theorem 3.7 that (M,N, ∂1, •) is a crossed module with the action (x, a) 7→ x•a = 1xa1−1

x

of the group N on the group M and the map ∂1 = t1|M .

Proposition 3.9. Let G = (G0, G1, G2) be a group-2-groupoid and s2, t2 be the source and
target maps from G2 to G0. Then (Kers2, G0, t2|L) is a crossed module.

Proof. Let L =Kers2, N = G0. Then L,N inherit group structures from that of G

and the map ∂2 = t2|L : L → N is a morphism of groups. Further we have an action
(x, α) 7→ x I α of N on the group L given by x I α = 11xα1−1

1x
. It is easy to show that

∂2(x I α) = x∂2(α)x−1 and ∂2(α) I α1 = αα1α
−1 by using (3.5). Thus (L,N, ∂2,I) is a

crossed module. �
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Proposition 3.10. Let G = (G0, G1, G2) be a group-2-groupoid, t3 be the target map
from G2 to G1 and (M,N, ∂1, •), (L,N, ∂2,I) be crossed modules which corresponds to
the group-2-groupoid G as above. Then ∂3 = t3|L : L → M is a surjective morphism of
groups which preserves actions of crossed modules.

Proof. Since G is a group-2-groupoid, then t3 is a morphism of groups. Therefore, the
∂3 = t3|L : L → M which is the restriction of t3, is also a morphism of groups. And for
any 1-morphism a ∈ M , there is a 2-morphism α ∈ L such that ∂3(α) = t3|L(a). So, the
group morphism ∂3 is surjective. It is clear that t2 = t1t3 and so ∂2 = ∂1∂3. Since ∂3 is a
group morphism, we obtain

∂3(x I α) = ∂3(11xα1−1
1x

) = ∂3(11x)∂3(α)∂3(1−1
1x

) = 1x∂3(α)1−1
x = x • ∂3(α).

�
From Remark 3.8, Proposition 3.9 and Proposition 3.10, we can define a new structure

of crossed modules which corresponds to group-2-groupoids as follows:

Definition 3.11. Let (M,N, ∂1, •) and (L,N, ∂2,I) be crossed modules. A 2G-crossed
module (L,M,N, ∂1, ∂2, ∂3, •,I) is a pair (M,N, ∂1, •), (L,N, ∂2,I) of crossed modules
with a surjective morphism of groups ∂3 : L → M which satisfies the following axioms:

(1) ∂2 = ∂1∂3
(2) ∂3(n I l) = n • ∂3(l), for n ∈ N, l ∈ L.

L

∂3   A
AA

AA
AA

∂2 // N

M
∂1

>>||||||||

Definition 3.12. Let K = (L,M,N, ∂1, ∂2, ∂3) and K ′ = (L′,M ′, N ′, ∂′
1, ∂

′
2, ∂

′
3) be 2G-

crossed modules. A morphism (f3, f2, f1) : K → K ′ of 2G-crossed modules is a pair
(f2, f1) : (M,N, ∂1, •) → (M ′, N ′, ∂′

1, •′), (f3, f1) : (L,N, ∂2,I) → (L′, N ′, ∂′
2,I′) of mor-

phisms of crossed modules such that f2∂3 = ∂′
3f3.

L′

∂′
3

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>>
>>

>
∂′

2 // N ′

L

f3

ffMMMMMMMMMMMMM

∂3   B
BB

BB
BB

B
∂2 // N

f1

88ppppppppppppp

M

f2
��

∂1

=={{{{{{{{

M ′

∂′
1

??�����������������������������

Therefore, 2G-crossed modules and morphisms between them form a category which is
denoted by 2GXMod.

Definition 3.13. An equivalence between categories C and D is defined to be a pair of
functors S : C → D, T : D → C together with natural isomorphisms 1C=̃TS, 1D=̃ST ,
where 1C and 1D are the identity functors [10].

Theorem 3.14. The category Gp2Gd of group-2-groupoids and the category 2GXMod
of 2G-crossed modules are equivalent.
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Proof. A functor

γ : Gp2Gd → 2GXMod

is defined as follows: For a group-2-groupoid G = (G0, G1, G2), by using Remark 3.8,
Proposition 3.9 and Proposition 3.10, we can define a 2G-crossed module γ(G)=K =
(L,M,N, ∂1, ∂2, ∂3) which corresponds to the group-2-groupoid G .

Conversely, define a functor

ψ : 2GXMod → Gp2Gd

in the following way. Let K = (L,M,N, ∂1, ∂2, ∂3, •,I) be a 2G-crossed module. A group-
2-groupoid ψ(K) can be defined as follows. The group of objects of ψ(K) is N . The group
of 1-morphisms of ψ(K) is the semi-direct product NnM with the group structure

(n,m)(n′,m′) = (nn′,m(n •m′)).

The source and target maps are defined by s1(n,m) = n, t1(n,m) = ∂1(m)n, respectively
and the identity 1-morphism of ◦ is (n, eM ), while the composition is defined by

(∂1(m)n,m1) ◦ (n,m) = (n,m1m)

in [7]. Now the group of 2-morphisms of G can be defined the semi-direct productNnMnL
with the group structure

(n,m, l)(n′,m′, l′) = (nn′,m(n •m′), l(n I l′)).

If ∂2(l) = ∂2(k) then pairs (n, ∂3(l)) and (n, ∂3(k)) are 1-morphisms from n to ∂2(l)n.
Hence we can define 2-morphism (n, ∂3(l), k) from (n, ∂3(l)) to (n, ∂3(k)) as follows:

n

(n,∂3(l))
**

(n,∂3(k))

44
�� ��
�� (n,∂3(l),k) ∂2(l)n.

The source and target maps of 2-morphisms can be defined by s2(n, ∂3(l), k) = n, s3(n, ∂3(l), k) =
(n, ∂3(l)), t2(n, ∂3(l), k) = ∂2(l)n, t3(n, ∂3(l), k) = (n, ∂3(k)), respectively and the identity
2-morphism of ◦h for n ∈ N is (n, eM , eL), when the horizontal composition of 2-morphisms
is defined by

(∂1(m)n,m1, l1) ◦h (n,m, l) = (n,m1m, l1l).

If ∂2(l) = ∂2(k) = ∂2(h), then (n, ∂3(k), h) is 2-morphism from (n, ∂3(k)) to (n, ∂3(h)) and
the vertical composition of 2-morphisms is defined by

(n, ∂3(k), h) ◦v (n, ∂3(l), k) = (n, ∂3(l), h).

The identity 2-morphism of ◦v for (n, ∂3(l)) ∈ NnM is (n, ∂3(l), l) and the inverse
(n, ∂3(l), k)v = (n, ∂3(k), l). Thus ψ(K) = (N,N nM,N nM nL) is a group-2-groupoid.

To define a natural isomorphism S : ψγ → 1Gp2Gd, let G be a group-2-groupoid. A
map SG : ψγ(G) → G is defined to be the identity on objects, on 1-morphisms is given by
a 7→ (x, a1−1

x ) and on 2-morphisms is given by α 7→ (x, a1−1
x , α1−1

1x
).

x

a

,,

b

22
�� ��
�� α x1 7→ x

(x,a1−1
x )

,,

(x,b1−1
x )

22
�� ��
�� (x,a1−1

x ,α1−1
1x

) x1 .
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It is clear that SG is bijective on 1-morphisms and 2-morphisms and also preserves the
group operation and compositions as follows:

SG(α)SG(α′) = (x, a1−1
x , α1−1

1x
)(x′, a′1−1

x′ , α
′1−1

1x′ )

=
(
xx′, a1−1

x (x • a′1−1
x′ ), α1−1

1x
(x I α′1−1

1x′ )
)

=
(
xx′, a1−1

x 1xa
′1−1

x′ 1−1
x , α1−1

1x
11xα

′1−1
1x′ 1

−1
1x

)
=

(
xx′, aa′1−1

xx′ , αα
′1−1

1xx′

)
= SG(αα′),

for x

a
((

b

66
�� ��
�� α x1

a1
((

b1

66
�� ��
�� α1 x2

SG(a1 ◦ a) = SG(a11−1
x1 a) = (x, a11−1

x1 a1−1
x ) = (x1, a11−1

x1 ) ◦ (x, a1−1
x ) = SG(a1) ◦ SG(a),

SG(α1 ◦h α) = SG(α11−1
1x1
α) = (x, a11−1

x1 a1−1
x , α11−1

1x1
α1−1

1x
) = SG(α1) ◦h SG(α) and for

x

a

��
�� ��
�� α

==

c

�� ��
�� β
b // x1 and x

b
**

b

44
�� ��
�� 1b x1

SG(β ◦v α) = SG(β1−1
b α) = (x, a1−1

x , β1−1
b α1−1

1x
)

= (x, a1−1
x , β1−1

1x
(1b1−1

1x
)−1α1−1

1x
)

= (x, b1−1
x , β1−1

1x
)(x, b1−1

x , 1b1−1
1x

)−1(x, a1−1
x , α1−1

1x
)

= (x, b1−1
x , β1−1

1x
) ◦v (x, a1−1

x , α1−1
1x

)
= SG(β) ◦v SG(α).

Finally, we define a natural isomorphism T : 12GXMod → γψ, as follows: If K =
(L,M,N, ∂1, ∂2, ∂3) is a 2G-crossed module, then TK is the identity on N , on M is given
by m 7→ (eN ,m) and on L is given by l 7→ (eN , eM , l). Clearly TK is bijective and preserves
the group operations as follows:

TK(m)TK(m′) = (eN ,m)(eN ,m
′) = (eN ,m(eN •m′)) = (eN ,mm

′) = TK(mm′),

TK(l)TK(l′) = (eN , eM , l)(eN , eM , l′) = ((eN , eM , l(eN I l′)) = (eN , eM , ll′) = TK(ll′).
Hence, by Defination 3.13, the category Gp2Gd of group-2-groupoids and the category
2GXMod of 2G-crossed modules are equivalent. �
Acknowledgment. We would like to thank the referee for his/her useful and kind
suggestions.
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