

RESEARCH ARTICLE

On the locally socle of C(X) whose local cozeroset is cocountable (cofinite)

Somayeh Soltanpour

Department of Science, Petroleum University of Technology, Ahvaz, Iran

Abstract

Let $C_F(X)$ be the socle of C(X) (i.e., the sum of minimal ideals of C(X)). We introduce and study the concept of colocally socle of C(X) as $C_{\mu}S_{\lambda}(X) = \left\{ f \in C(X) : |X \setminus S_f^{\lambda}| < \mu \right\}$, where S_f^{λ} is the union of all open subsets U in X such that $|U \setminus Z(f)| < \lambda$. $C_{\mu}S_{\lambda}(X)$ is a zideal of C(X) containing $C_F(X)$. In particular, $C_{\aleph_0}S_{\aleph_0}(X) = CC_F(X)$ and $C_{\aleph_1}S_{\aleph_1}(X) =$ $CS_c(X)$ are investigated. For each of the containments in the chain $C_F(X) \subseteq CC_F(X) \subseteq$ $C_{\mu}S_{\lambda}(X) \subseteq C(X)$, we characterize the spaces X for which the containment is actually an equality. We determine the conditions such that $CC_F(X)$ ($CS_c(X)$) is not prime in any subrings of C(X) which contains the idempotents of C(X). The primeness of $CC_F(X)$ in some subrings of C(X) is investigated.

Mathematics Subject Classification (2010). 54C30, 54C40, 54G12, 13C11, 16H20

Keywords. functionally countable space, socle, locally socle, colocally socle, prime ideal

1. Introduction

Unless otherwise mentioned all topological spaces X are infinite completely regular Hausdorff and we will employ the definitions and notations used in [4,9]. C(X) denotes the ring of all real valued continuous functions on a topological space X. Let $C_c(X) =$ $\{f \in C(X) : |f(X)| \leq \aleph_0\}, C^F(X) = \{f \in C(X) : |f(X)| < \aleph_0\}.$ A topological space X is called functionally countable whenever $C(X) = C_c(X)$, see [6,7]. Motivated by the fact that $C_c(X)$ is the largest subring of C(X) whose elements have countable image, the subrings $L_c(X)$, $L_{cc}(X)$ of C(X) where $C_c(X) \subseteq L_{cc}(X) \subseteq L_c(X) \subseteq C(X)$ are introduced. Let C_f be the union of all open subsets $U \subseteq X$ such that $|f(U)| \leq \aleph_0$, $L_c(X) = \{f \in C(X) : \overline{C_f} = X\}$ and $L_{cc}(X) = \{f \in C(X) : |X \setminus C_f| \le \aleph_0\}$, see [12,14]. For each $f \in C(X)$, the zero-set of f, denoted by Z(f), is the set of zeros of f and $X \setminus Z(f) = coz(f)$ is the cozero-set of f and the set of all zero-sets in X is denoted by Z(X). An ideal I in C(X) is called a z-ideal if whenever $f \in I, g \in C(X)$ and $Z(f) \subseteq Z(g)$, then $g \in I$. The socle of C(X) (i.e., $C_F(X)$) which is in fact a direct sum of minimal ideals of C(X) is characterized topologically in [13, Proposition 3.3], and it turns out that $C_F(X) =$ $\{f \in C(X) : |X \setminus Z(f)| < \aleph_0\}$ is a useful object in the context of C(X). We know that one of the main objectives of working in the context of C(X) is to characterize topological properties of a given space X in terms of a suitable algebraic properties of C(X) and $C_F(X)$

Email addresses: s.soltanpour@put.ac.ir

Received: 18.12.2017; Accepted: 20.04.2018

is an important object in this way, see [1-3,5,13]. Let λ, μ be two arbitrary infinite ordinal numbers. In [11], the λ -super socle of C(X), $S_{\lambda}(X) = \{f \in C(X) : |X \setminus Z(f)| < \lambda\}$ which includes $C_F(X) = S_{\aleph_0}(X)$ is investigated, see also [8]. This motivates us to investigate the locally socle of C(X). We define $LS_{\lambda}(X) = \left\{ f \in C(X) : \overline{S_f^{\lambda}} = X \right\}$, where S_f^{λ} is the union of all open subsets U in X such that $|U \setminus Z(f)| < \lambda$. $LS_{\lambda}(X)$ is called the locally λ -super socle of C(X) and it is a z-ideal of C(X) containing $C_F(X) = S_{\aleph_0}(X)$ and $S_{\lambda}(X)$. Let us put $LS_{\aleph_0} = LC_F(X)$, we characterize spaces X for which the equality in the relation $C_F(X) \subseteq LC_F(X) \subseteq C(X)$ is hold. In fact, it is shown that X is an almost discrete space if and only if $LC_F(X) = C(X)$. We note that if X is an infinite space, then $C_F(X) \subseteq C(X)$. It is also observed that $|I(X)| < \infty$ if and only if $C_F(X) = LC_F(X)$, see [15]. We state this facts for locally λ -super socle. The importance of the role of $C_F(X)$ in the context of C(X), and the subalgebra $C_c(X) \subseteq L_{cc}(X) \subseteq L_c(X) \subseteq C(X)$ motivated us to define and study the colocally socle of C(X), $C_{\mu}S_{\lambda}(X)$ and in particular $C_{\aleph_0}S_{\aleph_0}(X) =$ $CC_F(X)$, cofinite locally socle of C(X), and $C_{\aleph_1}S_{\aleph_1}(X) = CS_c(X)$, cocountable locally socle of C(X) are investigated. The equality in the relation $C_F(X) \subseteq CC_F(X) \subseteq C(X)$ is characterized. It is shown that $CC_F(X)$ ($CS_c(X)$) is an intersection of essential ideals of C(X). The conditions such that $CC_F(X)$ ($CS_c(X)$) is not prime in any subrings of C(X)which contains the idempotents of C(X) are determined. We investigate the primeness of $CC_F(X)$ in some subrings of C(X).

2. Colocally socle

Let O(X) be the set of open subsets of X and if $U \subseteq X$ is closed and open it is called clopen. The set of isolated point of X is denoted by I(X) and $I_c(X)$ is the set of points $x \in X$ with countable open neighborhood. An element $x \in X$ is called λ -isolated point if x has a neighborhood with cardinality less than λ . The set of λ -isolated points of X is denoted by $I_{\lambda}(X)$. A space X is called λ -discrete space if $I_{\lambda}(X) = X$, see [11].

Definition 2.1. Let $f \in C(X)$ and S_f^{λ} be the union of all open subsets $U \subseteq X$ such that $|U \setminus Z(f)| < \lambda$, S_f^{λ} is called the local cozeroset of f. We denote the colocally socle of C(X) by $C_{\mu}S_{\lambda}(X)$ and define it to be the set of all $f \in C(X)$ such that $|X \setminus S_f^{\lambda}| < \mu$. i.e.,

$$S_f^{\lambda} = \bigcup \{ U : U \in O(X), \ |U \setminus Z(f)| < \lambda \},$$
$$C_{\mu}S_{\lambda}(X) = \{ f \in C(X) : |X \setminus S_f^{\lambda}| < \mu \}.$$

In particular, we denote $C_{\aleph_0}S_{\aleph_0}(X) = CC_F(X)$, cofinite locally socle of C(X), and $C_{\aleph_1}S_{\aleph_1}(X) = CS_c(X)$ is called cocountable locally socle of C(X). i.e.,

$$S_f^F = S_f^{\aleph_0} = \bigcup \{ U : U \in O(X), \ |U \setminus Z(f)| < \aleph_0 \},\$$
$$CC_F(X) = \{ f \in C(X) : |X \setminus S_f^F| < \aleph_0 \};$$

and

$$S_f^c = S_f^{\aleph_1} = \bigcup \{ U : U \in O(X), \ |U \setminus Z(f)| < \aleph_1 \},\$$
$$CS_c(X) = \{ f \in C(X) : |X \setminus S_f^c| < \aleph_1 \}.$$

Definition 2.2. The set

$$LS_{\lambda}(X) = \{ f \in C(X) : \overline{S_f^{\lambda}} = X \}$$

is called locally λ -super socle of C(X). Let $LS_{\aleph_0}(X) = LC_F(X)$, and $LS_{\aleph_1}(X) = LS_c(X)$, see [15].

If $\lambda_1 < \lambda_2$, then $S_f^{\lambda_1} \subseteq S_f^{\lambda_2}$. Hence $C_{\mu}S_{\lambda_1}(X) \subseteq C_{\mu}S_{\lambda_2}(X)$ and $LS_{\lambda_1}(X) \subseteq LS_{\lambda_2}(X)$. If $\mu_1 < \mu_2$, we conclude that $C_{\mu_1}S_{\lambda}(X) \subseteq C_{\mu_2}S_{\lambda}(X)$. **Remark 2.3.** Let C_f^{λ} be the union of all $U \in O(X)$ such that $|f(U)| < \lambda$, we define $L_{\lambda}(X) = \{f \in C(X) : \overline{C_f^{\lambda}} = X\}$. Let $L_{\aleph_0}(X) = L_F(X)$, $L_{\aleph_1}(X) = L_c(X)$, and $L_F(X)$ $(L_c(X))$ is called locally functionally finite (countable) subalgebra of C(X), see [14]. Now, we define $L_{\mu\lambda}(X) = \{f \in C(X) : |X \setminus C_f^{\lambda}| < \mu\}$, let $L_{\aleph_0 \aleph_0}(X) = L_{FF}(X)$ as cofinite locally functionally finite subalgebra of C(X), and $L_{\aleph_1 \aleph_0}(X) = L_{cF}(X)$ ($L_{\aleph_1 \aleph_1}(X) = L_{cc}(X)$) are called cocountable locally functionally finite (countable) subalgebra of C(X), see [12]. It is evident that, $L_{\mu\lambda}(X) \subseteq C_{\mu}S_{\lambda}(X)$.

Lemma 2.4. If $f, g \in C(X)$, then the following statements hold.

 $\begin{array}{l} (1) \ S_{f+g}^{\lambda} \supseteq S_{f}^{\lambda} \cap S_{g}^{\lambda}. \\ (2) \ S_{fg}^{\lambda} \supseteq S_{f}^{\lambda} \cup S_{g}^{\lambda}. \\ (3) \ S_{[f]}^{\lambda} = S_{f}^{\lambda}. \\ (4) \ S_{f}^{\lambda} \subseteq C_{f}^{\lambda}. \\ (5) \ If \ f, g \in L_{\lambda}(X), \ then \ \overline{C_{f}^{\lambda} \cap C_{g}^{\lambda}} = \overline{C_{f}^{\lambda}} = \overline{C_{g}^{\lambda}} = X. \\ (6) \ If \ f, g \in LS_{\lambda}(X), \ then \ \overline{S_{f}^{\lambda} \cap S_{g}^{\lambda}} = \overline{S_{f}^{\lambda}} = \overline{S_{g}^{\lambda}} = X. \end{array}$

Proof. Let

$$S_f^{\lambda} = \bigcup \{ U | U \in O(X), |U \backslash Z(f)| < \lambda \},$$

and

$$S_q^{\lambda} = \bigcup \{ V | V \in O(X), |V \setminus Z(f)| < \lambda \}.$$

Hence

$$\begin{split} S_f^{\lambda} \cap S_g^{\lambda} &= \bigcup \{ U \cap V | |U \setminus Z(f)| < \lambda, |V \setminus Z(g)| < \lambda \} \\ &= \bigcup \{ W | W \in O(X), |W \setminus Z(f)| < \lambda, |W \setminus Z(g)| < \lambda \} \\ &\subseteq \bigcup \{ W | W \in O(X), |W \setminus Z(f+g)| < \lambda \}. \end{split}$$

We have $U \setminus Z(f+g) \subseteq (U \setminus Z(f)) \cup (U \setminus Z(g)), U \setminus Z(fg) = (U \setminus Z(f)) \cap (U \setminus Z(g))$. Hence the proof of (1), (2) is obvious. Since $U \setminus Z(|f|) = U \setminus Z(f)$, we infer that (3) holds. For (4), let $f \in S_f^{\lambda}$, therefore $U \in O(X), |U \setminus Z(f)| < \lambda$ which implies that $|f(U)| < \lambda$. We remind the reader that if $\overline{Y} = X$ and $G \in O(X)$, then $\overline{G \cap Y} = \overline{G}$. Since $C_f^{\lambda}, S_f^{\lambda} \in O(X)$ are dense, we infer that (5), (6).

Proposition 2.5. $C_{\mu}S_{\lambda}(X)$ is a z-ideal of C(X).

Proof. Let $f, g \in C_{\mu}S_{\lambda}(X)$, we show that $f + g \in C_{\mu}S_{\lambda}(X)$. By the previous lemma $S_{f+g}^{\lambda} \supseteq S_{f}^{\lambda} \cap S_{g}^{\lambda}$, so $\overline{S_{f+g}^{\lambda}} \supseteq \overline{S_{f}^{\lambda}} \cap \overline{S_{g}^{\lambda}} = \overline{S_{f}^{\lambda}} = \overline{S_{g}^{\lambda}} = X$, hence $f + g \in C_{\mu}S_{\lambda}(X)$. Now, let $f \in C_{\mu}S_{\lambda}(X)$, $g \in C(X)$ we show that $fg \in C_{\mu}S_{\lambda}(X)$. By the previous lemma $S_{fg}^{\lambda} \supseteq S_{f}^{\lambda} \cup S_{g}^{\lambda}$, so $\overline{S_{fg}^{\lambda}} \supseteq \overline{S_{f}^{\lambda}} \cup S_{g}^{\lambda} = \overline{S_{f}^{\lambda}} \cup \overline{S_{g}^{\lambda}} = X$. Therefore, $C_{\mu}S_{\lambda}(X)$ is an ideal. Now, we prove that $C_{\mu}S_{\lambda}(X)$ is a z-ideal. For this mean let $f \in C_{\mu}S_{\lambda}(X)$ and $Z(f) \subseteq Z(g)$, we show that $g \in C_{\mu}S_{\lambda}(X)$. For each open subset $U \subseteq S_{f}$, we have $U \setminus Z(g) \subseteq U \setminus Z(f)$, so $S_{f}^{\lambda} \subseteq S_{g}^{\lambda}$. Hence $X = \overline{S_{f}^{\lambda}} \subseteq \overline{S_{g}^{\lambda}}$, therefore $g \in C_{\mu}S_{\lambda}(X)$.

Similarly, the next fact is proved.

Proposition 2.6. $LS_{\lambda}(X)$ is a z-ideal of C(X).

Clearly, $C_{\mu}S_{\lambda}(X)$ is absolutely convex. In this paper we investigate more $C_{\aleph_0}S_{\aleph_0}(X) = CC_F(X)$, and $C_{\aleph_1}S_{\aleph_1}(X) = CS_c(X)$.

Proposition 2.7.

$$S_f^F = \bigcup \{ U : U \in O(X), |U \setminus Z(f)| < \aleph_0 \} = \bigcup \{ V : V \in O(X), |V \setminus Z(f)| \le 1 \}.$$

Proof. $\bigcup \{V : V \in O(X), |V \setminus Z(f)| \le 1\} \subseteq S_f^F$. Let $U \setminus Z(f) = \{x_1, x_2, \dots, x_n\}$, we define $V_i = U \setminus \{x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}$. It is obvious that $V_i \in O(X)$ and $V_i \setminus Z(f) = \{x_i\}$. Now, put $U = \bigcup_{i=1}^n V_i$ and we are done. \Box

If U is an open subset in a Hausdorff space X and $x \in U$, then x is isolated, for $\{x\} = U \setminus (U \setminus \{x\})$. A point in a space X is isolated if and only if it has a finite neighborhood. Clearly, if $U \in O(X)$, then $\overline{\bigcup_{|U| < \aleph_0} U} = X$ if and only if $\overline{I(X)} = X$.

Remark 2.8. We note that if $U \in O(X)$ and $|U \setminus Z(f)| < \aleph_0$, then $U \setminus Z(f) \subseteq I(X)$ it means that $S_f^F \subseteq Z(f) \cup I(X)$. Whenever $|U \setminus Z(f)| \leq \aleph_0$, then $U \setminus Z(f) \subseteq I_c(X)$ and $|f(U)| \leq \aleph_0$ and $S_f^c \subseteq Z(f) \cup I_c(X)$.

Proposition 2.9. $S_{\lambda}(X) \subseteq C_{\mu}S_{\lambda}(X) \subseteq LS_{\lambda}(X) \subseteq L_{\lambda}(X)$.

Corollary 2.10. For a topological space X the following statements hold.

- (1) $C_F(X) \subseteq CC_F(X) \subseteq LC_F(X) \subseteq L_F(X).$
- (2) $S_c(X) \subseteq CS_c(X) \subseteq LS_c(X) \subseteq L_c(X).$

3. The coincidence of colocally socle with C(X) and $C_F(X)$

If X is an uncountable scattered space, then $C_F(X) \subsetneq LC_F(X) = C(X)$ and if X is a connected space $(0) = C_F(X) = LC_F(X) \subsetneq C(X)$. Clearly, if X is a λ -discrete space, then $S_{\lambda}(X) \subseteq C_{\mu}S_{\lambda}(X) = LS_{\lambda}(X) = C(X)$. In particular, if X is discrete, then $CC_F(X) = LC_F(X) = C(X)$.

Theorem 3.1. $|X \setminus I_{\lambda(X)}| < \mu$ if and only if $C_{\mu}S_{\lambda}(X) = LS_{\lambda}(X) = C(X)$.

Proof. Let $|X \setminus I_{\lambda}(X)| < \mu$ and $f \in C(X)$. Since $X \setminus S_{f}^{\lambda} \subseteq X \setminus I_{\lambda}(X)$, we infer that $f \in C_{\mu}S_{\lambda}(X)$. Conversely, let $0 \neq r \in C(X) = C_{\mu}S_{\lambda}(X)$ and $Z(r) = \emptyset$. Hence $S_{r}^{\lambda} = \bigcup\{U|U \in O(X), |U| < \lambda\}$, so $U \subseteq I_{\lambda}(X)$. Therefore $S_{r}^{\lambda} = I_{\lambda}(X)$ and since $r \in C_{\mu}S_{\lambda}(X)$, we conclude that $|X \setminus I_{\lambda}(X)| = |X \setminus S_{r}^{\lambda}| < \mu$.

Corollary 3.2. Let X be a topological space, then we have

- (1) $|X \setminus I(X)| < \aleph_0$ if and only if $CC_F(X) = LC_F(X) = C(X)$.
- (2) $|X \setminus I_c(X)| < \aleph_1$ if and only if $CS_c(X) = LS_c(X) = C(X)$.

Definition 3.3. A topological space X is called almost λ -discete whenever the set of λ -isolated points of X is dense, i.e., $\overline{I_{\lambda}(X)} = X$.

Theorem 3.4. X is an almost λ -discrete space if and only if $LS_{\lambda}(X) = C(X)$.

Proof. Let $\overline{I_{\lambda}(X)} = X$ and $f \in C(X)$. Since $I_{\lambda}(X) \subseteq S_{f}^{\lambda}$, we infer that $\overline{S_{f}^{\lambda}} = X$, i.e., $f \in LS_{\lambda}(X)$. Conversely, let r be a nonzero constant function, hence $0 \neq r \in C(X) = LS_{\lambda}(X)$ and $Z(r) = \emptyset$, therefore $\overline{S_{r}^{\lambda}} = X$. Now, we suppose that $G \in O(X)$, so there exists an open subset U in X such that $|U \setminus Z(r)| < \lambda$ and $U \cap G \neq \emptyset$. Hence $U \subseteq I_{\lambda}(X)$ and $\emptyset \neq U \cap G \subseteq I_{\lambda}(X)$. This means that $\overline{I_{\lambda}(X)} = X$.

Corollary 3.5. Let X be any topological space, then

- (1) X is an almost discrete space (i.e., I(X) = X) if and only if $LC_F(X) = C(X)$.
- (2) X is an almost countably discrete space (i.e., $\overline{I_c(X)} = X$) if and only if $LC_F(X) = C(X)$.

Proposition 3.6. $|I(X)| < \aleph_0$ if and only if $C_F(X) = LC_F(X)$.

Proof. Let $C_F(X) = LC_F(X)$. If $|I(X)| > \aleph_0$, there exists an infinite countable subset $A = \{x_1, x_2, ..., x_n, ...\} \subseteq I(X)$. We define a function f where for each $x_n \in A$, $f(x_n) = \frac{1}{n}$ and otherwise $f(x_n) = 0$. In this case if $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that for

each $n \geq k$, $\frac{1}{n} < \varepsilon$. Hence $G = X \setminus \{x_1, x_2, ..., x_k\}$ is a clopen subset and for each $x \in G$, $|f(x)| < \varepsilon$. Therefore $f \in C(X)$. But $X \setminus Z(f) = A$ is infinite, hence $f \notin C_F(X)$. Now, we show that $f \in LC_F(X)$. Let $G \subseteq X$ be an arbitrary open set, we must find an open $U \subseteq X$ where $|U \cap Coz(f)| < \aleph_0$ and $U \subseteq G$. We consider two cases: if $x \in G \cap I(X) \neq \emptyset$, it is sufficient put $U = \{x\}$. If $G \cap I(X) = \emptyset$, then $G \subseteq X \setminus I(X) \subseteq X \setminus A$. Hence $G \cap Coz(f) = G \cap A \subseteq (X \setminus A) \cap A = \emptyset$, so we put U = G. Therefore $f \in LC_F(X) \setminus C_F(X)$ and it is a contradiction. Conversely, let $|I(X)| < \aleph_0$, we prove that $C_F(X) = LC_F(X)$. Let $f \in LC_F(X)$, hence $\overline{S_f} = X$, and by Proposition 2.7 we have $S_f = \bigcup \{U|U \subseteq X, |U \setminus Z(f)| < 1\}$. i.e., for each open $G \subseteq X$, there exists an open subset $U \subseteq X$ where $U \cap Coz(f) \subseteq \{x\}$ and $U \subseteq G$. Therefore

$$X \setminus Z(f) = \overline{S_f} \setminus \overline{Z(f)} \subseteq \overline{S_f \setminus Z(f)} = \overline{(\cup U) \setminus Z(f)} = \overline{\cup (U \setminus Z(f))} \subseteq \overline{I(X)} = I(X)$$

Hence by topological definition of $C_F(X)$, we conclude that $f \in C_F(X)$.

Corollary 3.7. If X is a connected space, then $C_F(X) = LC_F(X) = (0)$.

Definition 3.8. A space (X, τ) is called λ -open if any subset A of X with $|A| > \lambda$ has nonempty interior.

Proposition 3.9. The following statements are equivalent.

- (1) (X, τ) is a λ-open space.
 (2) If clA = X, then |X \A| < λ.
 (3) If A ⊆ X, then |A\intA| < λ.
- (4) If $A \subseteq X$, then $|c|A \setminus A| < \lambda$.
- (5) If $int A = \emptyset$, then $|A| < \lambda$.

Proof. (1) \rightarrow (2). Let (X, τ) be λ -open and clA = X, then $int(X \setminus A) = \emptyset$. So by (1), $|X \setminus A| < \lambda$.

 $(2) \rightarrow (3)$. $int(A \setminus intA) = \emptyset$, hence $cl(X \setminus (A \setminus intA)) = X$. Therefore by hypothesis $|A \setminus intA| < \lambda$.

 $(3) \to (4). \ clA \setminus A = (X \setminus A) \setminus int(X \setminus A), \text{ so by } (3), \ |clA \setminus A| < \lambda.$

(4) \rightarrow (5). Let $intA = \emptyset$, hence by (4), $|A| = |cl(X \setminus A) \setminus (X \setminus A)| < \lambda$.

 $(5) \rightarrow (1)$. By definition it is clear.

We remind the reader that, if $|X \setminus I_X| < \aleph_1$ then X is \aleph_1 -open. Conversely, let $A = X \setminus I_X$ and suppose that $|A| > \aleph_1$. Then A can be represented as a disjoint union $A = \{A_n : n \in \mathbb{N}\}$ where $|A_n| > \aleph_0$. Since X is \aleph_0 -open there is a point $a_n \in intA_n$ for each $n \in \mathbb{N}$. If $B = \{a_n : n \in \mathbb{N}\}$, then $|B| > \aleph_0$ and hence there exists an $m \in \mathbb{N}$ such that $a_m \in intB$. Clearly $intB \cap intA_m = \{a_m\}$ so that $a_m \in I_X$, contradicting the fact that $a_m \in A$. Hence X is \aleph_1 -open if and only if the set of nonisolated points of X is countable.

Proposition 3.10. Let X be μ -open, then

(1) $L_{\lambda}(X) = L_{\lambda\mu}(X).$ (2) $LS_{\lambda}(X) = C_{\mu}S_{\lambda}(X).$

Corollary 3.11. Let X be \aleph_0 -open, then

- (1) $L_F(X) = L_{FF}(X).$
- (2) $LC_F(X) = CC_F(X).$

Corollary 3.12. Let X be \aleph_1 -open, then

(1) $L_c(X) = L_{cc}(X).$ (2) $LS_c(X) = CS_c(X).$

4. The primeness of $CC_F(X)$ in some subrings of C(X)

Theorem 4.1. Let X have at least two infinite (uncountable) components with no finite (countable) subset. Then $CC_F(X)$ ($CS_c(X)$) is never prime in any subring A of C(X) which contains the idempotents of C(X).

Proof. We suppose that X_1, X_2 are infinite (uncountable). We define

$$f(x) = \begin{cases} 1 & , & x \in X \setminus X_1 \\ 0 & , & x \in X_1 \end{cases} \text{ and } g(x) = \begin{cases} 1 & , & x \in X_1 \\ 0 & , & x \in X \setminus X_1 \end{cases}$$

So $f, g \in C(X)$ and $fg = 0 \in CC_F(X)$ $(CS_c(X))$. But $f, g \notin CC_F(X)$ $(CS_c(X))$. For $X_1, X_2 \subseteq X$ are open and $|X_1|, |X_2|$ are infinite (uncountable). $X_1 \subseteq X \setminus S_g$ and $X_2 \subseteq X \setminus S_f$. We note that if $U \subseteq X_1, U \subseteq X_2$ be open and $|U \cap Coz(g)|, |U \cap Coz(f)|$ be finite (countable), then it is a contradiction with hypothesis. i.e., $f, g \notin CC_F(X)$ $(CS_c(X))$.

Corollary 4.2. Let X have finite components and at least two of them are infinite. Then $CC_F(X)$ is never prime in any subring A of C(X) which contains the idempotents of C(X).

We recall that $C_1(X \setminus I(X)) = \{f \in C(X) : |f(X \setminus I(X))| = 1\}$. The next theorem characterized the primeness of $CC_F(X)$ in some subrings of C(X).

Theorem 4.3. Let $|I(X)| < \aleph_0$ and $R \subseteq C(X)$. If $R \subseteq C_1(X \setminus I(X))$, then $CC_F(X)$ is prime in R. Conversely, if $CC_F(X)$ is prime in R and R contains the idempotents of C(X), then $X \setminus I(X)$ is connected.

Proof. Let $fg = 0 \in CC_F(X)$ and $f, g \in R$. Since $R \subseteq C_1(X \setminus I(X))$ we infer that $f(X \setminus I(X)) = 0$ or $g(X \setminus I(X)) = 0$. Hence $S_f^F = X$ or $S_g^F = X$. Therefore $f \in CC_F(X)$ or $g \in CC_F(X)$, i.e., $CC_F(X)$ is prime in R. Conversely, let $Y = X \setminus I(X) = A \cup B$ where A, B are two nonempty clopen subsets in Y and get a contradiction. Since Y in X is clopen we infer that A, B in X are clopen. It is evident that $X = I(X) \cup A \cup B$. Now, we define $f, g \in R \subseteq C(X)$ such that $f(A \cup I(X)) = 1$, f(B) = 0 and $g(B \cup I(X)) = 1$, g(A) = 0. It is obvious that $fg = 0 \in CC_F(X)$. Since $B \subseteq X \setminus S_f^F$ and $A \subseteq X \setminus S_g^F$ we infer that $f, g \notin CC_F(X)$ i.e., $CC_F(X)$ is not prime in R that is a contradiction. \Box

Corollary 4.4. If $|I(X)| < \aleph_0$ and $X \setminus I(X)$ is connected, then $CC_F(X)$ is prime in $C_c(X)$ and $C^F(X)$.

Corollary 4.5. If $|I(X)| < \aleph_0$ and $X \setminus I(X)$ is disconected, then $CC_F(X)$ is never prime in any subring R of C(X) which contains the idempotents of C(X).

The previous facts also hold for $LC_F(X)$, see [15].

Theorem 4.6. Let C be a module and $A \leq C$, then A is an intersection of essential submodules of C if and only if $Soc(C) \leq A$.

Proof. See [10].

The next fact gives a simple poof for this theorem.

Proposition 4.7. $CC_F(X)$ $(CS_c(X))$ is an intersection of essential ideals.

Proof. $CC_F(X)$ $(CS_c(X))$ is a z-ideal, hence it is an intersection of prime ideals, see [2]. Since every z-ideal which contains $C_F(X)$ is essential, we infer that $CC_F(X)$ $(CS_c(X))$ is an intersection of essential ideals.

Acknowledgment. The author expresses gratitude to the referee for careful reading and comments that helped to improve the paper.

1435

S. Soltanpour

References

- F. Azarpanah and O.A.S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian. J. Pure Appl. Math. 12, 155–168, 2002.
- [2] F. Azarpanah, O.A.S. Karamzadeh and S. Rahmati, C(X) VS. C(X) modulo its socle, Colloq. Math. **3**, 315–336, 2008.
- [3] T. Dube, Contracting the socle in rings of continuous functions, Rend. Semin. Mat. Univ. Padova, 123, 37–53, 2010.
- [4] R. Engelking, General topology, Berlin, Germany, Heldermann Verlag, 1989.
- [5] A.A. Estaji and O.A.S. Karamzadeh, On C(X) modulo its socle, Comm. Algebra. **31**, 1561–1571, 2003.
- [6] M. Ghadermazi, O.A.S. Karamzadeh and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, **129**, 47–69, 2013.
- [7] M. Ghadermazi, O.A.S. Karamzadeh and M. Namdari, C(X) versus its functionally countable subalgebra, to appear in the Bull. Iran. Math. Soc. 2018.
- [8] S. Ghasmzadeh, O.A.S. Karamzadeh and M. Namdari, The super socle of the ring of continuous functions, Math. Slovaca, 67 (4), 1001–1010, 2017.
- [9] L. Gillman and M. Jerison, *Rings of continuous functions*, Springer-Verlag, 1976.
- [10] K.R. Goodearl, Von Neumann regular rings, Pitman, 1979.
- [11] S. Mehran and M. Namdari, The λ-super socle of the ring of continuous function, Categ. Gen. Algebr. Struct. Appl. 6, 1–13, 2017.
- [12] R. Mehri and R. Mohamadian, On the locally subalgebra of C(X) whose local domain is cocountable, Hacet. J. Math. Stat. **46** (6), 1053-1068, 2017.
- [13] O.A.S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. **93**, 179–184, 1985.
- [14] O.A.S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16 (2), 183–207, 2015.
- [15] M. Namdari and S. Soltanpour, Locally socle of C(X), J. Adv. Math. Model. 4 (2), 87–99, 2014.