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Abstract
Let CF (X) be the socle of C(X) (i.e., the sum of minimal ideals of C(X)). We introduce
and study the concept of colocally socle of C(X) as CµSλ(X) =

{
f ∈ C(X) : |X\Sλ

f | < µ
}

,
where Sλ

f is the union of all open subsets U in X such that |U\Z(f)| < λ. CµSλ(X) is a z-
ideal of C(X) containing CF (X). In particular, Cℵ0Sℵ0(X) = CCF (X) and Cℵ1Sℵ1(X) =
CSc(X) are investigated. For each of the containments in the chain CF (X) ⊆ CCF (X) ⊆
CµSλ(X) ⊆ C(X), we characterize the spaces X for which the containment is actually an
equality. We determine the conditions such that CCF (X) (CSc(X)) is not prime in any
subrings of C(X) which contains the idempotents of C(X). The primeness of CCF (X) in
some subrings of C(X) is investigated.
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1. Introduction
Unless otherwise mentioned all topological spaces X are infinite completely regular

Hausdorff and we will employ the definitions and notations used in [4, 9]. C(X) denotes
the ring of all real valued continuous functions on a topological space X. Let Cc(X) =
{f ∈ C(X) : |f(X)| ≤ ℵ0}, CF (X) = {f ∈ C(X) : |f(X)| < ℵ0}. A topological
space X is called functionally countable whenever C(X) = Cc(X), see [6, 7]. Motivated
by the fact that Cc(X) is the largest subring of C(X) whose elements have countable
image, the subrings Lc(X), Lcc(X) of C(X) where Cc(X) ⊆ Lcc(X) ⊆ Lc(X) ⊆ C(X)
are introduced. Let Cf be the union of all open subsets U ⊆ X such that |f(U)| ≤ ℵ0,
Lc(X) = {f ∈ C(X) : Cf = X} and Lcc(X) = {f ∈ C(X) : |X\Cf | ≤ ℵ0}, see [12, 14].
For each f ∈ C(X), the zero-set of f , denoted by Z(f), is the set of zeros of f and
X\Z(f) = coz(f) is the cozero-set of f and the set of all zero-sets in X is denoted by Z(X).
An ideal I in C(X) is called a z-ideal if whenever f ∈ I, g ∈ C(X) and Z(f) ⊆ Z(g), then
g ∈ I. The socle of C(X) (i.e., CF (X)) which is in fact a direct sum of minimal ideals of
C(X) is characterized topologically in [13, Proposition 3.3], and it turns out that CF (X) =
{f ∈ C(X) : |X\Z(f)| < ℵ0} is a useful object in the context of C(X). We know that
one of the main objectives of working in the context of C(X) is to characterize topological
properties of a given space X in terms of a suitable algebraic properties of C(X) and CF (X)
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is an important object in this way, see [1–3,5,13]. Let λ, µ be two arbitrary infinite ordinal
numbers. In [11], the λ-super socle of C(X), Sλ(X) = {f ∈ C(X) : |X\Z(f)| < λ} which
includes CF (X) = Sℵ0(X) is investigated, see also [8]. This motivates us to investigate
the locally socle of C(X). We define LSλ(X) =

{
f ∈ C(X) : Sλ

f = X
}

, where Sλ
f is the

union of all open subsets U in X such that |U\Z(f)| < λ. LSλ(X) is called the locally
λ-super socle of C(X) and it is a z-ideal of C(X) containing CF (X) = Sℵ0(X) and Sλ(X).
Let us put LSℵ0 = LCF (X), we characterize spaces X for which the equality in the
relation CF (X) ⊆ LCF (X) ⊆ C(X) is hold. In fact, it is shown that X is an almost
discrete space if and only if LCF (X) = C(X). We note that if X is an infinite space, then
CF (X) ( C(X). It is also observed that |I(X)| < ∞ if and only if CF (X) = LCF (X), see
[15]. We state this facts for locally λ-super socle. The importance of the role of CF (X) in
the context of C(X), and the subalgebra Cc(X) ⊆ Lcc(X) ⊆ Lc(X) ⊆ C(X) motivated us
to define and study the colocally socle of C(X), CµSλ(X) and in particular Cℵ0Sℵ0(X) =
CCF (X), cofinite locally socle of C(X), and Cℵ1Sℵ1(X) = CSc(X), cocountable locally
socle of C(X) are investigated. The equality in the relation CF (X) ⊆ CCF (X) ⊆ C(X) is
characterized. It is shown that CCF (X) (CSc(X)) is an intersection of essential ideals of
C(X). The conditions such that CCF (X) (CSc(X)) is not prime in any subrings of C(X)
which contains the idempotents of C(X) are determined. We investigate the primeness of
CCF (X) in some subrings of C(X).

2. Colocally socle
Let O(X) be the set of open subsets of X and if U ⊆ X is closed and open it is called

clopen. The set of isolated point of X is denoted by I(X) and Ic(X) is the set of points
x ∈ X with countable open neighborhood. An element x ∈ X is called λ-isolated point
if x has a neighborhood with cardinality less than λ. The set of λ-isolated points of X is
denoted by Iλ(X). A space X is called λ-discrete space if Iλ(X) = X, see [11].

Definition 2.1. Let f ∈ C(X) and Sλ
f be the union of all open subsets U ⊆ X such that

|U\Z(f)| < λ, Sλ
f is called the local cozeroset of f . We denote the colocally socle of C(X)

by CµSλ(X) and define it to be the set of all f ∈ C(X) such that |X\Sλ
f | < µ. i.e.,

Sλ
f =

∪
{U : U ∈ O(X), |U\Z(f)| < λ},

CµSλ(X) = {f ∈ C(X) : |X\Sλ
f | < µ}.

In particular, we denote Cℵ0Sℵ0(X) = CCF (X), cofinite locally socle of C(X), and
Cℵ1Sℵ1(X) = CSc(X) is called cocountable locally socle of C(X). i.e.,

SF
f = Sℵ0

f =
∪

{U : U ∈ O(X), |U\Z(f)| < ℵ0},

CCF (X) = {f ∈ C(X) : |X\SF
f | < ℵ0};

and
Sc

f = Sℵ1
f =

∪
{U : U ∈ O(X), |U\Z(f)| < ℵ1},

CSc(X) = {f ∈ C(X) : |X\Sc
f | < ℵ1}.

Definition 2.2. The set

LSλ(X) = {f ∈ C(X) : Sλ
f = X}

is called locally λ-super socle of C(X). Let LSℵ0(X) = LCF (X), and LSℵ1(X) = LSc(X),
see [15].

If λ1 < λ2, then Sλ1
f ⊆ Sλ2

f . Hence CµSλ1(X) ⊆ CµSλ2(X) and LSλ1(X) ⊆ LSλ2(X).
If µ1 < µ2, we conclude that Cµ1Sλ(X) ⊆ Cµ2Sλ(X).
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Remark 2.3. Let Cλ
f be the union of all U ∈ O(X) such that |f(U)| < λ, we define

Lλ(X) = {f ∈ C(X) : Cλ
f = X}. Let Lℵ0(X) = LF (X), Lℵ1(X) = Lc(X), and LF (X)

(Lc(X)) is called locally functionally finite (countable) subalgebra of C(X), see [14]. Now,
we define Lµλ(X) = {f ∈ C(X) : |X\Cλ

f | < µ}, let Lℵ0ℵ0(X) = LF F (X) as cofinite locally
functionally finite subalgebra of C(X), and Lℵ1ℵ0(X) = LcF (X) (Lℵ1ℵ1(X) = Lcc(X)) are
called cocountable locally functionally finite (countable) subalgebra of C(X), see [12]. It
is evident that, Lµλ(X) ⊆ CµSλ(X).

Lemma 2.4. If f, g ∈ C(X), then the following statements hold.
(1) Sλ

f+g ⊇ Sλ
f ∩ Sλ

g .
(2) Sλ

fg ⊇ Sλ
f ∪ Sλ

g .
(3) Sλ

|f | = Sλ
f .

(4) Sλ
f ⊆ Cλ

f .
(5) If f, g ∈ Lλ(X), then Cλ

f ∩ Cλ
g = Cλ

f = Cλ
g = X.

(6) If f, g ∈ LSλ(X), then Sλ
f ∩ Sλ

g = Sλ
f = Sλ

g = X.

Proof. Let
Sλ

f =
∪

{U |U ∈ O(X), |U\Z(f)| < λ},

and
Sλ

g =
∪

{V |V ∈ O(X), |V \Z(f)| < λ}.

Hence
Sλ

f ∩ Sλ
g =

∪
{U ∩ V | |U\Z(f)| < λ, |V \Z(g)| < λ}

=
∪

{W |W ∈ O(X), |W\Z(f)| < λ, |W\Z(g)| < λ}

⊆
∪

{W |W ∈ O(X), |W\Z(f + g)| < λ}.

We have U\Z(f + g) ⊆ (U\Z(f)) ∪ (U\Z(g)), U\Z(fg) = (U\Z(f)) ∩ (U\Z(g)). Hence
the proof of (1), (2) is obvious. Since U\Z(|f |) = U\Z(f), we infer that (3) holds. For
(4), let f ∈ Sλ

f , therefore U ∈ O(X), |U\Z(f)| < λ which implies that |f(U)| < λ. We
remind the reader that if Y = X and G ∈ O(X), then G ∩ Y = G. Since Cλ

f , Sλ
f ∈ O(X)

are dense, we infer that (5), (6). �

Proposition 2.5. CµSλ(X) is a z-ideal of C(X).

Proof. Let f, g ∈ CµSλ(X), we show that f + g ∈ CµSλ(X). By the previous lemma
Sλ

f+g ⊇ Sλ
f ∩ Sλ

g , so Sλ
f+g ⊇ Sλ

f ∩ Sλ
g = Sλ

f = Sλ
g = X, hence f + g ∈ CµSλ(X). Now,

let f ∈ CµSλ(X), g ∈ C(X) we show that fg ∈ CµSλ(X). By the previous lemma
Sλ

fg ⊇ Sλ
f ∪ Sλ

g , so Sλ
fg ⊇ Sλ

f ∪ Sλ
g = Sλ

f ∪ Sλ
g = X. Therefore, CµSλ(X) is an ideal. Now,

we prove that CµSλ(X) is a z-ideal. For this mean let f ∈ CµSλ(X) and Z(f) ⊆ Z(g), we
show that g ∈ CµSλ(X). For each open subset U ⊆ Sf , we have U\Z(g) ⊆ U\Z(f), so
Sλ

f ⊆ Sλ
g . Hence X = Sλ

f ⊆ Sλ
g , therefore g ∈ CµSλ(X). �

Similarly, the next fact is proved.

Proposition 2.6. LSλ(X) is a z-ideal of C(X).

Clearly, CµSλ(X) is absolutely convex. In this paper we investigate more Cℵ0Sℵ0(X) =
CCF (X), and Cℵ1Sℵ1(X) = CSc(X).

Proposition 2.7.

SF
f =

∪
{U : U ∈ O(X) , |U\Z(f)| < ℵ0} =

∪
{V : V ∈ O(X) , |V \Z(f)| ≤ 1}.
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Proof.
∪

{V : V ∈ O(X) , |V \Z(f)| ≤ 1} ⊆ SF
f . Let U\Z(f) = {x1, x2, . . . , xn}, we define

Vi = U\{x1, x2, . . . , xi−1, xi+1, . . . , xn}. It is obvious that Vi ∈ O(X) and Vi\Z(f) = {xi}.
Now, put U =

∪n
i=1 Vi and we are done. �

If U is an open subset in a Hausdorff space X and x ∈ U , then x is isolated, for {x} =
U\(U\{x}). A point in a space X is isolated if and only if it has a finite neighborhood.
Clearly, if U ∈ O(X), then

∪
|U |<ℵ0 U = X if and only if I(X) = X.

Remark 2.8. We note that if U ∈ O(X) and |U\Z(f)| < ℵ0, then U\Z(f) ⊆ I(X) it
means that SF

f ⊆ Z(f) ∪ I(X). Whenever |U\Z(f)| ≤ ℵ0, then U\Z(f) ⊆ Ic(X) and
|f(U)| ≤ ℵ0 and Sc

f ⊆ Z(f) ∪ Ic(X).

Proposition 2.9. Sλ(X) ⊆ CµSλ(X) ⊆ LSλ(X) ⊆ Lλ(X).

Corollary 2.10. For a topological space X the following statements hold.
(1) CF (X) ⊆ CCF (X) ⊆ LCF (X) ⊆ LF (X).
(2) Sc(X) ⊆ CSc(X) ⊆ LSc(X) ⊆ Lc(X).

3. The coincidence of colocally socle with C(X) and CF (X)
If X is an uncountable scattered space, then CF (X) ( LCF (X) = C(X) and if X

is a connected space (0) = CF (X) = LCF (X) ( C(X). Clearly, if X is a λ-discrete
space, then Sλ(X) ⊆ CµSλ(X) = LSλ(X) = C(X). In particular, if X is discrete, then
CCF (X) = LCF (X) = C(X).

Theorem 3.1. |X\Iλ(X)| < µ if and only if CµSλ(X) = LSλ(X) = C(X).

Proof. Let |X\Iλ(X)| < µ and f ∈ C(X). Since X\Sλ
f ⊆ X\Iλ(X), we infer that

f ∈ CµSλ(X). Conversely, let 0 ̸= r ∈ C(X) = CµSλ(X) and Z(r) = ∅. Hence Sλ
r =∪

{U |U ∈ O(X), |U | < λ}, so U ⊆ Iλ(X). Therefore Sλ
r = Iλ(X) and since r ∈ CµSλ(X),

we conclude that |X\Iλ(X)| = |X\Sλ
r | < µ. �

Corollary 3.2. Let X be a topological space, then we have
(1) |X\I(X)| < ℵ0 if and only if CCF (X) = LCF (X) = C(X).
(2) |X\Ic(X)| < ℵ1 if and only if CSc(X) = LSc(X) = C(X).

Definition 3.3. A topological space X is called almost λ-discete whenever the set of
λ-isolated points of X is dense, i.e., Iλ(X) = X.

Theorem 3.4. X is an almost λ-discrete space if and only if LSλ(X) = C(X).

Proof. Let Iλ(X) = X and f ∈ C(X). Since Iλ(X) ⊆ Sλ
f , we infer that Sλ

f = X, i.e.,
f ∈ LSλ(X). Conversely, let r be a nonzero constant function, hence 0 ̸= r ∈ C(X) =
LSλ(X) and Z(r) = ∅, therefore Sλ

r = X. Now, we suppose that G ∈ O(X), so there
exists an open subset U in X such that |U\Z(r)| < λ and U ∩ G ̸= ∅. Hence U ⊆ Iλ(X)
and ∅ ̸= U ∩ G ⊆ Iλ(X). This means that Iλ(X) = X. �
Corollary 3.5. Let X be any topological space, then

(1) X is an almost discrete space (i.e., I(X) = X) if and only if LCF (X) = C(X).
(2) X is an almost countably discrete space (i.e., Ic(X) = X) if and only if LCF (X) =

C(X).

Proposition 3.6. |I(X)| < ℵ0 if and only if CF (X) = LCF (X).

Proof. Let CF (X) = LCF (X). If |I(X)| > ℵ0, there exists an infinite countable subset
A = {x1, x2, ..., xn, ...} ⊆ I(X). We define a function f where for each xn ∈ A, f(xn) =
1
n and otherwise f(xn) = 0. In this case if ε > 0, there exists k ∈ N such that for
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each n ≥ k, 1
n < ε. Hence G = X\ {x1, x2, ..., xk} is a clopen subset and for each

x ∈ G, |f(x)| < ε. Therefore f ∈ C(X). But X\Z(f) = A is infinite, hence f /∈ CF (X).
Now, we show that f ∈ LCF (X). Let G ⊆ X be an arbitrary open set, we must find
an open U ⊆ X where |U ∩ Coz(f)| < ℵ0 and U ⊆ G. We consider two cases: if
x ∈ G ∩ I(X) ̸= ∅, it is sufficient put U = {x}. If G ∩ I(X) = ∅, then G ⊆ X\I(X) ⊆
X\A. Hence G ∩ Coz(f) = G ∩ A ⊆ (X\A) ∩ A = ∅, so we put U = G. Therefore
f ∈ LCF (X)\CF (X) and it is a contradiction. Conversely, let |I(X)| < ℵ0, we prove that
CF (X) = LCF (X). Let f ∈ LCF (X), hence Sf = X, and by Proposition 2.7 we have
Sf =

∪
{U |U ⊆ X, |U\Z(f)| < 1}. i.e., for each open G ⊆ X, there exists an open subset

U ⊆ X where U ∩ Coz(f) ⊆ {x} and U ⊆ G. Therefore

X\Z(f) = Sf \Z(f) ⊆ Sf \Z(f) = (∪U)\Z(f) = ∪(U\Z(f)) ⊆ I(X) = I(X).

Hence by topological definition of CF (X), we conclude that f ∈ CF (X). �

Corollary 3.7. If X is a connected space, then CF (X) = LCF (X) = (0).

Definition 3.8. A space (X, τ) is called λ-open if any subset A of X with |A| > λ has
nonempty interior.

Proposition 3.9. The following statements are equivalent.
(1) (X, τ) is a λ-open space.
(2) If clA = X, then |X\A| < λ.
(3) If A ⊆ X, then |A\intA| < λ.
(4) If A ⊆ X, then |clA\A| < λ.
(5) If intA = ∅, then |A| < λ.

Proof. (1) → (2). Let (X, τ) be λ-open and clA = X, then int(X\A) = ∅. So by (1),
|X\A| < λ.
(2) → (3). int(A\intA) = ∅, hence cl(X\(A\intA)) = X. Therefore by hypothesis
|A\intA| < λ.
(3) → (4). clA\A = (X\A)\int(X\A), so by (3), |clA\A| < λ.
(4) → (5). Let intA = ∅, hence by (4), |A| = |cl(X\A)\(X\A)| < λ.
(5) → (1). By definition it is clear. �

We remind the reader that, if |X \ IX | < ℵ1 then X is ℵ1-open. Conversely, let A =
X \ IX and suppose that |A| > ℵ1. Then A can be represented as a disjoint union
A = {An : n ∈ N} where |An| > ℵ0. Since X is ℵ0-open there is a point an ∈ intAn

for each n ∈ N. If B = {an : n ∈ N}, then |B| > ℵ0 and hence there exists an m ∈ N
such that am ∈ intB. Clearly intB ∩ intAm = {am} so that am ∈ IX , contradicting the
fact that am ∈ A. Hence X is ℵ1-open if and only if the set of nonisolated points of X is
countable.

Proposition 3.10. Let X be µ-open, then
(1) Lλ(X) = Lλµ(X).
(2) LSλ(X) = CµSλ(X).

Corollary 3.11. Let X be ℵ0-open, then
(1) LF (X) = LF F (X).
(2) LCF (X) = CCF (X).

Corollary 3.12. Let X be ℵ1-open, then
(1) Lc(X) = Lcc(X).
(2) LSc(X) = CSc(X).
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4. The primeness of CCF (X) in some subrings of C(X)
Theorem 4.1. Let X have at least two infinite (uncountable) components with no finite
(countable) subset. Then CCF (X) (CSc(X)) is never prime in any subring A of C(X)
which contains the idempotents of C(X).

Proof. We suppose that X1, X2 are infinite (uncountable). We define

f(x) =


1 , x ∈ X\X1

0 , x ∈ X1

and g(x) =


1 , x ∈ X1

0 , x ∈ X\X1

So f, g ∈ C(X) and fg = 0 ∈ CCF (X) (CSc(X)). But f, g /∈ CCF (X) (CSc(X)).
For X1, X2 ⊆ X are open and |X1|, |X2| are infinite (uncountable). X1 ⊆ X\Sg and
X2 ⊆ X\Sf . We note that if U ⊆ X1, U ⊆ X2 be open and |U ∩ Coz(g)|, |U ∩ Coz(f)|
be finite (countable), then it is a contradiction with hypothesis. i.e., f, g /∈ CCF (X)
(CSc(X)). �
Corollary 4.2. Let X have finite components and at least two of them are infinite. Then
CCF (X) is never prime in any subring A of C(X) which contains the idempotents of
C(X).

We recall that C1(X\I(X)) = {f ∈ C(X) : |f(X\I(X))| = 1}. The next theorem
characterized the primeness of CCF (X) in some subrings of C(X).

Theorem 4.3. Let |I(X)| < ℵ0 and R ⊆ C(X). If R ⊆ C1(X\I(X)), then CCF (X) is
prime in R. Conversely, if CCF (X) is prime in R and R contains the idempotents of
C(X), then X\I(X) is connected.

Proof. Let fg = 0 ∈ CCF (X) and f, g ∈ R. Since R ⊆ C1(X\I(X)) we infer that
f(X\I(X)) = 0 or g(X\I(X)) = 0. Hence SF

f = X or SF
g = X. Therefore f ∈ CCF (X)

or g ∈ CCF (X), i.e., CCF (X) is prime in R. Conversely, let Y = X\I(X) = A ∪ B where
A, B are two nonempty clopen subsets in Y and get a contradiction. Since Y in X is
clopen we infer that A, B in X are clopen. It is evident that X = I(X) ∪ A ∪ B. Now,
we define f, g ∈ R ⊆ C(X) such that f(A ∪ I(X)) = 1, f(B) = 0 and g(B ∪ I(X)) = 1,
g(A) = 0. It is obvious that fg = 0 ∈ CCF (X). Since B ⊆ X\SF

f and A ⊆ X\SF
g we

infer that f, g /∈ CCF (X) i.e., CCF (X) is not prime in R that is a contradiction. �
Corollary 4.4. If |I(X)| < ℵ0 and X\I(X) is connected, then CCF (X) is prime in Cc(X)
and CF (X).

Corollary 4.5. If |I(X)| < ℵ0 and X\I(X) is disconected, then CCF (X) is never prime
in any subring R of C(X) which contains the idempotents of C(X).

The previous facts also hold for LCF (X), see [15].

Theorem 4.6. Let C be a module and A ≤ C, then A is an intersection of essential
submodules of C if and only if Soc(C) ≤ A.

Proof. See [10]. �
The next fact gives a simple poof for this theorem.

Proposition 4.7. CCF (X) (CSc(X)) is an intersection of essential ideals.

Proof. CCF (X) (CSc(X)) is a z-ideal, hence it is an intersection of prime ideals, see [2].
Since every z-ideal which contains CF (X) is essential, we infer that CCF (X) (CSc(X)) is
an intersection of essential ideals. �
Acknowledgment. The author expresses gratitude to the referee for careful reading
and comments that helped to improve the paper.



1436 S. Soltanpour

References
[1] F. Azarpanah and O.A.S. Karamzadeh, Algebraic characterization of some discon-

nected spaces, Italian. J. Pure Appl. Math. 12, 155–168, 2002.
[2] F. Azarpanah, O.A.S. Karamzadeh and S. Rahmati, C(X) VS. C(X) modulo its

socle, Colloq. Math. 3, 315–336, 2008.
[3] T. Dube, Contracting the socle in rings of continuous functions, Rend. Semin. Mat.

Univ. Padova, 123, 37–53, 2010.
[4] R. Engelking, General topology, Berlin, Germany, Heldermann Verlag, 1989.
[5] A.A. Estaji and O.A.S. Karamzadeh, On C(X) modulo its socle, Comm. Algebra. 31,

1561–1571, 2003.
[6] M. Ghadermazi, O.A.S. Karamzadeh and M. Namdari, On the functionally countable

subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, 129, 47–69, 2013.
[7] M. Ghadermazi, O.A.S. Karamzadeh and M. Namdari, C(X) versus its functionally

countable subalgebra, to appear in the Bull. Iran. Math. Soc. 2018.
[8] S. Ghasmzadeh, O.A.S. Karamzadeh and M. Namdari, The super socle of the ring of

continuous functions, Math. Slovaca, 67 (4), 1001–1010, 2017.
[9] L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.

[10] K.R. Goodearl, Von Neumann regular rings, Pitman, 1979.
[11] S. Mehran and M. Namdari, The λ-super socle of the ring of continuous function,

Categ. Gen. Algebr. Struct. Appl. 6, 1–13, 2017.
[12] R. Mehri and R. Mohamadian, On the locally subalgebra of C(X) whose local domain

is cocountable, Hacet. J. Math. Stat. 46 (6), 1053-1068, 2017.
[13] O.A.S. Karamzadeh and M. Rostami, On the intrinsic topology and some related

ideals of C(X), Proc. Amer. Math. Soc. 93, 179–184, 1985.
[14] O.A.S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally

countable subalgebra of C(X), Appl. Gen. Topol. 16 (2), 183–207, 2015.
[15] M. Namdari and S. Soltanpour, Locally socle of C(X), J. Adv. Math. Model. 4 (2),

87–99, 2014.


