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1. Introduction

In 1983, T.S. Blyth and J.C. Varlet [8] introduced the notion of an M S-algebra as
a common abstraction of De Morgan algebra and Stone algebra. The class MS of all
M S-algebras is equational. Also, in [9] they described all subvarieties of MS. The lattice
A(MS) of subvarieties of MS has 20 elements (see Figure 1 of [10]). In [11] T. S. Blyth
and J. C. Varlet studied and characterized the ideal lattice of an M S-algebra. In [13]
Luo Congwen introduced and characterized Stonean intervals of an M S-algebras. In
2012, A. Badawy, D. Guffova and M. Haviar [5] introduced and characterized the class of
decomposable M S-algebras by means of triples. A. Badawy and R. El-Fawal [3] studied
homomorphisms and subalgebras of decomposable M S-algebras. In 2014, A. Badawy and
M.S. Rao [4] introduced the notion of closure ideals of M S-algebras. Recently, A. Badawy
[1,2] introduced and constructed two new classes of generalized M S-algebras.

In this article, after preliminaries in Section 2, we introduce in Section 3, the concepts
of central elements and M S-intervals of an M S-algebra and related properties. Also, it
is proved that the set Iprs(L), of all M S-intervals of L forms a Stone algebra on its own.
The largest Stone subalgebra Lg of any M S-algebra L is obtained and characterized. In
Section 4, if L, is an M S-interval of an M S-algebra L, then the relationship between
I'(L) and T'(L,) is obtained and some related properties are investigated. Finally, we
proved that the skeleton of the two M S-intervals L. and L, are isomorphic, whenever
(c,d) e I'(L).
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2. Preliminaries

In this section, we present certain definitions and results which are taken mostly from
[6,8,9,12].
An M S-algebra is an algebra (L;V,A,°,0,1) of type (2,2,1,0,0) where (L;V,A,0,1) is
a bounded distributive lattice and ° a unary operation of involution satisfies :
x <z (xANy)°=2z°Vy°, 1°=0.
The class MS of all M S-algebras is equational. The class B of Boolean algebras is a
subclass of MS and is characterized by the identity x V z° = 1.

The class M of De Morgan algebras is a subclass of the class M'S and is characterized by
the identity, z = z°°. The class Ko of Ks-algebras is a subclass of MS and is characterized
by the additional two identities

zAx® =2 ANz (xANz°)V (yVy°) =y Vy°.
The class S of Stone algebras is a subclass of MS and is characterized by the identity
x A z° = 0. The class K3 is a subclass of MS and is characterized by the following two
identities
(x/\l,o)vyOO\/yO:yOO\/yO’x\/yOvyOO:xOO\/yO\/yOO'
The class M V Ko V K3 is a subclass of MS and is characterized by the identity
(@Ax®) V (y° Vy>) = (2% Az®) V (y° Vy™).
We recall some of the basic properties of M S-algebras which were proved in [8] or [12].

Theorem 2.1. For any two elements a,b of an M S-algebra L, we have
(1) 0° =
(2)a<b=1b°<a°
(3) aO — aOOO
(4) (aVb)° =a°AD°
(5) (aVb)*° =a® Vb
(6) (a AD)°° = a® AD°.
It is known that the set L°° = {z € L : x = 2°°} of all closed elements of an M S-algebra

L is a De Morgan subalgebra of L. L°° is called the skeleton of L. If L € S, then L°° is a
Boolean subalgebra of L.

An element d of an MS-algebra L is called a dense element if d° = 0. The set
D(L) ={d € L:d° =0} of all dense elements of L is a filter of L (see [5]).

The mapping x — z°° on an M S-algebras L gives rise to the following binary relation
r=y(['(L) ©z°=y*° az°=y°
It is known that I'(L) is a congruence relation on L and L/T'(L) = L°°. The element x°° is

the greatest element of the congruence class [z|['(L). It is easy to see that [1]I'(L) = D(L)
and [0]T'(L) = {0}.

We refer the reader to [7,12,14] for the basic properties of distributive lattices and to
[6,9,10,12] for the basic properties of M S-algebras.

3. M S-intervals

For any element a of an M S-algebra L, denote the interval [0, a] by L,. In this section,
the answer of the following question and related results are given: Under what conditions
the intervals L,, a € L constructs M S-algebras?. We proved that the collection Ipss(L)
of all M S-intervals of L is a Stone algebra. Also, the largest Stone subalgebra Lg of an
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M S-algebra L and Ip;g(L) are isomorphic.

Firstly, we mention the notion of central elements of an M S-algebra L.

Definition 3.1. An element a of an M S-algebra L is said to be a central element of L if
aVa®=1. The set C(L) ={a € L:aVa® =1} of all central elements of L is called the
center of L.

It is obvious that, if L € S, then C(L) = L°°. Otherwise C(L) C L°°, for any
LeMS-S.

The following theorem is a direct consequence of the above.

Theorem 3.2. Let L be an MS-algebra. Then
(1) if a € C(L), then a® € C(L),
(2) if a € C(L), then a A a®° =0,
(8) C(L) is a Boolean subalgebra of L°°.
Secondly, we introduce the concept of M S-interval of an M S-algebra.

Definition 3.3. An interval L, of an MS-algebra L is called an M S-interval if
(Lqa; V, A%, 0,a) is an M S-algebra with respect to the operations V, A of L and a unary
operation °* is defined by x°* = z° A a for every x € L,.

An M S-interval L,, a # 1 is not a subalgebra of L, for it does not preserve the nullary
operations.

Now, the following crucial lemma is given.

Lemma 3.4. Let L, = (Lq, °*) be an M S-interval of an M S-algebra L. Then
(1) In La, a® =0,

(2) Lo*° = {z*° Na:x € Lo} and D(Lg) = {z € L : 2° Na = 0},

(3) If a € L°°, then L$*°* = L N L°°.

Proof. The proofs of (1) and (2) are obvious.
(3) If a € L°°, we have to prove that L{*° = L, N L°°. Let x € L*°*. Then z = 2% =

x°° Na € L, N L°°, that is Ly*°» C L, N L°°. Conversely, let x € L, N L°°. Then x < a
and x = x°°. Now

%% =g Na=xNa==zx
Therefore z € Lge°, and so L, N L°° C L. .

A characterization of M S-intervals of an M S-algebra L in terms of the central elements
of L is investigated in the following.

Theorem 3.5. Let L, be an interval of an M S-algebra L. Then L, is an M S-interval of
L if and only if a® is a central element of L.

Proof. Let L, = (Lg,°* ) be an M S-interval of L. Then a°* = 0 by Lemma 3.4(1). Hence
we have

a®®Vva® = (a°ANa)°
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Therefore a° is a central element of L. Conversely, let a® € C(L). Now we prove that
(Lq,* ) is an M S-interval of L, whenever z°* = 2° A a, Vo € L,. Let z,y € L,.
9% AN = ((z°)°Na)Ax
(x°Na)°Na) Az
(z°°Va’)ANa) Az
(
(

=
=
= ((z°°Aa)V (a®° ANa)) Az (by distributivity of L)

((z° Na)VO) Az (as a® Aa =0 by Lemma 3.2(2))
= z(asz <z Aa)

©a0q

. Also, we get
(e Ay = (zAy)°Aa
= (2°Vy°)Aa
(z° Aa) V (y° Aa) (by distributivity of L)
z° V y°e

Therefore z < x

Oa

a’ Na

)
IA I

a’ A a®
= 0 (by Theorem 2.3(2) with a° € C(L)).
Therefore (Lq,°* ) is an M S-interval of L. O
For Stone algebras, we have the following.

Corollary 3.6. Let L € S. Then Ly is an M S-interval of L for every a € L.

For any MS-algebra L, we can claim that L and all its M .S-intervals are belong to
the same subvariety of the variety MS. As an example we claim this for the subclass
MV Ks VvV Ks of MS.

Theorem 3.7. Let L, be an MS-interval of an M S-algebra L. If L € MV Ka V Ksg,
then L, € [B, MVEKsV K3]

Proof. Let z,y € L,. Then we have
(x Ax)V (yPevVye®e) = (xAz°Aa)V ((y°Aa)V (y°° Aa)
xANz°Na)V((y°Vy®)Aa)

(
(
(xAz°)V(y°VYy™)) Na

((x°ANx°?)V (¥y*Vy®®) ANa (as Le MV Kz VKj)
(

(

(2°

(e 2% A a)V (5" V5™) Aa)
(2 A2 N a) V (5" A a) V (5™ A )
B ATV (0 ).

Therefore L, € MV K3 V K3. O

Remark 3.8. The converse of the above observation is not true. Let L be the 3-element
Stone algebra, 0 < a < 1. Clearly L, = [0,a] is an M S-interval of L and L, € B, but
L ¢ B.

Moreover, it is easy to observe the following remark:

Remark 3.9. Let L be an M S-algebra. Let L, and Ly be two M S-intervals. Then we
have

(1) be Lg*° if and only if L;*** C Lg%,

(2) Ly*® C Lge°e implies Ly, C L.
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Remark 3.10. The converse of Remark 3.9(2) is not true. For example, Let (L,°) be
an M S-algebra, where L is the 5-element chain, 0 < a < b < d < 1 with a° = a,
0°=d° =1°=0and 0° = 1. Clearly L, and Ly are M S-intervals of L such that L, C Ly
but L*% ¢ L.

Use Ips(L) to denote the set of all M S-intervals of an M S-algebra L.
Lemma 3.11. Let L, Ly be M S-intervals of an M S-algebra L. Then we have
(Z)agbﬁLang,
(2) Lo = {0} & a =0,
(3) Lany = La N Ly,
(4) Lavy = La V L.

The proof is straightforward.

The following theorem shows that the set of all M S-intervals of an M S-algebra L can
constructed M S-algebra, precisely from the subvariety S of the variety MS.

Theorem 3.12. The collection Inrs(L) of all M S-intervals of an M S-algebra L forms a
Stone algebra on its own.

Proof. By Lemma 3.11(3),(4), Inrs(L) is a lattice. clearly Ly = {0} and L; = L are the
smallest and greatest members of Ij;s(L) respectively. Then Ip;g(L) is a bounded lattice.
It is easy to see that Ipsg(L) is a distributive lattice. Define * on Iprs(L) by Ly = Lge.
Let La, Ly € Inss(L). Then

L, Lgoo (as a < a)
-
(La NLyp)* = Ly
= Lnp)e
= Loou
— Ly V Ly
= L;V L.
Also,
Lt = Lo
Then (Ip;s(L), *) is an M S-algebra. Now, Iy;g(L) is a Stone algebra, because of
Lo ANL; = LgA Lgo
= Larae (by Lemma 3.11(3))
= Loy (by Lemma 3.2(2)).
for every L, € Ipss(L). O

Consider the subset Lg = {x € L : 2° € C(L)} of an M S-algebra L. In view of the
central elements and the elements of Lg, it is observed the following.

Remark 3.13. Let L be an M S-algebra. Then
(1) For any z € C(L), xz € Lg,
(2) For any z € Lg, z° € C(L),

Now the concept of Stone subalgebras of an M S-algebra is given.

Definition 3.14. A subalgebra S of an M S-algebra L is called a Stone subalgebra of L
if x°Vva® =1, forall x € S.
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Lemma 3.15. If S is a Stone Subalgebra of an M S-algebra L, then
(1) For any x € S, x = x°° A (x V x°) with z°° € C(S) and x V 2° € D(S5),
(2) C(S)CC(L) and D(S) C D(L).

Proof.
(1) Let z € S. Then z° VvV 2°° = 1 implies z° A 2°° = 0. Now
zN(xVz®) = (2 Ax)V(2°° Ax°)
= zVO0
x.

Clearly, z°° € C(S) for every x € S. Let x € S. Then z V 2° € S. Since (z V 2°)° = 0,
then x vV 2° € D(95).
(2) It is obvious. O

In the following theorem, the subset Lg of the M S-algebra L forms the greatest Stone
subalgebra of L. Moreover, the centers of L and Lg are coincide and also the dense sets
of L and Lg are coincide.

Theorem 3.16. Lg is the largest Stone subalgebra of L with C(Lg) = C(L) and D(Lgs) =
D(L).

Proof. Clearly 0,1 € Lg. Let z,y € Lg. Then z°,y° € C(L). Since (x Vy)° =2° Ay° €
C(L) and (x Ay)°=2°Vy° € C(L), we get xVy,x ANy € Lg. Then Lg is a sublattice of
L. To prove that Lg is closed under °; let € Lg. Then by Theorem 3.2(2 ), z° € C(L)
implies 2°° € C(L). Hence Lg is a subalgebra of L. Consequently, °° VvV 2° = 1 for all
x € Lg. Then Lg is a subalgebra of L. Clearly, C(Ls) € C(L) and D(Lg) C D(L)

the converse, let @ € C'(L). By Theorem 3.2(2), a®° € C(L). Then a € Lg and C(L) C L

So C(L) € C(Lg). Let x € D(L). Then 2° =0 € C(L). Sox € Lg. Then D(L) C L
and D(L) C D(Lg). Therefore C(Lg) = C(L) and D(Ls) = D(L).

Assume Lg, be any Stone subalgebra of L. Let x € Lg,. Then by Lemma 3.15(1), we have
x =a% A (xVz°) with 2°° € C(Lg,) and x V 2° € D(Lg,). Now 2°° € C(Ls,) C C(Lg)
and xVz° € D(Ls,) € D(Lg) by Lemma 3.15(1). So, z € Lg. Then Lg, C Lg. Therefore
Lg is the largest Stone subalgebra of L. O

Now, the largest Stone subalgebra Lg of L and the Stone algebra Ip;g(L) of all MS-
intervals of L are isomorphic.

Theorem 3.17. Let L be an MS-algebra. Then Lg = Iprs(L).

Proof. Define f : Lg — Iys(L) by f(a) = L, for every a € Lg. Since a € Lg, then
a® € C(L). Hence by Theorem 3.5, L, is an M S-interval and f is well defined. It is clear
that f is an onto homomorphism. To prove the injectivity of f, let f(a) = f(b). Then
Ly, = Ly implies a = b. Therefore f is an isomorphism and Lg = Iy;s(L). O

Moreover, we have the following:
Theorem 3.18. Let L be an M S-algebra. Then Ips(L) is embedded into L.

Proof. Define a map ¢ : Inyg(L) — L by g(Ls) = a, for all L, € Ing(L). Suppose
that L, Ly € Iprs(L). One can easy show that ¢ is a monomorphism. Then Ip;g(L) is
embedded into L. OJ

The following corollary shows that L and Iy;g(L) are isomorphic, whenever L is a Stone
algebra.
Corollary 3.19. Let L € S. Then Ins(L) is isomorphic to L.

Proof. Since L is an Stone algebra, then for any a € L, we have a € C(L). Hence, it
follows that L, is an M S-interval. Hence the map f : L — Ij;g(L) which is defined by
f(a) = L, is an isomorphism. O
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4. I'-congruences on M S-intervals

Let L, be an M S-interval of an M S-algebra L. In this Section, the relationship
between I'(L) and I'(L,) is investigated. Finally, we derived that the skeleton of the two
M S-intervals L. and Ly are isomorphic, whenever (c,d) € T'(L).

A characterization of M S-intervals of an M S-algebra L in terms of congruence classes
of I'(L) is given in the next theorem.

Theorem 4.1. Let L be an M S-algebra. An interval L, of an M S-algebra L is an MS-
interval if and only if x € [a|'(L) for some a € C(L).

Proof. Let L be an M S-algebra and let L, be an M S-interval. By sufficiency of Theorem
3.5, ° € C(L). Since x° = z°°°, then x = z°°(T'(L)), it follows that x € [z°°]I'(L), where
xz°° € C(L). Conversely, let € [a|'(L) for some a € C(L). Then 2° = a° € C(L). By
necessity of Theorem 3.5, L, is an M S-interval of L. [l

It is derived the following crucial lemma.

Lemma 4.2. Let L, be an M S-interval of an MS-algebra L. Then
['(Ly) =T(L) N (Lg X Lg).
In addition, [a]T'(L) = D(Lg) for every a € C(L).

Proof. Denote by v =T'(L) N (Lg X Lg). Assume (c,d) € . Then

(c,d) ey = (c,d) €T (L) and (¢,d) € Ly X Lg
= ¢ =d° andc,d € L,
= ¢ =c"Na=d°Na=d
= (¢,d) € T'(Lg)-

Hence v C I'(L,). Conversely, let (¢,d) € T'(L,) for ¢,d € L,. Then ¢°* = d°* implies
c®Na=d° ANa. Then c® A a®°® = d° A a®°. We claim that ¢® = d°. Really, as ¢°,d° > a°
and a° € C(L), we get

o

c Va’ )Nl
®Va’)A(a®®Va®) (asa’®Va®=1)

°°) VvV a® (by distributivity of L)

Il
~ N N /N
o
[¢]
>
S

d°Va®) A (a° Vv a®) (by distributivity of L)

— {°

Therefore (c,d) € T'(L) and consequently, (¢,d) € 7. Then I'(L,) = =, as required. To
show that [a]I'(L) = D(L,) for any a € C(L), let x € [a]T'(L). Then

z € [a]l'(L) = 2°=a°

= z°Na=a’ANa

= 2°ANa=0 (as aAa®=0 by Theorem 3.2(2))
=

=

% =0
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Then [a]T'(L) € D(L,). Conversely, let € D(L,). Then z < a. So we get

x€D(Ly) = 2°2=0
= 2°Na=0
= (z°ANa)Va®=0Va°
= (2°Va°)A(aVa’)=a® (by distributivity of L)
= 2°ANl=a’(asz’°>a”and aVa®=1)
= z°=a°
= z € [al'(L).
Therefore D(L,) C [a]I'(L). Then D(L,) = [a]'(L), whenever a is a central element of
L. O

In closing this paper, some important results concerning the skeleton of M S-intervals
are studied.

Theorem 4.3. Let L be an M S-algebra. Then c,d € [1]T'(L) implies L% = L .

Proof. Let d € D(L). Then d is a Stone element of L and hence d° = 0 € C(L). Thus
Lg is an M S-interval of L, by Theorem 3.5. Consider the mapping

@ L% — L%
defined by
o(r) =z ANd, Vo € L

It is known that z = 2°° for any « € L°°. Then by Lemma 3.4(2), ¢ is well defined. It is
easy to see that ¢ preserves meets and joins. Also, ¢ preserves unary operations.

(p(2)* = (zAd)™

= (zANd)°ANd
= (2°Vvd’)Ad
= z°Ad (as d° =0)
= ()
For x € L%, we have
r = %%
= 2°° Ad (by Lemma 3.4(2))
= ™).

Thus ¢ is an epimorphism. Let z,y € L°® be such that ¢(x) = ¢(y). Then z Ad =y Ad.
Therefore t =x A1 =2 Ad° =2°ANd*° =(xAd)*°=(yANd)*° =y Nd°=yA1l=y
as d € D(L).

Therefore ¢ is an isomorphism of De Morgan algebras. Then L°° = L3¢°?  whenever
d € [1]I'(L). Similarly, we can get L°° = L%, Hence, L% = L. O

A generalization of the above theorem is given in the following.

Theorem 4.4. Let L., Ly be M S-intervals of an M S-algebra L. Then ¢ = d(I'(L)) implies
Lgeoe = Ly, Moreover, Lg*°e = L% iff ¢ = d.

Proof. Since L., Ly are M S-intervals of L, then ¢°°, d°° € C(L). Assume that ¢ =
d(I'(L)) with ¢*° = d°° = w < 1. Consider the new M S-algebra L,, (see Theorem 3.5),
with the congruence I'(L,,) on it. Evidently, ¢,d € [w]['(L) = D(Ly), by Lemma 4.2.
Therefore by the above theorem, L<° = L%, The last part of the proof is obvious and
the proof is finished. O
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