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Abstract
In this paper, we consider the problems of Bayesian estimation and prediction for log-
normal distribution under progressive Type-II censored data. We propose various non-
informative and informative priors for the unknown lognormal parameters and compute
the Bayes estimates under squared error loss function. Importance sampling technique and
OpenBUGS are taken into consideration for the computational purpose. Further, we pre-
dict lifetimes of both censored and future samples under one- and two-sample prediction
frameworks. We also compute the corresponding Bayes predictive bounds. A simulation
study is conducted to compare the performance of proposed estimates and a real data set
is analyzed to illustrate applications of this study. Finally, a conclusion is presented.
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1. Introduction
Censoring often occurs in many practical fields of studies such as life testing, reliability

analysis, survival analysis, etc. Lawless [24] presented many useful applications of cen-
soring in such studies and described that censoring can occur in a variety of ways. One
may also refer to this text for a comprehensive review of the classical statistical methods
applied to different censoring schemes. In this paper, we establish statistical inference for
the lognormal distribution in presence of progressive Type-II censoring. This censoring
has found extensive applications in life test studies and generalizes the traditional Type-II
censoring. The interesting difference between these two censoring schemes is that under
progressive Type-II censoring, live units can be removed during the experimentation as
opposed to the Type-II censoring, where removal of units can occur only at the end of the
experiment. Several researchers have analyzed many lifetime models under this censoring,
and the recent treatise by Balakrishnan and Cramer [6] includes many important results
in this aspect. In addition, one may also refer to Ng et al. [30], Kundu [21], Pradhan
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and Kundu [32], Huang and Wu [14], Dey et al. [13], and references cited there-in for a
detailed review of work done on this particular censoring.

Lognormal distribution is used to model particle size distributions, biological specimens
distribution, RNA-Sequencing, etc. It has also found wide applications in the studies
of degradation phenomena for a number of electrical and mechanical processes. In fact,
Leipnik [25] observed that various investigations in telecommunication and radar engi-
neering lead to the study of properties of a lognormal distribution. One may also refer to
Johnson et al. [18] for several applications of this distribution in various life testing exper-
iments. This distribution is treated as an alternative model to some known distributions
like Weibull, gamma and generalized exponential models, see for instance, Basavalingappa
et al. [10], Raqab et al. [33], and Jia et al. [17]. Crow and Shimizu [12] discussed
the importance of Bayesian inference for the lognormal distribution in various life testing
studies.

In statistical analysis, one emphasizes generally on finding efficient classical and Bayesian
estimates for the unknown parameters of an underlying population. However, an essential
and important feature of various life test studies including clinical trials, quality control,
agricultural and industrial experiments is to predict future observable under some partial
information. Sometimes it is also of interest to provide one- and/or two-sided bounds on
these unknown random quantities. Many examples abound in practice and we refer to
Meeker and Escobar [27] for some useful implications of such studies. We further notice
that a very rich literature exists on predictive inference under both classical and Bayesian
approaches. In the present work, we mainly focus on finding predictive estimates from
the Bayesian perspective. Bayesian prediction and associated inference for future lifetimes
based on the censored data have been widely studied by many authors. Al-Hussaini [1]
obtained predictive estimates for a general class of distributions which include Weibull,
Pareto, beta, Gompertz and compound Gompertz distributions under Bayesian frame-
work when it is known that samples are Type-II censored. One may also refer to Kundu
and Howlader [22], Kundu and Raqab [23], and Panahi and Sayyareh [31] for some more
interesting results in this aspect. Several researchers have also discussed the problem of
Bayesian prediction under progressive Type-II censoring, and one may refer to Ali Mousa
[2] for Pareto distribution, Ali Mousa and Jaheen [4] for Burr distribution, Jaheen [16]
for Gompertz distribution, Soliman [38] for Burr Type-XII distribution, Ali Mousa and
Al-Sagheer [3] for Rayleigh distribution, and Huang and Wu [14] for Weibull distribution.
One may also refer to Mohie El-Din and Shafay [28] for some more interesting results in
this regard.

Some related classical inferences upon unknown parameters of a normal distribution
under progressive Type-II censoring are derived by Balakrishnan et al. [7] and Ng et al.
[29]. Particularly, authors have discussed maximum likelihood and approximate maximum
likelihood estimates along with asymptotic intervals of normal parameters. Some related
inference can also be found in the article by Balakrishnan and Mi [8]. Recently, Singh et
al. [36] derived various point and intervals estimates for this distribution using progressive
Type-II censored samples. Authors have adopted both the classical and Bayesian methods
in this work.

The main purpose of the present work is to obtain Bayesian prediction and the corre-
sponding prediction bounds for the censored and future observations of progressive Type-II
data. The rest of this paper is organized as follows. We discuss progressive Type-II cen-
soring and some basic properties of lognormal distribution in Section 2. Various posterior
densities are obtained in Section 3. Bayesian analysis is presented in Section 4. Section
5 deals with the Bayesian prediction. A real data analysis and a simulation study are
conducted in Section 6. Finally, we present some concluding remarks in Section 7.
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2. Preliminaries
In this section, we briefly describe progressive Type-II censoring and also discuss some

basic properties of the lognormal distribution. Let lifetimes of some experimental units
put on a test follow a continuous distribution with probability density function (PDF) and
cumulative distribution function (CDF) given by f(·; θ) and F (·; θ), respectively. Here θ
is a vector of unknown parameters of the distribution. In progressive Type-II censoring, a
total of n test units is placed on a life test and the experiment is terminated after observing
a prescribed number of failures, say m. Thus a progressive Type-II censored sample of size
m can be obtained in m stages as described below. At the time of first failure, say, x(1), R1
number of units are randomly removed from the remaining n−1 surviving units. Similarly,
R2 number of units are randomly removed from the remaining n − R1 − 2 surviving units
at the time of second failure x(2) and so on. Finally, when m-th failure at time x(m) is
observed, all the remaining Rm = n−

∑m−1
i=1 Ri −m units are removed from the experiment

and the test is terminated. Thus, (x(1), x(2), . . . , x(m)) represents a progressive Type-II
censored sample of size m corresponding to censoring scheme R = (R1, R2, . . . , Rm). Here
censoring scheme R is prefixed prior to the start of the experiment such that

∑m
i=1 Ri =

n − m. Observe that progressive Type-II censoring reduces to the traditional Type-II
censoring when Ri = 0, i = 1, 2, . . . , m − 1, and Rm = n − m. The likelihood function of
θ given the progressive Type-II censored data x = (x(1), x(2), . . . , x(m)) can be written as

l(θ | x) = C
m∏

i=1
f(x(i); θ)[1 − F (x(i); θ)]Ri ,

where C = n(n − R1 − 1)(n − R1 − R2 − 2) . . . (n −
∑m−1

i=1 Ri − m).
A random variable X following lognormal LN(µ, τ) distribution has PDF and CDF of

the form

f(x; µ, τ) = 1
x

√
τ

ϕ

( ln x − µ√
τ

)
, x > 0, −∞ < µ < ∞, τ > 0,

and
F (x; µ, τ) = Φ

( ln x − µ√
τ

)
,

where ϕ(·) and Φ(·), respectively, denote the density and the distribution function of
the standard normal random variable. Moreover, µ and τ are the parameters of this
distribution. In fact, τ governs the shape of this distribution and furthermore, it is an
uni-modal distribution with mode given by eµ−τ . In general, the hazard function of a
two-parameter lognormal distribution first increases up to some time point x, (x > 0) and
then decreases to zero. We further notice that for large τ , hazard function is practically
a decreasing function in x. One may further refer to Crow and Shimizu [12] for several
applications of this distribution in lifetime analysis.

3. Posterior distributions
Suppose that x = (x(1), x(2), . . . , x(m)) is a progressive Type-II censored sample of

size m taken from a distribution f(x; θ). Now, assume that π(θ) denotes a prior of the
unknown parameter θ. Then, using the likelihood function l(θ|x), the corresponding
posterior density can be obtained as

π(θ|x) = π(θ)l(θ|x)∫
Θ π(θ)l(θ|x)dθ

, θ ∈ Θ.

In this section, we consider various informative and non-informative priors for the unknown
parameters of a LN(µ, τ) distribution. Several authors have analyzed many lifetime mod-
els assuming different priors for unknown quantities of interest and one may refer to Sinha
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[37] for a detailed discussion on these accounts. For our model, we obtain posterior den-
sities for the cases when (i) µ is unknown, (ii) τ is unknown, and (iii) both µ and τ are
unknown. For the sake of convenience, we denote the corresponding non-informative and
informative priors by π∗

i (θ) and πi(θ) respectively, i = 1, 2, 3.

3.1. µ is unknown
In this case, we treat LN(µ, τ) distribution as a one-parameter distribution. We assume

that the parameter τ is known. We first take a non-informative prior for µ as π∗
1(µ) = 1,

−∞ < µ < ∞, which is uniform over the full parameter space. The corresponding
posterior density is obtained as

π∗
1(µ|x) ∝ Nµ

(∑m
i=1 ln x(i)

m
,

τ

m

)
h(µ, τ).

Here h(µ, τ) =
∏m

i=1

[
1 − Φ

( ln x(i)−µ√
τ

)]Ri

, and the PDF of a normal distribution is rep-
resented by Nµ(·, ·). Further, we consider an informative prior π1(µ) = Nµ(a1, b1) for µ
in which a1 and b1 reflect the prior knowledge about µ. Under this prior, the associated
posterior density is given by

π1(µ|x) ∝ Nµ

(
a1τ + b1

∑m
i=1 ln x(i)

τ + b1m
,

b1τ

b1m + τ

)
h(µ, τ).

3.2. τ is unknown
Here µ is assumed to be a known parameter and τ is treated as an unknown parameter.

We propose an inverse gamma IG(p2, q2/2) distribution as a proper prior for τ and denote
it by π2(τ) where

π2(τ ; p2, q2) ∝ τ−(p2+1)e− q2
τ , τ > 0, p2 > 0, q2 > 0.

The corresponding posterior density is given by

π2(τ |x) ∝ IGτ

(m

2
+ p2, 0.5

(
q2 +

m∑
i=1

(ln x(i) − µ)2))h(µ, τ).

We further notice that π2(τ) is quite flexible class of priors. For instance, this class of
priors includes a non-informative prior like π∗

2(τ) = 1
τ , τ > 0 which corresponds to the

case when hyper-parameters are assigned values as p2 = q2 = 0. Such type of priors have
been widely discussed in the literature and one may refer to Khan et al. [20] and Singh
and Tripathi [35], and the references cited there-in for further details.

3.3. µ and τ are unknown
In this section, both the parameters µ and τ are assumed to be unknown. Several

researchers have proposed different prior distributions for the parameters of various life-
time models of interest. For instance, Kundu [21] and Banerjee and Kundu [9] proposed
gamma priors for unknown shape and scale parameters of a Weibull distribution, see also
Asgharzadeh et al. [5]. Huang and Wu [14] considered a bivariate prior for unknown
scale and shape parameters of the Weibull distribution. We have taken into account the
non-informative Jeffreys prior for unknown parameters of the lognormal distribution. Sim-
ilarly, a bivariate proper prior is taken in to consideration for deriving the desired inference.
One may refer to Crow and Shimizu [12] and Singh and Tripathi [34] for a discussion on
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such type of prior distributions. Observe that with the Jeffreys prior, π∗
3(µ, τ) = 1/τ ,

−∞ < µ < ∞, 0 < τ < ∞ for (µ, τ), the associated posterior density turns out to be

π∗
3(µ, τ |x) ∝ IGτ

(
m − 1

2
,
1
2

( m∑
i=1

(ln x(i))2 −
(
∑m

i=1 ln x(i))2

m

))

Nµ|τ

(∑m
i=1 ln x(i)

m
,

τ

m

)
h(µ, τ).

Next, we consider a conditional bivariate prior for (µ, τ) as

π3(µ, τ) = π(τ)π(µ|τ), (3.1)

where π(τ) and π(µ|τ), respectively, denote IG(p2, q2/2) and N(a1, τ/b1) distributions.
The posterior density is

π3(µ, τ |x) ∝ IGτ

(m

2
+ p2,

1
2

{ m∑
i=1

(ln x(i))2 + a2
1b1 + q2 −

(
∑m

i=1 ln x(i) + a1b1)2

m + b1

})
Nµ|τ

(∑m
i=1 ln x(i) + a1b1

m + b1
,

τ

m + b1

)
h(µ, τ). (3.2)

4. Bayesian estimation
This section deals with Bayesian analysis of unknown parameters of the LN(µ, τ) dis-

tribution. Notice that, in Bayesian analysis, the Bayes estimates of a parametric function
g(θ) can be obtained under a prescribed loss function. In the present work, we consider
the squared error loss, however, other loss function can also be incorporated. We mention
that, under squared error loss, the Bayes estimate of g(θ) is the posterior mean and is
obtained as

ĝB(θ) =
∫

Θ
g(θ)π(θ|x)dθ.

Now, it is seen that under the posterior densities discussed in previous section, the above
expression can not be solved in a closed form. Therefore, some approximation techniques
such as Lindley’s method (see, Lindley [26]) and Tierney and Kadane method (see, Tierney
and Kadane [39]) can be used to obtain the approximate Bayes estimates. However,
using any of the two methods, the associated Bayesian credible intervals for the unknown
lognormal parameters can not be obtained. Therefore, we propose importance sampling
technique which is a useful method for generating random samples from various posterior
densities, in order to compute the desired Bayes estimates. Observe that various posterior
densities obtained in Section 3 appear to be in the form of

π(θ|x) ∝ fθ(c1, c2)h(θ),

where fθ(c1, c2) represents some known distribution of θ with c1, c2 being the corresponding
hyper-parameters. Therefore, using importance sampling technique and under squared
error loss the desired Bayes estimate of g(θ) is obtained as

ĝB =
∑s

i=1 g(θi)h(θi)∑s
i=1 h(θi)

,

where {θi : i = 1, 2, . . . , s} denotes a random sample from the distribution fθ(c1, c2). More
precisely, let us consider the prior as given by Equation (3.1). Then, the samples from the
posterior density given by Equation (3.2) can be generated as follows.

Step 1: Generate τ ∼ IGτ (·, ·) and µ ∼ Nµ|τ (·, ·) (see, Equation (3.2)).
Step 2: Repeat Step 1, s times to generate samples like (µ1, τ1), (µ2, τ2), . . . ,

(µs, τs).
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Further, the generated samples together with the method of Chen and Shao [11] can be
taken into consideration to obtain the corresponding Bayesian credible interval. One may
also refer to Singh et al. [36] for the details of this method. It is to be mentioned that, in
the present work, the corresponding posterior densities turn out to be in tractable form so
we were able to apply the importance sampling technique. But, under any other prior, it
may or may not be possible, for an example if one considers independent priors for µ and
τ such as π(µ) = N(a1, b1) and π(τ) = IG(p2, q2). In that case, the posterior density does
not turn out to be in tractable form so the proposed importance sampling technique can
not be used. Hence, the Bayes estimates and corresponding Bayesian credible intervals
can not be obtained using the importance sampling. Therefore, under such class of priors
and also for other proposed priors, we further consider OpenBUGS software for Bayesian
analysis. The BUGS (Bayesian inference Using Gibbs Sampling) software determines
an appropriate MCMC scheme (based on the Gibbs sampler) for analyzing the specified
model. The Bayes estimates and corresponding Bayesian credible interval estimates can
be obtained using this software. For further details about the software, one may visit to
http://www.openbugs.net/w/FrontPage. One may also refer to a book length treatment
on Bayesian analysis using OpenBUGS by Kelly and Smith [19]. We mention that in
OpenBUGS software, to implement a prior distribution to a specific model, a program
includes three sections namely "Model", "Data", and "Initial values". We have given the
algorithm for all the three sections in Appendix. Further, the procedure to run the program
in OpenBUGS is also provided.

5. Bayesian prediction
This section deals with Bayesian prediction of future unknown observable when it is

known that LN(µ, τ) is the underlying distribution. Bayesian approach is widely used
in a variety of prediction problems including medical experiments, regression models and
various industrial experiments. The two most common such problems which are frequently
studied under Bayesian context are one-sample prediction and two-sample prediction.

5.1. One-sample prediction
Suppose that n identical units whose lifetime follows LN(µ, τ) distribution are put on

a life test and a progressive Type-II censored sample x = (x(1), x(2), . . . , x(m)) of size m is
observed under a prescribed censoring scheme R = (R1, R2, . . . , Rm). Recall that at the
time of jth failure x(j), Rj number of live units are randomly removed from the experiment.
Now, assume that zj = (z(j1), z(j2), . . . , z(jRj)) represents a vector of the ordered lifetimes
of such a censored test units. Then, one-sample prediction problem involves the prediction
and related inference about the censored observations y = (z(jk) : j = 1, 2, . . . , m and k =
1, 2, . . . , Rj). The conditional density of y given the progressive Type-II censored sample
x with censoring scheme R = (R1, R2, . . . , Rm) is given by, (see also, Balakrishnan and
Cramer [6])

f1(y|x, θ) = k

(
Rj

k

)
(F (y) − F (x(j)))k−1(1 − F (y))Rj−kf(y)

(1 − F (x(j)))Rj
, y > x(j). (5.1)

Here, for easy reference, we denote f(·; θ) = f(·) and F (·; θ) = F (·). Further, observe that

(F (y) − F (x(j)))k−1 =
(
(1 − F (x(j))) − (1 − F (y))

)k−1

=
k−1∑
i=0

(
k − 1

i

)
(−1)k−1−i(1 − F (x(j)))i(1 − F (y))k−1−i.
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Thus, the conditional density given by Equation (5.1) can be re-written as

f1(y|x, θ) = k

(
Rj

k

)
k−1∑
i=0

(
k − 1

i

)
(−1)k−1−i(1 − F (x(j)))i−Rj (1 − F (y))Rj−1−if(y).

If one considers a prior π(θ) for the unknown parameter θ, then the corresponding one-
sample posterior predictive density can be written as

f∗
1 (y|x) =

∫
Θ

f1(y | x, θ)π(θ | x)dθ.

Subsequently, a future unknown observable can be predicted using the corresponding
one-sample posterior predictive density. More specifically, if our goal is to predict the k-th
observation from Rj-th censored units, j = 1, 2, . . . , m, then under the squared error loss,
it is given by

ŷ =
∫ ∞

x(j)

yf∗
1 (y|x)dy.

Further, to compute the above expression under a prior as discussed in the Section 3, the
importance sampling technique can be taken into consideration. For instance, consider
the case when both µ and τ are unknown and the prior is given by Equation (3.1). Then,
predictive observation ŷ can be obtained from the following expression

ŷ =
∫ ∞

−∞

∫ ∞

0

{∫ ∞

x(j)

yf1(y|x, µ, τ)dy
}

π(µ, τ |x)dτdµ

=
∫ ∞

−∞

∫ ∞

0
I1(µ, τ)π(µ, τ |x)dτdµ, (5.2)

where

I1(µ, τ) =
∫ ∞

x(j)

yf1(y|x, µ, τ)dy

= k

(
Rj

k

)
k−1∑
i=0

(
k − 1

i

)
(−1)k−1−i(1 − F (x(j)))i−Rj

∫ 1

F (x(j))
eµ+

√
τΦ−1(v)(1 − v)Rj−1−idv.

To compute the expression given by Equation (5.2), we generate the samples from corre-
sponding posterior density as discussed in the previous section. Subsequently, the desired
predictive estimate can be obtained as

ŷ =
∑s

i=1 I1(µi, τi)h(µi, τi)∑s
i=1 h(µi, τi)

.

In a similar way, the predictive estimates for the observation y = (z(jk) : j = 1, 2, . . . , m and
k = 1, 2, . . . , Rj) can be obtained under other proposed priors.

Next, we consider the problem of obtaining Bayesian predictive intervals for y = (z(jk) :
j = 1, 2, . . . , m and k = 1, 2, . . . , Rj) observation. Notice that, under one-sample, a
Bayesian predictive credible interval (L, U) with degree of belief 1 − γ is an interval which
satisfies the following condition ∫ U

L
f∗

1 (y | x)dy = 1 − γ. (5.3)

Here different pairs of (L, U) may satisfy Equation (5.3). However, the (1 − γ) equal-tail
predictive interval for y can be obtained by solving the following non-linear equations for
the lower bound L and the upper bound U :

S∗
1(L|x) = 1 − γ

2
and S∗

1(U |x) = γ

2
,
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where S∗
1(·|x) represents the posterior predictive survival function, and is given by

S∗
1(t|x) =

∫
Θ

S1(t|x, θ)π(θ|x)dθ.

Further, the one-sample survival function S1(t|x, θ) can be obtained as

S1(t|x, θ) = P (y > t|x, θ)
P (y > x(j)|x, θ)

=
∫∞

t f1(y|x, θ)dy∫∞
x(j)

f1(y|x, θ)dy
,

where∫ ∞

t
f1(y|x, θ)dy = k

(
Rj

k

)
k−1∑
i=0

(
k − 1

i

)
(−1)k−1−i(1 − F (x(j)))i−Rj

(1 − F (t))Rj−i

Rj − i
,

and ∫ ∞

x(j)

f1(y|x, θ)dy = k

(
Rj

k

)
k−1∑
i=0

(
k − 1

i

)
(−1)k−1−i 1

Rj − i
.

Furthermore, the highest posterior density (HPD) predictive interval estimates can
be obtained by using the algorithm given by Turkkan and Pham-Gia [40]. However,
alternatively in case of uni-modal posterior predictive density, the HPD predictive interval
estimates can also be obtained on simultaneously solving the Equations (5.3) and (5.4) for
L and U :

f∗
1 (L|x) = f∗

1 (U |x). (5.4)
We further mention that a numerical technique is required to solve the two equations

simultaneously. We propose to use nleqslv(.) package in R software, and in the process, the
corresponding equal-tail predictive intervals can be taken as an initial guess. We mention
that, for a given parameter value and prior information, behaviour of the corresponding
posterior predictive density can be observed graphically. One may also refer to Hyndman
[15] for some graphical methods to observe the highest density regions.

5.2. Two-sample prediction
Let x = (x(1), x(2), . . . , x(m)) be an observed progressive Type-II censored sample of

size m corresponding to a given censoring scheme R = (R1, R2, . . . , Rm). Further, as-
sume that y = (y(1), y(2), . . . , y(M)) be a future unobserved progressive Type-II censored
sample of size M from a parent sample of size N corresponding to a censoring scheme
S = (S1, S2, . . . , SM ). Notice that these two samples are independently generated from a
LN(µ, τ) distribution. Then a two-sample prediction problem involves the prediction and
making related inference about a future unobserved progressive Type-II censored sample
y. We notice that the probability density function of the kth order statistics of the future
sample is given by

f2(y|θ) = fYj (y|θ) = cj−1

j∑
i=1

ai,j(1 − F (y))ri−1f(y), y > 0,

where

rj =
M∑
i=j

(Si + 1) = N −
j−1∑
i=1

(Si + 1), cj−1 =
j∏

i=1
ri,

a1,1 = 1, and ai,j =
j∏

k=1,k ̸=i

1/(rk − ri), 1 ≤ i ≤ j ≤ M.
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Further, the corresponding two-sample survival function is given by

S2(t|θ) =
∫ ∞

t
f2(y|θ)dy = cj−1

j∑
i=1

ai,j
(1 − F (t))ri

ri
.

Under a prior π(θ), the two-sample posterior predictive density and the posterior predictive
survival function can be obtained as

f∗
2 (y|x) =

∫
Θ

f2(y|θ)π(θ|x)dθ

and
S∗

2(t|x) =
∫

Θ
S2(t|θ)π(θ|x)dθ.

Subsequently, the j-th predictive observation ŷ(j), j = 1, 2, . . . , M , under the squared error
loss can be obtained using the posterior predictive density as

ˆy(j) =
∫ ∞

0
yf∗

2 (y|x)dy.

The above expression can be computed using the importance sampling technique in a man-
ner similar to the previous section. Furthermore, the corresponding equal-tail 100(1−γ)%
prediction interval (L2, U2) can be obtained by solving the following non-linear equations:

S∗
2(L|x) = 1 − γ

2
and S∗

2(U |x) = γ

2
.

Finally, in a similar way, the 100(1 − γ)% HPD intervals can also be obtained using the
two-sample posterior predictive density.

6. Data analysis and simulation study
6.1. Data analysis

In this section, we study a real data set to illustrate the methods develop for one- and
two-sample prediction problems. In the process, we analyze a data set as given in Lawless
[24]. This data set represents the number of million revolutions before failure for 23 ball
bearings. The corresponding observations are:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12,
55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.40

Singh et al. [36] showed that LN(µ, τ) distribution fits this data set reasonably well with
corresponding MLEs given by µ̂ = 4.15038 and τ̂ = 0.27215. Authors further generated a
progressive Type-II censored sample of size m = 12 from the given data set with respect to
the censoring scheme R = (0∗11, 11). This censoring scheme represents that 0 number of
units will be removed at the time of the first 11 failures and 11 live units will be removed
at 12th failure. Therefore, the corresponding progressive Type-II censored data become
the first 12 observations of the given data set that is the observations up to 67.80 lifetime.
We consider both the complete and the progressive Type-II censored data sets for further
Bayesian estimation and prediction analysis. We take into account non-informative priors
for all the three cases discussed in Section 3. In the process for convenience, under case
(i) we consider the true value of τ equal to the maximum likelihood estimated value, that
is τ = 0.27215, and similarly in case of (ii) the value of µ as µ = 4.15038. First we
obtain Bayes estimates using importance sampling technique and OpenBUGS software.
We also compute 95% Bayesian confidence interval estimates using the method of Chen
and Shao [11] and OpenBUGS software. All the estimated values are reported in Table 1.
We mention that R statistical programming language is taken into consideration and the
reported observations are based on 1000 Monte Carlo simulations. From tabulated values,
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Table 1. Bayes and 95% Bayesian credible interval estimates of µ and τ for given data

Complete data Progressive Type-II censored data

Case Parameter MCMC OpenBUGS MCMC OpenBUGS

(i) µ 4.1515 (3.9342, 4.3628) 4.1510 (3.9410, 4.3687) 4.1701 (3.9461, 4.3125) 4.1676 (3.9396, 4.3970)
(ii) τ 0.2980 (0.1626, 0.5252) 0.2991 (0.1661, 0.540) 0.3678 (0.1539, 0.8352) 0.3677 (0.1552, 0.8226)
(iii) µ 4.1502 (3.9204, 4.3717) 4.1507 (3.9254, 4.3773) 4.2502 (3.9643, 4.4290) 4.2301 (3.9369, 4.6449)

τ 0.3138 (0.1689, 0.5716) 0.3199 (0.1707, 0.5629) 0.5298 (0.1719, 0.7945) 0.4626 (0.1654, 1.1994)

Table 2. One sample Bayesian prediction for progressive Type-II censored data

Equal-tail interval HPD interval
Case j k ŷ L U AIL L U AIL
(i) m 1 71.40 67.89 81.06 13.17 67.80 78.52 10.72

2 75.30 67.01 88.65 21.64 67.96 85.66 17.70
3 79.56 70.22 96.14 25.92 68.98 92.90 23.92
4 84.28 72.26 104.11 31.85 70.69 100.63 29.96
5 89.62 74.80 113.00 38.20 72.93 109.26 36.33
6 95.79 77.87 123.33 45.46 75.67 119.16 43.49

(ii) 1 71.94 67.90 83.77 15.87 67.80 80.50 12.70
2 76.47 66.95 93.93 26.98 67.92 89.42 21.50
3 81.48 70.38 104.57 34.19 68.82 98.95 30.13
4 87.12 72.52 116.54 44.02 70.33 109.57 39.24
5 93.58 75.14 130.55 55.41 72.29 121.82 49.53
6 101.17 78.26 147.58 69.32 74.64 136.48 61.84

(iii) 1 72.11 67.90 84.49 16.59 67.80 81.13 13.33
2 76.83 67.02 94.95 27.93 67.93 90.48 22.55
3 82.08 70.39 105.80 35.41 68.85 100.41 31.56
4 88.00 72.12 117.89 45.77 70.38 111.47 41.09
5 94.82 75.08 131.96 56.88 72.36 124.23 51.87
6 102.86 77.59 149.04 71.45 74.73 139.53 64.80

it is seen that estimated values obtained using OpenBUGS and importance sampling
technique are very close.

Next, we consider the progressive Type-II censored data as informative sample and
illustrate one-sample prediction problem. Recall that the progressive Type-II censored
data has first 12 observations of the given ball bearings data set. Under the one-sample
prediction problem, we predict the remaining first 6 censored observation, corresponding
95% equal-tail and HPD predictive intervals. All the estimated values are reported in
Table 2. From tabulated values, it is seen that with a higher value of k the average
interval length (AIL) of predictive bounds tend to increase. It is also observed that the
reported predictive bound contain the true lifetime of the given ball bearing data set.
This holds true under all the three cases and for both the equal-tail and HPD predictive
intervals. Tabulated values also suggest that prediction bounds of future observations are
likely to be small for the cases where some partial information about the parameters is
available. As it is seen that AIL is smaller under case (i) followed by case (ii) and case
(iii). Finally, it is observed that the AIL of HPD predictive intervals is smaller than that
of AIL of equal tail predictive intervals and this holds true for all the three cases.

Now, we illustrate the two-sample prediction problem based on observed progressive
Type-II censored data. We predict about the future sample of size N = 23 independent
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Table 3. Two-sample Bayesian prediction for progressive Type-II censored data

S = (0∗11, 11) S = (11, 0∗11)

Equal-tail interval HPD interval Equal-tail interval HPD interval

Case j ŷj L U AIL L U AIL ŷj L U AIL L U AIL
(i) 1 23.98 12.42 37.86 25.44 11.68 36.90 25.22 23.98 12.42 37.85 25.43 11.68 36.90 25.22

2 29.87 18.22 43.78 25.56 17.52 42.87 25.35 33.49 19.61 51.52 31.91 18.43 49.82 31.39
3 34.17 22.10 48.50 26.40 21.40 47.60 26.20 40.49 24.90 60.67 35.77 23.60 58.79 35.19
4 37.86 25.24 52.75 27.51 24.52 51.83 27.31 46.79 29.51 69.09 39.58 28.08 67.03 38.95
5 41.24 28.02 56.76 28.74 27.27 55.83 28.56 52.98 33.88 77.65 43.77 32.29 75.36 43.07
6 44.46 30.58 60.68 30.10 29.82 59.72 29.90 59.42 38.26 86.88 48.62 36.46 84.28 47.82

(ii) 1 21.82 7.63 37.17 29.54 7.12 36.57 29.45 21.81 7.64 37.16 29.52 7.12 36.56 29.44
2 27.62 12.69 42.53 29.84 12.59 42.43 29.84 31.31 14.41 49.74 35.33 13.76 48.98 35.22
3 31.97 16.67 46.79 30.12 16.74 46.86 30.12 38.57 20.26 58.65 38.39 19.54 57.81 38.27
4 35.77 20.22 50.65 30.43 20.36 50.78 30.42 45.27 25.82 67.40 41.58 24.84 66.19 41.35
5 39.30 23.58 54.39 30.81 23.70 54.51 30.81 52.02 31.34 76.98 45.64 29.92 75.11 45.19
6 42.71 26.84 58.16 31.32 26.88 58.20 31.32 59.19 36.97 88.14 51.17 34.96 85.24 50.28

(iii) 1 20.97 7.84 36.04 28.20 7.13 35.07 27.94 20.95 7.91 36.04 28.13 7.20 35.05 27.85
2 26.73 12.71 41.74 29.03 12.26 41.15 28.89 30.44 14.33 49.53 35.20 13.30 48.06 34.76
3 31.08 16.42 46.39 29.97 16.07 45.92 29.85 37.77 19.74 59.31 39.57 18.57 57.64 39.07
4 34.91 19.68 50.68 30.00 19.36 50.24 30.88 44.60 24.82 68.95 44.13 23.42 66.88 43.46
5 38.48 22.71 54.86 32.15 22.38 54.40 32.02 51.54 29.89 79.42 49.53 28.12 76.73 48.61
6 41.94 25.64 59.08 33.44 25.26 58.55 33.29 58.96 35.08 91.46 56.38 32.83 87.85 55.02

of the observed progressive Type-II censored data. For convenience, we take effective
sample size M = m under the two future censoring schemes such as S = (0∗11, 11) and
S = (11, 0∗11). The estimated values are reported in Table 3. From tabulated values, it
is seen that prediction interval using the censoring scheme S = (11, 0∗11) are in general
wider than the corresponding prediction interval obtained using the censoring scheme
S = (0∗11, 11). This observation holds true under all the three cases and for both equal-
tail and HPD predictive intervals. Likewise under one-sample prediction, here also we
observe that AIL is smaller under case (i) followed by case (ii) and case (iii). However, the
AIL of equal-tail and HPD predictive intervals are almost same, as was not found under
one-sample prediction problem.

6.2. Simulation study
In this section, a Monte Carlo simulation study is performed to investigate the behaviour

of 95% Bayesian prediction bound under both one- and two-sample prediction problems.
We consider the case (iii) and simulate progressive Type-II censored samples from LN(0, 1)
distribution for different combinations of n, m and censoring schemes. Various prediction
estimates and prediction intervals of censored observations are computed based on 5000
replications of progressive Type-II censored samples for a given censoring scheme. The R
statistical software is used for all computations. In particular, we used nleqslv(·) package
of this software. Under one-sample prediction problem, we obtain 95% equal-tail and
HPD predictive bounds, corresponding AILs under non-informative and informative prior
situations. All the estimated values are reported in Table 4. We mention that in the
table, the non-informative prior are denoted as Prior I and informative prior as Prior II.
In case of informative prior, hyper-parameters are assigned values like a = 0.01, b = 1,
p2 = 3, and q2 = 4. These values are selected such that the prior means remain close
to the true parameter values. From tabulated values, it is seen that a higher value of k
and m lead to wider prediction bound. Further, the AIL are larger in case when units
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Table 4. One-sample Bayesian prediction interval and average interval lengths

Prior I Prior II

Equal-tail interval HPD interval Equal-tail interval HPD interval

n m R j k L U AIL L U AIL L U AIL L U AIL
15 6 (9, 0∗5) 1 1 0.215 0.993 0.778 0.198 0.791 0.593 0.216 0.895 0.679 0.202 0.742 0.540

2 0.191 1.622 1.431 0.214 1.281 1.067 0.196 1.302 1.106 0.218 1.106 0.888
3 0.311 2.508 2.197 0.239 1.906 1.667 0.317 1.770 1.453 0.252 1.498 1.246

(0∗5, 9) 6 1 0.682 1.366 0.684 0.738 1.435 0.697 0.759 1.304 0.545 0.740 1.150 0.410
2 0.661 2.077 1.416 0.680 1.694 1.014 0.741 1.721 0.980 0.764 1.554 0.790
3 0.747 3.161 2.414 0.693 2.435 1.742 0.829 2.221 1.392 0.778 1.937 1.159

9 (6, 0∗8) 1 1 0.212 1.218 1.006 0.205 1.008 0.803 0.194 1.089 0.895 0.195 0.928 0.733
2 0.174 2.105 1.931 0.212 1.681 1.469 0.171 1.762 1.591 0.181 1.559 1.378
3 0.367 3.533 3.166 0.255 2.727 2.472 0.347 2.731 2.384 0.248 2.238 1.990

(0∗8, 6) 9 1 1.214 2.601 1.387 1.236 2.300 1.064 1.230 2.171 0.941 1.253 1.983 0.730
2 1.193 4.193 3.000 1.212 3.399 2.187 1.204 3.019 1.815 1.229 2.635 1.406
3 1.356 6.931 5.575 1.238 5.340 4.102 1.361 4.232 2.871 1.263 3.601 2.338

20 8 (12, 0∗7) 1 1 0.180 0.727 0.547 0.173 0.608 0.435 0.182 0.698 0.516 0.178 0.598 0.420
2 0.168 1.061 0.893 0.184 0.990 0.806 0.183 0.968 0.785 0.184 0.840 0.656
3 0.255 1.447 1.192 0.205 1.207 1.002 0.262 1.250 0.988 0.215 1.089 0.874

(0∗7, 12) 8 1 0.737 1.173 0.436 0.751 1.108 0.357 0.762 1.127 0.365 0.761 1.051 0.290
2 0.724 1.516 0.792 0.737 1.351 0.614 0.744 1.375 0.631 0.762 1.263 0.501
3 0.788 1.927 1.139 0.751 1.687 0.936 0.812 1.643 0.831 0.778 1.499 0.720

10 (10, 0∗9) 1 1 0.180 0.801 0.621 0.175 0.675 0.500 0.178 0.760 0.582 0.178 0.668 0.490
2 0.171 1.185 1.014 0.182 1.003 0.821 0.192 1.080 0.888 0.181 0.942 0.761
3 0.275 1.640 1.365 0.215 1.380 1.165 0.276 1.430 1.154 0.220 1.243 1.023

(0∗9, 10) 10 1 0.989 1.549 0.560 0.978 1.422 0.444 0.983 1.453 0.470 0.982 1.356 0.374
2 0.970 1.986 1.016 0.989 1.787 0.798 0.961 1.785 0.824 0.983 1.638 0.655
3 1.061 2.515 1.454 1.009 2.229 1.220 1.050 2.160 1.110 1.005 1.966 0.961

25 10 (15, 0∗9) 1 1 0.163 0.603 0.440 0.156 0.515 0.359 0.167 0.598 0.431 0.155 0.513 0.358
2 0.160 0.833 0.673 0.164 0.722 0.558 0.182 0.800 0.618 0.170 0.706 0.536
3 0.227 1.071 0.844 0.188 0.930 0.742 0.237 0.998 0.761 0.199 0.888 0.689

(0∗9, 15) 10 1 0.755 1.033 0.278 0.752 0.985 0.233 0.765 1.031 0.266 0.761 0.971 0.210
2 0.744 1.219 0.475 0.755 1.136 0.381 0.750 1.199 0.449 0.765 1.126 0.361
3 0.794 1.418 0.624 0.768 1.311 0.543 0.804 1.372 0.568 0.779 1.283 0.504

15 (10, 0∗14) 1 1 0.162 0.721 0.559 0.159 0.632 0.473 0.167 0.726 0.559 0.160 0.635 0.475
2 0.165 1.047 0.882 0.165 0.903 0.738 0.192 1.024 0.832 0.173 0.898 0.725
3 0.257 1.417 1.160 0.202 1.225 1.023 0.271 1.347 1.076 0.218 1.188 0.970

(0∗14, 10) 15 1 1.245 1.786 0.541 1.248 1.677 0.429 1.262 1.751 0.489 1.259 1.641 0.382
2 1.220 2.181 0.961 1.245 2.008 0.763 1.236 2.091 0.855 1.262 1.945 0.683
3 1.323 2.637 1.314 1.270 2.404 1.134 1.336 2.471 1.135 1.288 2.283 0.995

are censored at the first stage than that of when units are censored at the last stage.
It is also seen that the predictive intervals under Prior II have smaller AILs than those
of Prior I. Furthermore, the AILs of HPD predictive intervals are smaller than those
of equal-tail predictive intervals. Next, we present the corresponding estimated values
under two-sample prediction problem in Table 5. We mention that the future sample
which is independent of the informative sample is considered of size N = n and M = m.
Further, the future censoring scheme S = (S1, S2, . . . , SM ) is also taken to be the same as
the censoring scheme R = (R1, R2, . . . , Rm) of the informative sample. From tabulated
values, similar results likewise one-sample prediction can be seen.
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Table 5. Two-sample Bayesian prediction interval and average interval lengths

Prior I Prior II

n m R Equal-tail interval HPD interval Equal-tail interval HPD interval

N M S k L U AIL L U AIL L U AIL L U AIL
15 6 (9, 0∗5) 1 0.034 0.639 0.605 0.020 0.600 0.580 0.051 0.633 0.582 0.025 0.552 0.527

2 0.107 1.767 1.660 0.043 1.356 1.313 0.140 1.458 1.318 0.076 1.220 1.144
3 0.209 3.608 3.399 0.088 2.593 2.505 0.246 2.420 2.174 0.143 1.986 1.843

(0∗5, 9) 1 0.047 0.572 0.525 0.030 0.550 0.520 0.052 0.550 0.498 0.029 0.494 0.465
2 0.087 0.731 0.644 0.075 0.690 0.615 0.111 0.732 0.621 0.080 0.669 0.589
3 0.128 0.907 0.779 0.105 0.835 0.730 0.165 0.912 0.747 0.128 0.835 0.707

9 (6, 0∗8) 1 0.034 0.597 0.563 0.011 0.511 0.500 0.045 0.571 0.526 0.022 0.499 0.477
2 0.093 1.073 0.980 0.047 0.915 0.868 0.111 0.993 0.882 0.068 0.864 0.796
3 0.163 1.601 1.438 0.092 1.347 1.255 0.182 1.421 1.239 0.120 1.230 1.110

(0∗8, 6) 1 0.033 0.540 0.507 0.022 0.522 0.500 0.050 0.550 0.500 0.026 0.491 0.465
2 0.075 0.741 0.666 0.051 0.668 0.617 0.106 0.731 0.625 0.075 0.667 0.592
3 0.121 0.957 0.836 0.083 0.853 0.770 0.159 0.907 0.748 0.122 0.832 0.710

20 8 (12, 0∗7) 1 0.032 0.503 0.471 0.033 0.483 0.450 0.045 0.507 0.462 0.024 0.447 0.423
2 0.095 1.144 1.049 0.048 0.950 0.902 0.118 1.056 0.938 0.071 0.908 0.837
3 0.172 1.871 1.699 0.094 1.518 1.424 0.199 1.585 1.386 0.129 1.355 1.226

(0∗7, 12) 1 0.039 0.403 0.364 0.030 0.383 0.353 0.048 0.431 0.383 0.031 0.395 0.364
2 0.077 0.515 0.438 0.063 0.482 0.419 0.098 0.550 0.452 0.079 0.516 0.437
3 0.115 0.624 0.509 0.097 0.586 0.489 0.143 0.659 0.516 0.121 0.623 0.502

10 (10, 0∗9) 1 0.033 0.498 0.465 0.014 0.433 0.419 0.045 0.496 0.451 0.024 0.439 0.415
2 0.090 0.933 0.843 0.050 0.804 0.754 0.111 0.887 0.776 0.072 0.780 0.708
3 0.156 1.364 1.208 0.095 1.168 1.073 0.180 1.242 1.062 0.125 1.092 0.967

(0∗9, 10) 1 0.045 0.423 0.378 0.031 0.384 0.353 0.049 0.444 0.395 0.031 0.406 0.375
2 0.087 0.541 0.454 0.071 0.505 0.434 0.099 0.568 0.469 0.078 0.531 0.453
3 0.127 0.651 0.524 0.108 0.612 0.504 0.144 0.679 0.535 0.121 0.641 0.520

25 10 (15, 0∗9) 1 0.032 0.433 0.401 0.015 0.380 0.365 0.045 0.445 0.400 0.026 0.397 0.371
2 0.089 0.888 0.799 0.050 0.763 0.713 0.111 0.860 0.749 0.073 0.756 0.683
3 0.155 1.315 1.160 0.097 1.124 1.027 0.181 1.214 1.033 0.128 1.068 0.940

(0∗9, 15) 1 0.043 0.335 0.292 0.035 0.310 0.275 0.046 0.360 0.314 0.033 0.334 0.301
2 0.080 0.416 0.336 0.070 0.395 0.325 0.091 0.449 0.358 0.077 0.427 0.350
3 0.112 0.486 0.374 0.101 0.466 0.365 0.130 0.527 0.397 0.116 0.505 0.389

15 (10, 0∗14) 1 0.032 0.400 0.368 0.015 0.354 0.339 0.043 0.422 0.379 0.025 0.378 0.353
2 0.078 0.638 0.560 0.050 0.570 0.520 0.098 0.655 0.557 0.070 0.593 0.523
3 0.125 0.843 0.718 0.089 0.758 0.669 0.151 0.849 0.698 0.116 0.773 0.657

(0∗14, 10) 1 0.037 0.361 0.324 0.026 0.330 0.304 0.045 0.381 0.336 0.030 0.350 0.320
2 0.074 0.456 0.382 0.061 0.436 0.375 0.090 0.480 0.390 0.074 0.452 0.378
3 0.108 0.539 0.431 0.091 0.509 0.418 0.129 0.566 0.437 0.112 0.537 0.425

7. Conclusion
In this paper, we have considered Bayesian estimation and prediction for LN(µ, τ)

distribution under progressive Type-II censoring. We considered three cases when (i)
µ is unknown, (ii) τ is unknown and (iii) µ and τ both are unknown. We proposed
non-informative and informative priors for each case and obtained Bayes estimates un-
der squared error loss function. Importance sampling technique and OpenBUGS software
were taken into consideration for the computation of Bayes estimates. We also reported
the associated Bayesian credible interval estimates. We further analyzed a real data set
to illustrate all the cases and found that the performance of OpenBUGS software appre-
ciable. Next, under the setup of one- and two-sample Bayesian predictions, we obtained
Bayes estimates, corresponding equal-tail and HPD predictive interval estimates based on
progressive Type-II censored samples. It can be observed that 95% Bayesian prediction
bound under one-sample prediction contains the true observations of the complete data
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set. We also observed that prediction intervals tend to be smaller for the cases where some
partial information on the unknown parameters are available. It can also be observed that
HPD predictive intervals are of smaller interval length as compared to equal-tail predic-
tive intervals. However, for real data set under two-sample prediction framework, both the
equal-tail and HPD predictive intervals are found of almost same average interval length.
Our simulation study revealed that, under proper prior information, the lengths of various
prediction intervals tend to be smaller compared to the situation of non-informative prior
distributions. Finally, we mention that the proposed terminology for Bayesian prediction
can be used for other lifetime models as well.
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Appendix
For Bayesian analysis in OpenBUGS write three programs in different files, say “Model",

“Data" and “Initial values" as given below
#Model
model{

for(i in 1:n)
{
t[i] ~ dlnorm(mu, tau)C(lower[i],)

}
#For case (i)
mu ~ dnorm(0, 0.0001) #Uniform prior for mu
tau <- Given value #Known value of tau
#For case (ii)
tau ~ dgamma(0.0001, 0.0001) #Non-informative prior for tau
mu <- Given value #Known value of mu
#For case (iii)
mu ~ dnorm(0, 0.0001) #Uniform prior for mu
tau ~ dgamma(0.0001, 0.0001) #Non-informative prior for tau

}
#Data
list(t=c(y[1], NA R_1 times, y[2], NA R_2 times, ... , y[m], NA R_m times),
lower=c(y[1] R_1 +1 times, y_2 R_2 +1 times, ... , y[m] R_m + 1 times),n= value of n)

#t and lower are sequences of length n. Here y[1], y[2], ... , y[m] represents
#lifetimes observed under progressive Type-II censoring and the remaining
#censored lifetimes are represented as NA.

#Initial values
list(mu = initial value of mu, tau = initial value of tau)

#Give initial values according to case (i), (ii) and (iii)

After writing all the programs follow the following procedure
(1) To initialize a model in OpenBUGS software: First open all the written program

named "Model", "Data", and "Initial values". Now goto Tool bar and select open
Model → Specification. It will show a dialogue box named "Specification Tool".
First Double-click (highlight) the file "Model" and click "check model" in the dia-
logue box. A message at the bottom left-hand corner will display "model is syntac-
tically correct" to ensure that the written program is correct. Next highlight the
file "Data" and then click "load data" in the same dialogue box. For successfully
loaded data a message "data loaded" will display. Next click "compile" in the dia-
logue box to compile the data for which a message "model compiled" will display.
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Finally, double-click the file "Initial values" and click "load inits" in the dialogue
box to initialize the values. For successfully initialized case a message "model is
initialized" will display. Note that if one did not initialize all the parameters, then
further "gen inits" can be clicked in the dialogue box.

(2) Further to draw MCMC samples: First go to Tool bar: open Inference → Samples.
A dialogue box named "Sample Monitor Tool" will appear. In the dialogue box
type the parameters of interest in the "node" box and click "set". For an example
we will track "mu", "tau" and both respectively in cases (i), (ii) and (iii). Next
again go to Tool bar: open Model → Update. A dialogue box named "Update Tool"
will appear in which type the number of posterior samples you want to generate
in the "updates" box and click "update" box and see it runs in the "iteration" box.
Now again go back to the "Sample Monitor Tool" and type "*" in the "node" box.
Finally the Bayesian analysis of the desired parameters can be seen from the "stats"
box.

Note that in "Sample Monitor Tool" dialogue box one may also select the number of burn-
in samples in the "beg" box, "jth" number of iteration in the "thin" box and number of
percentile points from "percentiles" box. Further, after typing "*" in the node box, user
can also ensure the convergence of the drawn samples from options like "trace," "jump,"
"history," "accept," "quantiles" and "auto cor". Finally we mention that in a similar way
the code for the informative prior distributions can also be written and the details about
the inbuilt densities in OpenBUGS can be seen from : Help → Distributions → ’Generic
sampling distribution’.
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