
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (5) (2019), 1522 – 1546

DOI : 10.15672/hujms.465609

Research Article

Homogeneous imputation under two phase
probability proportional to size sampling

Muhammad Umair Sohail∗1, Javid Shabbir1, Cem Kadilar2

1Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan
2Department of Statistics, Hacettepe University, Beytepe, Ankara, Turkey

Abstract
In this paper, we consider the problem of missing complete at random (MCAR) values in
two phase probability proportional to size (pps) sampling for the estimation of population
mean. A class of estimators is considered by the suitable use of auxiliary information with
the traditional estimators for imputing the missing values. Theoretically, bias and mean
squared errors of the proposed estimators are obtained up to the first order approximation.
Two numerical studies are carried out for relative comparison of the proposed estimators
with mean estimator under two phase pps sampling for each situation.
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1. Introduction
In field of survey sampling, researchers utilize different statistical tools and models

for the selection of the sample units from a target population. The utilization of such
statistical tools depends upon the availability of observation units in the given population.
Nowadays, different probability and non-probability models are available in literature for
the selection of units from the population (say Ω). In probability sampling scheme like
simple random sampling (SRS) and systematic sampling (SS); every unit in the population
is considered same with respect to size, so they have the same chance of selection in
the sample. When the units have unequal probability of selection, then the probability
begin proportion to size of the auxiliary information associated with the particular unit, is
called probability proportional to size (pps) sampling. Availability of the suitable auxiliary
information is the necessary condition for the selection of sample units in the sample in
pps sampling, because we assign the selection probabilities on the behalf of the auxiliary
variable.

In many real life situations the problem occurs if we have no auxiliary information re-
garding the variable of interest. In such cases, multi-phase sampling is a reliable procedure
for obtaining the auxiliary information before observing the study variable. Readers may
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referred to read [4, 8, 10, 12] and [11]. The main focus of our present study is to combine
the features of two phase and pps sampling for the estimation of population parameters,
when the units are varying in size.

The problem occurs when the study or/and auxiliary have the missing values that lead
to the misleading inference about the parameters of interest. These missing values can
create the problem when sample units are difficult to follow-up or expensive to observe
them repeatedly or at regular period of time. In comparison to follow-up visits, imputation
is a well grounded procedure for imputing non-response without any specified cost and
time. Several imputation strategies are available in literature to impute the missing value
in efficient manners. [9] provide the idea about the nature of missing values by suggesting
missing complete at random values (MCAR) and missing at random (MAR). [1] and [2]
provide the efficient imputation models by utilizing the known parametric values of the
auxiliary information. [3] considered the hot deck imputation under ranking set sampling.
Many other researchers, such as [5, 6] and [13] consider this problem in an effective way.

The main focus of our study is to handle the problem of MCAR values which are usually
occurred in most of the social science and demographic studies, where the respondents are
reluctant to response to the certain items of the questionnaire. The brief discretion of this
study is given bellow:

1.1. Statement of the problem
For a population (Ω) of size N units, with variate values of the study variable (Yj =

Y1, Y2, Y3 . . . YN ) and the auxiliary variables (X1j = X11, X12, X13, · · · X1N and X2j =
X21, X22, X23, · · · , X2N ), a random sample (s′) of size m is drawn from Ω at the first
phase. From the selected m units, the auxiliary information of X1 or/and X2 are obtained.
At second phase, the sample s of n units is selected from the preselected m units, then
the information is obtained on the study and the auxiliary variable respectively. Let r
be the total number of the respondents, that can belongs to the sub-set of G in sample
(s) and (n − r) are those, who refuse to response relevant to the study variable from the
subset Gc. Such that, s = G ∪ Gc. Its also assumed that ȳr = 1

r

∑r
j=1 yj be the sample

mean of the study variable (Y ) form G at the second phase. Let x̄1 = 1
n

∑n
j=1 x1j and

x̄2 = 1
n

∑n
j=1 y2j be the unbiased sample mean corresponding to the population mean of

X̄1 and X̄2, respectively. Let ρyx1 and ρyx2 be the correlation coefficient between the study
variable and the auxiliary variables. It is also assume that, the first auxiliary variable
(X1j) has low correlation with Yj than the second auxiliary variable (X2j). So, X2j is
used at the estimation stage and X1j is used at the design stage of the study.

Now, we define the four different possible situation under which the non-response is
occurred in two phase pps sampling as follows:

1.1.1. Pps sampling in both phases. Let we have an auxiliary variable (X1j) cor-
related (small in degree) with the study variable (Yj). For the better estimation of Yj ,
we wish to measure another auxiliary variable (X2j), which has high correlation with the
study variable at first phase by utilizing the selection probabilities of X1j . The availability
of response is discussed as:
Situation 1: Assume that we measure an auxiliary variable (X2j) at first phase and
full response is available about it. At second phase, the study variable and the auxiliary
variable are measured accordingly. Assume that, the non-response is occurred only in the
study variable.
Situation 2: Suppose that the full response about X2j is not available at first phase, only
r

′ units can provide the response out of m units (r′
< m). At the second phase, we again

face the problem of non-response in both the study and auxiliary variables receptively,
only r out of r

′ units (r < r
′) can provide the response.
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1.1.2. SRS on first phase and pps sampling on second phase. Let the selection
probabilities of the study variable are not available, but we can visually understand that
the units are varying in size. Then, our focus is to use the pps sampling by obtaining
the selection (measuring the two auxiliary variables (X1j and X2j), which are selected by
SRS) at the first phase. The auxiliary variable (X1j) is used for obtaining the selection
probabilities of sample units for second phase. The availability of response is define as
follow:
Situation 3: As like situation 1: Let, complete response about X1 and X2 are obtained
at first phase by using the SRS scheme. On the basis of first phase auxiliary information,
we select the sample units at second phase for the study variable by using the selection
probabilities by pps sampling and assume that only the non-response be occurred in the
study variable .
Situation 4: As like situation 2: Let, the non-response be occurred during observing X1j

and X2j at first phase, only r
′ units can provide the response. We utilized such limited

information for the selection of sample units for the study variable at second phase and
we assume that the non-response is occurred in the study variable and in the auxiliary
variable as well.

For each of the above mentioned situations, we consider four different imputation proce-
dures for each and totally sixteen procedures to consider the comprehensive examination
of missing values in two phase pps sampling.

Figure 1. Illustartion of four possible situtations of non-response in two phase
pps sampling
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The rest of the study discusses the main points are as follow: In Section 3, we consider
some traditional imputation procedure under two phase pps sampling. In Section 4, we
proposed a modified class of estimators for imputing the missing values under two phase
pps sampling. For practical application of the proposed estimators, numerical results are
discussed comprehensively in Section 5 by considering different response rates in two phase
pps sampling, given in Appendix. There are final remarks in Section 6.

2. Notations and expectations
Let Ȳ =

∑N
j=1 Yj/N and X̄2 =

∑N
j=1 X2j/N be the population mean of the study and

the second auxiliary variable respectively. For evaluating the mathematical expressions for
bias and mean squared error of the modified estimators for each of the specified situations,
we define following useful notations under large sample approximation, as:
Situation 1. Following [14], let uj = yj/(NPj) and v2j = x2j/(NPj), where Pj = X1j/∑N

j=1 X1j and also let v̄∗
2m =

∑m
j=1 v2j/m be the sample mean of the auxiliary information

at first phase, v̄2n =
∑n

j=1 v2j/n and ūr =
∑r

j=1 uj/r be the sample mean of the auxiliary
variable and the study variable at second phase respectively.
Let

ζ0 = ūr

Ȳ
− 1, ζ1 = v̄2n

v̄∗
2m

− 1, ζ2 = v̄∗
2m

X̄2
− 1, E(ζ0) = E(ζ1) = E(ζ2) = 0.

up to the first order of approximation, we have

E(ζ2
0 ) =r−1C2

u, E(ζ2
1 ) = n−1C2

v E(ζ2
2 ) = m−1C2

v , E(ζ0ζ1) = n−1ρuvCuCv,

E(ζ0ζ2) =m−1ρuvCuCv, E(ζ1ζ2) = m−1C2
v .

Situation 2. Let r
′ be the total number of respondents (r′

< m). So, v̄∗
2r′ =

∑r
′

j=1 v2j/r
′

be the sample mean of the available auxiliary information at first phase. It is also assumed
that r be the respondent units at second phase (r < r

′). So, v̄2r =
∑r

j=1 v2j/r be the
sample mean of the auxiliary variable at second phase.
Let

ζ
′
1 = v̄2r

v̄∗
2r′

− 1, ζ
′
2 =

v̄∗
2r′

X̄2
− 1, E(ζ ′

1) = E(ζ ′
2) = 0.

up to the first order of approximation, we have

E(ζ ′2
1 ) = r−1C2

v E(ζ ′2
2 ) = r

′−1C2
v E(ζ0ζ

′
1) = r−1ρuvCuCv,

E(ζ0ζ
′
2) = r

′−1ρuvCuCv, E(ζ ′
1ζ

′
2) = r

′−1C2
v

For the first two situations, we used following expressions are:

C2
u = σ2

u

Ȳ 2 , C2
v = σ2

v

X̄2 , ρuv = σuv

σuσv
, nV ar(ȳ) = σ2

u =
∑N

j=1
Pi(uj − Ȳ )2,

σ2
v =

∑N

j=1
Pi(v2j − X̄)2, ρuv = 1

σvσu

∑N

j=1
Pi(v2j − X̄)(uj − Ȳ ).

Situation 3. Let u∗
j = yj/(mP ∗

j ) and v∗
2j = x2j/(mP ∗

j ), where P ∗
j = x1j/

∑m
j=1 x1j and

also let x̄∗∗
2m =

∑m
j=1 x2j/m be the sample mean of the auxiliary information which are

selected by SRS at first phase. It is also assume that v̄∗
2n =

∑n
j=1 v∗

2j/n and ū∗
r =

∑r
j=1 u∗

j/r
be the sample mean of X2j and Yj at the second phase respectively.
Let

ζ
′
0 = ū∗

r

X̄2
− 1, ζ

′′
1 = v̄∗

2n

x̄∗∗
2m

− 1, ζ
′′
2 = x̄∗∗

2m

X̄2
− 1, E(ζ ′

0) = E(ζ ′′
1 ) = E(ζ ′′

2 ) = 0.
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up to the first order of approximation, we have

E(ζ ′2
0 ) = n−1C2∗

u , E(ζ ′′2
1 ) = n−1C2∗

v E(ζ ′′2
2 ) = m−1C2∗

v ,

E(ζ ′
0ζ

′′
1 ) = n−1ρ∗

uvC∗
uC∗

v , E(ζ ′
0ζ

′′
2 ) = m−1ρ∗

uvC∗
uC∗

v , E(ζ ′′
1 ζ

′′
2 ) = m−1C2∗

v

where

C2∗
u =σ2∗

u

Ȳ 2 , C2∗
v = σ2∗

v

X̄2 , ρ∗
uv = σ∗

uv

σ∗
uσ∗

v

, mV ar(ȳ) = σ2∗
u =

∑m

j=1
P ∗

i (u∗
j − Ȳ )2 + σ2

y ,

σ2∗
v =

∑m

j=1
P ∗

i (v∗
2j − X̄)2 + σ2

x, ρ∗
uv = 1

σ∗
uσ∗

v

∑m

j=1
P ∗

i (v∗
2j − X̄)(u∗

j − Ȳ ),

Situation 4. Let u∗∗
j = yj/(r′

P ∗∗
j ) and v∗∗

2j = x2j/(r′
P ∗∗

j ), where P ∗∗
j = x1j/

∑r
′

j=1 x1j

and also let x̄∗∗
2r′ =

∑r
′

j=1 x2j/r
′ be the sample mean of the auxiliary information at first

phase, v̄∗
2r =

∑r
j=1 v∗∗

2j /n and ū∗∗
r =

∑r
j=1 u∗∗

j /r be the sample mean of X2j and Yj at the
second phase respectively.
Let

ζ
′′
0 = ū∗∗

r

Ȳ
− 1, ζ

′′′
1 = v̄∗

2r

x̄∗∗
2r′

− 1, ζ
′′′
2 =

x̄∗∗
2r′

X̄2
− 1, E(ζ ′′

0 ) = E(ζ ′′′
1 ) = E(ζ ′′′

2 ) = 0.

up to first order of approximation, we have

E(ζ ′′2
0 ) = r−1C∗∗2

u , E(ζ ′′′2
1 ) = r−1C∗∗2

v E(ζ ′′′2
2 ) = r

′−1C∗∗2
v ,

E(ζ ′′
0 ζ

′′′
1 ) = r−1ρ∗∗

uvC∗∗
u C∗∗

v , E(ζ ′′
0 ζ

′′′
2 ) = r

′−1ρ∗∗
uvC∗∗

u C∗∗
v , E(ζ ′′′

1 ζ
′′′
2 ) = r

′−1C∗∗2
v ,

where

C∗∗2
u =σ∗∗2

u

Ȳ 2 , C∗∗2
v = σ∗∗2

v

X̄2 , ρ∗∗
uv = σ∗∗

uv

σ∗∗
u σ∗∗

v

,

r
′
V ar(ȳ) =σ∗∗2

u =
∑r

′

j=1
P ∗∗

i (u∗∗
j − Ȳ )2 + σ2

y , σ∗∗2
v =

∑r
′

j=1
P ∗∗

i (v∗∗
2j − X̄)2 + σ2

x,

ρ∗∗
uv = 1

σ∗∗
u σ∗∗

v

∑r
′

j=1
P ∗∗

i (v∗
2j − X̄)(u∗

j − Ȳ ), r < n < r
′

< m.

3. Available imputation method in literature
For the above mentioned situations, we reformulate [1] imputation procedure under two

phase pps sampling scheme, as:

3.1. Situation 1
The missing values are imputed as by using the mean imputation procedure as

Ŷj =
{

uj if jϵ G

ūr if jϵ Gc
(3.1)

The point estimator for population mean is given by:

ˆ̄Y (1)
M = 1

n

{ r∑
j=1

uj +
n−r∑
j=1

uj

}
= ūr.

The variance of ˆ̄Y (1)
M is given by

V ar( ˆ̄Y (1)
M ) ∼= r−1Ȳ 2C2

u.
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We rewrite the ratio estimators for imputing the missing values under two phase pps
sampling, as:

Ŷj =


uj if jϵ G

1
1−g1

[
ūr
v̄2n

v̄∗
2m − g1ūr

]
if jϵ Gc (3.2)

where g1 = r
n . The point estimator for the given procedure in (3.2) is given as:

ˆ̄Y (1)
R

= ūr

v̄2n
v̄∗

2m.

The bias and mean squared error are given by

Bias( ˆ̄Y (1)
R

) ∼= Πnm Ȳ
(
C2

v − ρuvCuCv

)
and

MSE( ˆ̄Y (1)
R

) ∼= r−1Ȳ 2C2
u + Πnm Ȳ 2

(
C2

v − 2ρuvCuCv

)
,

where Πnm =
(

1
n − 1

m

)
.

3.2. Situation 2
For the second situation, the imputation procedures are defined as

The mean estimator is defined as

Ŷj =
{

uj if jϵ G

ūr if jϵ Gc
(3.3)

The point estimator for population mean (Ȳ ) is given by:

ˆ̄Y (2)
M = 1

n

{ r∑
j=1

uj +
n−r∑
j=1

uj

}
= ūr.

The variance of the mean estimator is

V ar( ˆ̄Y (2)
M ) ∼= r−1Ȳ 2C2

u.

The ratio estimators for imputing the missing values, is given as:

Ŷj =


uj if jϵ G

1
1−g1

[
ūr
v̄2r

v̄∗
2r′ − g1ūr

]
if jϵ Gc (3.4)

The point estimator for the given procedure in (3.4) is

ˆ̄Y (2)
R

= ūr

v̄2r
v̄∗

2r′ .

The bias and mean square error of ˆ̄Y (2)
R

are

Bias( ˆ̄Y (2)
R

) ∼= Πrr′ Ȳ
(
C2

v − ρuvCuCv

)
and

MSE( ˆ̄Y (2)
R

) ∼= r−1Ȳ 2C2
u + Πrr′ Ȳ 2

(
C2

v − 2ρuvCuCv

)
,

where Πrr′ =
(

1
r − 1

r′

)
.
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3.3. Situation 3
• Under mean method of imputation, the missing values are imputed as

Ŷj =
{

u∗
j if jϵ G

ū∗
r if jϵ Gc

(3.5)

The point estimator is given as

ˆ̄Y (3)
M = 1

n

{ r∑
j=1

uj +
n−r∑
j=1

uj

}
= ū∗

r .

The variance of ˆ̄Y (3)
M is given by

V ar( ˆ̄Y (3)
M ) ∼= r−1Ȳ 2C2∗

u .

The ratio estimators for imputing the missing values, is as:

Ŷj =


u∗

j if jϵ G

1
1−g1

[
ū∗

r
v̄∗

2n
x̄∗∗

2m − g1ū∗
r

]
if jϵ Gc (3.6)

The point estimator for the strategy in given (3.6) is given by

ˆ̄Y (3)
R

= ū∗
r

v̄∗
2n

x̄∗∗
2m.

The bias and mean square error of ˆ̄Y (3)
R

is

Bias( ˆ̄Y (3)
R

) ∼= Πnm Ȳ
(
C∗2

v − ρ∗
uvC∗

uC∗
v

)
and

MSE( ˆ̄Y (3)
R

) ∼= r−1Ȳ 2C∗2
u + Πnm Ȳ 2

(
C∗2

v − 2ρ∗
uvC∗

uC∗
v

)
3.4. Situation 4

The average imputation procedure is defined as

Ŷj =
{

u∗∗
j if jϵ G

ū∗∗
r if jϵ Gc

(3.7)

The point estimator for population mean (Ȳ ) is given by:

ˆ̄Y (4)
M = 1

n

{ r∑
j=1

Yj +
n−r∑
j=1

Yj

}
= ū∗∗

r .

The variance of the mean imputation procedure is given by

V ar( ˆ̄Y (4)
M ) ∼= r−1Ȳ 2C∗∗2

u .

We rewrite the ratio estimators for imputing the missing values, is as:

Ŷj =


u∗∗

j if jϵ G

1
1−g1

[
ū∗∗

r
v̄∗

2r
x̄∗∗

2r′ − g1ū∗∗
r

]
if jϵ Gc (3.8)

The point estimator for the given procedure in (3.8) is given as:

ˆ̄Y (4)
R

= ū∗∗
r

v̄∗
2r

x̄∗∗
2r′ .
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The bias and mean square error of ˆ̄Y (4)
R

is

Bias( ˆ̄Y (4)
R

) ∼= Πrr′ Ȳ
(
C∗∗2

v − ρ∗∗
uvC∗∗

u C∗∗
v

)
and

MSE( ˆ̄Y (4)
R

) ∼= r−1Ȳ 2C∗∗2
u + Πrr′ Ȳ 2

(
C∗∗2

v − 2ρ∗∗
uvC∗∗

u C∗∗
v

)
.

4. Modified imputation procedures
In this section, we modified ratio type estimators for imputing missing values that could

be occurred in two phase pps sampling. The estimation of population parameters is quite
laborious when the complete information is not known. Especially, if the sample units are
varying in size, then the traditional sampling procedures are not effective for selecting s
from Ω. In such situation, pps sampling is an decent procedure for the selection of s by
the proper use of supplementary information. Under pps sampling scheme, the estimation
or inference of the population parameters is more credible and reliable as compared to
traditional sample selection procedures, when the units are varying in size.

In many real life situations like in economics and other social science studies, where
population units are varying in size and we have no auxiliary information in hand for the
selection of s from Ω, then multi-phase sampling is a well known procedure, which provides
suitable auxiliary information regarding study variable prior to observing it. Behind this
argument, we consider the combine version of two phase and pps sampling schemes for
the estimation of finite population mean, when the units are varying in size and we have
no auxiliary information is in hand. For the detailed consideration of missing values,
we defined four different modified imputation procedure but seems to be similar for the
estimation of population mean in two phase pps sampling. The imputation procedures for
each of the previously defined situations in 1.1 is given as follow:

4.1. Situation 1: Full information on X2 is available at first phase and X1
is known in advance

�

Ŷj =


uj if jϵ G

1
(1−g1)

[
∆1ūr

v̄∗
2m

v̄2n
− g1ūr

]
if jϵ Gc (4.1)

where ∆1 is the suitably chosen constant by minimizing the resultant mean squared error.
The point estimator for the population mean is defined as:

ˆ̄Y (1)
1 = ∆1ūr

v̄∗
2m

v̄2n

Rewriting ˆ̄Y (1)
1 in term of errors, we have

ˆ̄Y (1)
1 = ∆1Ȳ

(
1 − ζ1 + ζ2

1 + ζ2 − ζ1ζ2 + ζ0 − ζ0ζ1 + ζ0ζ2
)

Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (1)

1 is given as

E( ˆ̄Y (1)
1 − Ȳ ) ∼= Ȳ

(
∆1 − 1

)
+ Πnm ∆1

(
C2

v − ρuvCuCv

)
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and

MSE( ˆ̄Y (1)
1 ) ∼=

1
r

Ȳ 2∆2
1C2

u − 2 Πnm Ȳ ∆1

{(3
2

∆1 − 1
)

C2
v

−2
(

∆1 − 1
2

)
ρuvCuCv

}
(4.2)

The optimum value of ∆1 is obtained by setting ∂MSE( ˆ̄Y (1)
1 )

∂∆1
= 0, as follow:

∆1(opt.) =

(
n∗C2

v − Cuρyxn∗Cv − nm
)
r

3 n∗rC2
v − 4 rCuρuvn∗Cv − nm

(
C2

u + r
) ,

where n∗ = n − m.

Substituting the optimum value of ∆1 in (4.2), the minimum mean squared error of ˆ̄Y (1)
1

is

MSE( ˆ̄Y (1)
1 )min.

∼=

[
Cv

{
n∗Λ + ΓCv − 2 nCumρuv

}
n∗r − n2C2

um2
]
Ȳ 2

3
[{

n∗
(
C2

v − 4
3 CvCuρuv

)
− 1

3 nm
}

r − 1
3 nC2

um
]
nm

,

where Λ = C3
v − 2 C2

v Cuρuv and Γ = nC2
uρ2

uv + m
(
n − C2

uρ2
uv

)
.

�

Ŷj =


uj if jϵ G

1
(1−g1)

[
ūr

(
v̄∗

2m
v̄2n

)∆2

− g1ūr

]
if jϵ Gc

(4.3)

where ∆2 is a suitably chosen constant. The point estimator is defined as

ˆ̄Y (1)
2 = ūr

(
x̄∗

2m

x̄2n

)∆2

In term of error, ˆ̄Y (1)
2 is rewritten as

ˆ̄Y (1)
2 = Ȳ

(
1 − ∆2ζ1 − 1

2
∆2(∆2 − 1)ζ2

1 + ∆ζ2 − ∆2
2ζ1ζ2 + ζ0

+1
2

∆2(∆2 − 1)ζ2
2 − ∆2ζ0ζ1 + ∆2ζ0ζ2

)
Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (1)

2 are given by

E( ˆ̄Y (1)
2 − Ȳ ) ∼= Ȳ Πnm ∆2

{1
2

(
∆2 + 1

)
C2

v − ρuvCuCv

}
and

MSE( ˆ̄Y (1)
2 ) ∼=

1
r

Ȳ 2C2
u + Πnm Ȳ 2

(
∆2

2C2
x − 2∆2ρuvCuCv

)
(4.4)

The optimum value of ∆2 is obtained as ∂MSE( ˆ̄Y (1)
2 )

∂∆2
= 0, then

∆2(opt.) = ρuvCu

Cv

Substituting the optimum value of ∆2 in (4.4), we set the minimum mean squared error
of ˆ̄Y (1)

2 as follow

MSE( ˆ̄Y (1)
2 )min. = 1

r
C2

uȲ 2
{(

1 − g1ρ2
uv

)
+ λρ2

uv

}
,
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where λ = r
m .

�

Ŷj =


uj if jϵ G

1
(1−g1)

[
ūr v̄∗

2m
∆3v̄2n+(1−∆3)v̄∗

2m
− g1ūr

]
if jϵ Gc (4.5)

where ∆3 is a suitably chosen unknown value. The point estimator for the population
mean is defined as:

ˆ̄Y (1)
3 = ūr v̄∗

2m

∆3v̄2n + (1 − ∆3)v̄∗
2m

The ˆ̄Y (1)
3 in term of errors can also be written as

ˆ̄Y (1)
3 = Ȳ

(
1 − ∆3ζ1 + ∆3ζ2 − ζ2 + ∆2

3ζ2
1 + ∆2

3ζ2
2 + ζ2

1 − 2∆2
3ζ1ζ2

+2∆3ζ1ζ2 − 2∆3ζ2
2 + ζ2 − ∆1ζ1ζ2 + ∆3ζ2

2 − ζ2
2 + ζ0 − ∆3ζ0ζ1

+∆3ζ0ζ2 − ζ0ζ2 + ζ0ζ2
)

Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (1)

3 are given by

E( ˆ̄Y (1)
3 − Ȳ ) ∼= Ȳ Πnm ∆3

(
∆3C2

v − ρuvCuCv

)
and

MSE( ˆ̄Y (1)
3 ) ∼=

1
r

Ȳ 2C2
u + ΠnmȲ 2

(
∆2

3C2
v − 2∆3ρuvCxCv

)
(4.6)

The optimum value of ∆3 is obtained as ∂MSE( ˆ̄Y (1)
3 )

∂∆3
= 0, then

∆3(opt.) = ρuvCu

Cv

Substituting the optimum value of ∆3 in (4.6), the minimum mean squared error of ˆ̄Y (1)
3

is

MSE( ˆ̄Y (1)
3 )min. = 1

r
C2

uȲ 2
{(

1 − g1ρ2
uv

)
+ λρ2

uv

}
�

Ŷj =


uj if jϵ G

1
(1−g1)

[
∆4ūr + (1 − ∆4)ūr

(
v̄∗

2m
v̄2n

)
− g1ūr

]
if jϵ Gc (4.7)

where ∆4 is an unknown constant. The point estimator for the given procedure in (4.7)
is defined as:

ˆ̄Y (1)
4 = ∆4ūr + (1 − ∆4)ūr

(
v̄∗

2m

v̄2n

)
Rewriting ˆ̄Y (1)

4 in term of error, we have

ˆ̄Y (1)
4 = ∆4Ȳ (1 + ζ0) + (1 − ∆4)Ȳ

(
1 − ζ1 + ζ2

1 + ζ2 − ζ1ζ2 + ζ0

−ζ0ζ1 + ζ0ζ2

)
expanding and keeping terms up to first order approximation, the bias and mean square
error of ˆ̄Y (1)

4 is given as

E( ˆ̄Y (1)
4 − Ȳ ) ∼= (∆4 − 1)Ȳ + (1 − ∆4) Ȳ Πnm

(
C2

v − ρuvCuCv

)
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and

MSE( ˆ̄Y (1)
4 ) ∼=

1
r

Ȳ 2C2
v +

(
∆4 − 1

)
ΠnmȲ 2

{
∆4C2

v + 2ρuvCvCu

}
(4.8)

The optimum value of ∆4 is obtained as ∂MSE( ˆ̄Y (1)
4 )

∂∆4
= 0, then

∆4(opt.) = 1 − Cuρuv

Cv

Substituting the optimum value of ∆4 in (4.8), the minimum mean squared error of ˆ̄Y (1)
4

is

MSE( ˆ̄Y (1)
4 )min. = 1

r
C2

uȲ 2
{(

1 − g1ρ2
uv

)
+ λρ2

uv

}
4.2. Situation 2: Non-response is occurred in X2 at first phase

�

Ŷj =


uj if jϵ G

1
(1−g1)

[
ω1ūr

v̄∗
2r

v̄2r
− g1ūr

]
if jϵ Gc (4.9)

where ω1 is a suitably chosen constant by minimizing the mean squared error. The point
estimator for the population mean is defined as

ˆ̄Y (2)
1 = ω1ūr

v̄∗
2r

v̄2r

Rewriting ˆ̄Y (2)
1 in term of errors, we have

ˆ̄Y (2)
1 = ω1Ȳ

(
1 − ζ

′
1 + ζ

′2
1 + ζ

′
2 − ζ

′
1ζ

′
2 + ζ0 − ζ0ζ

′
1 + ζ0ζ

′
2

)
Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (2)

1 is given as

E( ˆ̄Y (2)
1 − Ȳ ) ∼= Ȳ (ω1 − 1) + Πrr′ ω1

(
C2

v − ρuvCuCv

)
and

MSE( ˆ̄Y (2)
1 ) ∼=

1
r

Ȳ 2ω2
1C2

u − 2Πrr′ Ȳ ω1

{(3
2

ω1 − 1
)

C2
v

−(2ω1 − 1)ρuvCuCv

}
(4.10)

The optimum value of ω1 is obtained by setting ∂MSE( ˆ̄Y (2)
1 )

∂ω1
= 0, as follow

ω1(opt.) = r∗C2
v − Cuρyxr∗Cv − rr

′

3r∗Cv
2 − 4 Cuρuvr∗Cv − r′

(
Cu

2 + r
) ,

where r∗ = r − r
′
.

Substituting the optimum value of ω1 in (4.10), the minimum mean squared error of ˆ̄Y (2)
1

is

MSE( ˆ̄Y (2)
1 )min.

∼=

[
r∗Cv

{
Cv

(
r∗CvΛ′ + Γ′

)
− 2 rCur

′
ρuv

}
− rC2

ur
′ 2

]
Ȳ 2

3
{

r∗C2
v − 4

3 Cuρuvr∗Cv − 1
3 r′

(
C2

u + r
)}

r′r
,
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where Λ′ = Cv − 2 Cvρuv and Γ′ = rC2
uρ2

uv +
(
r − C2

uρ2
uv

)
r

′
.

�

Ŷj =


uj if jϵ G

1
(1−g1)

[
ūr

(
v̄∗

2r
v̄2r

)ω2

− g1ūr

]
if jϵ Gc (4.11)

where ω2 is a suitably chosen constant. The point estimator is defined as:

ˆ̄Y (2)
2 = ūr

(
v̄∗

2m

v̄2n

)ω2

The ˆ̄Y (2)
2 in term of errors can also be written as

ˆ̄Y (2)
2 = Ȳ

(
1 − ω2ζ

′
1 − ω2(ω2 − 1)

2
ζ

′2
1 + ωζ

′
2 − ω2

2ζ
′
1ζ

′
2 + ζ0

+ω2(ω2 − 1)
2

ζ
′2
2 − ω2ζ0ζ

′
1 + ω2ζ0ζ

′
2

)
Keeping terms up to first order, the bias and mean square error of ˆ̄Y (2)

2 is given as

E( ˆ̄Y (2)
2 − Ȳ ) ∼= Ȳ Πrr′ ω2

{1
2

(
ω2 + 1

)
C2

v − ρuvCuCv

}
and

MSE( ˆ̄Y (2)
2 ) ∼=

1
r

Ȳ 2C2
u + Πrr′ Ȳ 2

(
ω2

2C2
x − ω2ρuvCuCv

)
(4.12)

The optimum value of ω2 is as ∂MSE( ˆ̄Y (2)
2 )

∂ω2
= 0, then

ω2(opt.) = ρuvCu

Cv

Substituting the optimum value of ω2 in (4.12), the minimum mean squared error of ˆ̄Y (2)
2

is

MSE( ˆ̄Y (2)
2 )min.

∼=
1
r

Ȳ 2C2
u

(
1 + λ

′
ρ2

uv

)
,

where λ
′ = r∗

r′ .
�

Ŷj =


uj if jϵ G

1
(1−g1)

[
ūr v̄∗

2r
′

ω3v̄2r+(1−ω3)v̄∗
2r

′
− g1ūr

]
if jϵ Gc (4.13)

where ω3 is a suitably chosen unknown value. The point estimator for the population
mean is defined as:

ˆ̄Y (2)
3 =

ūr v̄∗
2r′

ω3v̄2r + (1 − ω3)v̄∗
2r′

In term of error, the ˆ̄Y (2)
3 can be rewrite as

ˆ̄Y (2)
3 = Ȳ

(
1 − ω3ζ1 + ω3ζ1 − ζ2 + ω2

3ζ2
1 + ω2

3ζ2
2 + ζ2

1 − 2ω2
3ζ1ζ2

−2ω3ζ1ω2 + 2ω3ζ2
2 + ζ2 − ω1ζ1ζ2 + ω3ζ2

2 − ζ2
2 + ζ0 − ω3ζ0ζ1

+ω3ζ0ζ2 − ζ0ζ2 + ζ0ζ2
)

Expanding terms up to first order of approximation, the bias and mean square error of
ˆ̄Y (2)

3 is given as

E( ˆ̄Y (2)
3 − Ȳ ) ∼= Ȳ Πrr′ ω3

(
ω3C2

v − ρuvCuCv

)
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and

MSE( ˆ̄Y (2)
3 ) ∼=

1
r

Ȳ 2C2
u + Πrr′ Ȳ 2

(
ω2

3C2
v − 2ω3ρuvCuCv

)
(4.14)

The ω3 is obtained as ∂MSE( ˆ̄Y (2)
3 )

∂ω3
= 0, then

ω3(opt.) = Cuρuv

Cv

Substituting the optimum value of ω3 in (4.14), the minimum mean squared error of ˆ̄Y (2)
3

is

MSE( ˆ̄Y (2)
3 )min.

∼=
1
r

Ȳ 2C2
u

(
1 + λ

′
ρ2

uv

)
�

Ŷj =


uj if jϵ G

1
(1−g1)

[
ω4ūr + (1 − ω4)ūr

(
v̄∗

2r
v̄2r

)
− g1ūr

]
if jϵ Gc (4.15)

where ω4 is an unknown constant value. The point estimator for the given procedure in
(4.15) is defined as:

ˆ̄Y (2)
4 = ω4ūr + (1 − ω4)ūr

(
v̄∗

2m

v̄2n

)

Rewriting ˆ̄Y (2)
4 in term of error, we have

ˆ̄Y (2)
4 = Ȳ ω4(1 + ζ0) + (1 − ω4)Ȳ

(
1 − ζ

′
1 + ζ

′2
1 + ζ

′
2 − ζ

′
1ζ

′
2 + ζ0

−ω2ζ0ζ
′
1 + ω2ζ0ζ

′
2

)

Keeping terms up to first order of approximation, the bias and mean square error of ˆ̄Y (2)
4

is given as

E( ˆ̄Y (2)
4 − Ȳ ) ∼= (ω4 − 1)Ȳ + (1 − ω4)Ȳ Πrr′

(
C2

v − ρuvCuCv

)
and

MSE( ˆ̄Y (2)
4 ) ∼=

1
r

Ȳ 2C2
v + Πrr′

{
ω4

(
ω4 − 1

)
C2

v + 2
(
ω4 − 1

)
ρuvCvCu

}
(4.16)

The ω4 is obtained as ∂MSE( ˆ̄Y (2)
4 )

∂ω4
= 0, then

ω4(opt.) = 1 − Cuρuv

Cv

Substituting the optimum value of ω4 in (4.16), the minimum mean squared error of ˆ̄Y (2)
4

is

MSE( ˆ̄Y (2)
4 )min.

∼=
1
r

Ȳ 2C2
u

(
1 + λ

′
ρ2

uv

)



Homogeneous Imputation under Two Phase PPS Sampling 1535

4.3. Situation 3: Response on X1 and X2 is obtained from First Phase
�

Ŷj =


u∗

j if jϵ G

1
(1−g1)

[
φ1ūr

x̄∗∗
2m

v̄∗
2n

− g1ū∗
r

]
if jϵ Gc (4.17)

where φ1 is a suitably chosen constant by minimizing the resultant mean squared error.
The point estimator for the population mean is defined as:

ˆ̄Y (3)
1 = φ1ū∗

r

x̄∗∗
2m

v̄∗
2n

Rewriting ˆ̄Y (3)
1 in term of error as

ˆ̄Y (3)
1 = φ1Ȳ

(
1 − ζ

′′
1 + ζ

′′2
1 + ζ

′′
2 − ζ

′′
1 ζ

′′
2 + ζ

′
0 − ζ0ζ1 + ζ

′
0ζ

′′
2

)
Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (3)

1 is given as

E( ˆ̄Y (3)
1 − Ȳ ) ∼= Ȳ (φ1 − 1) + Πnm Ȳ φ1

(
C∗2

v − ρ∗
uvC∗

uC∗
v

)
and

MSE( ˆ̄Y (3)
1 ) ∼=

1
r

Ȳ 2∆2
1C∗2

u − 2ΠnmȲ 2φ1

{(3
2

φ1 − 1
)

C∗2
v

−(2φ1 − 1)ρ∗
uvC∗

uC∗
v

}
(4.18)

The optimum values of φ1 is obtained as ∂MSE( ˆ̄Y (3)
1 )

∂φ1
= 0, then

φ1(opt.) =

(
n∗C∗2

v − C∗
uρ∗

yxn∗C∗
v − nm

)
r

3 n∗rC∗2
v − 4 rC∗

uρ∗
uvn∗C∗

v − nm (C∗2
u + r)

(4.19)

Substituting (4.19) in (4.18), the minimum mean squared error of ˆ̄Y (3)
1 is

MSE( ˆ̄Y (3)
1 )min.

∼=

[
C∗

v

{
n∗Λ + ΓC∗

v − 2 nC∗
umρ∗

uv

}
n∗r − n2C∗2

u m2
]
Ȳ 2

3
[{

n∗
(
C∗2

v − 4
3 C∗

v C∗
uρ∗

uv

)
− 1

3 nm
}

r − 1
3 nC∗2

u m
]
nm

�

Ŷj =


u∗

j if jϵ G

1
(1−g1)

[
ū∗

r

(
x̄∗∗

2m
v̄∗

2n

)φ2

− g1ū∗
r

]
if jϵ Gc (4.20)

where φ2 is the suitably chosen constant value. The point estimator is defined as:

ˆ̄Y (3)
2 = ū∗

r

(
x̄∗

2m

v̄∗∗
2n

)φ2

Rewriting ˆ̄Y (3)
2 in term of error, we have

ˆ̄Y (3)
2 = Ȳ

(
1 − φ2ζ

′′
1 − 1

2
φ2(φ2 − 1)ζ ′′2

1 + φζ
′′
2 − φ2

2ζ
′′
1 ζ

′′
2 + ζ

′
0

+1
2

φ2(φ2 − 1)ζ ′′2
2 − φ2ζ

′
0ζ

′′
1 + φ2ζ

′
0ζ

′′
2

)
Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (3)

2 is given as

E( ˆ̄Y (3)
2 − Ȳ ) ∼= Ȳ Πnm φ2

{1
2

(
φ2 + 1

)
C∗2

v − ρ∗
uvC∗

uC∗
v

}
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and

MSE( ˆ̄Y (3)
2 ) ∼=

1
r

Ȳ 2C∗2
u + Πnm Ȳ 2

(
φ2

2C∗2
v − φ2ρ∗

uvC∗
uC∗

v

)
(4.21)

The optimum value of φ2 is obtained as ∂MSE( ˆ̄Y (3)
2 )

∂φ2
= 0, then

φ2(opt.) = ρ∗
uvC∗

u

C∗
v

(4.22)

Substituting (4.22) in (4.21), the minimum mean squared error of ˆ̄Y (3)
2 is

MSE( ˆ̄Y (3)
2 )min. = 1

r
C∗2

u Ȳ 2
{(

1 − g1ρ∗2
uv

)
+ λρ∗2

uv

}
�

Ŷj =


u∗

j if jϵ G

1
(1−g1)

[
ū∗

r x̄∗∗
2m

φ3v̄∗
2n+(1−φ3)x̄∗∗

2m
− g1ū∗

r

]
if jϵ Gc (4.23)

where φ3 is the suitably chosen unknown value. The point estimator for the population
mean is defined as:

ˆ̄Y (3)
3 = ū∗

r x̄∗∗
2m

φ3v̄∗
2n + (1 − φ3)x̄∗∗

2m

(4.24)

Rewriting (4.24) in term of error, we have
ˆ̄Y (3)

3 = φ3Ȳ
(
1 − φ3ζ

′′
1 + φ3ζ

′′
1 − ζ2

′′ + φ2
3ζ

′′2
1 + φ2

3ζ
′′2
2 + ζ

′′2
1 − 2φ2

3ζ
′′
1 ζ

′′
2

−2φ3ζ
′′
1 ζ

′′
2 + 2φ3ζ

′′2
2 + ζ

′′
2 − φ1ζ

′′
1 ζ

′′
2 + ∆3ζ

′′2
2 − ζ

′′2
2 + ζ

′
0 − ∆3ζ

′
0ζ

′′
1

+φ3ζ
′
0ζ

′′
2 − ζ

′
0ζ

′′
2 + ζ

′
0ζ

′′
2

)
keeping terms up to first order of approximation, the bias and mean square error of ˆ̄Y (3)

3
is given as

E( ˆ̄Y (3)
3 − Ȳ ) ∼= ΠnmȲ φ3

(
φ3C∗2

v − ρ∗
uvC∗

uC∗
v

)
and

MSE( ˆ̄Y (3)
3 ) ∼=

1
r

Ȳ 2C∗2
u + ΠnmȲ 2

(
φ2

3C∗2
v − 2φ3ρ∗

uvC∗
xC∗

v

)
(4.25)

The optimum value of φ3 is obtained as ∂MSE( ˆ̄Y (3)
3 )

∂φ3
= 0, then

φ3(opt.) = ρ∗
uvC∗

u

C∗
v

Substituting the optimum value of φ3 in (4.25), the minimum mean squared error of ˆ̄Y (3)
3

is

MSE( ˆ̄Y (3)
3 )min. = 1

r
C∗2

u Ȳ 2
{(

1 − g1ρ∗2
uv

)
+ λρ∗2

uv

}
�

Ŷj =


u∗

j if jϵ G

1
(1−g1)

[
φ4ū∗

r + (1 − φ4)ū∗
r

(
x̄∗

2m
v̄∗

2n

)
− g1ū∗

r

]
if jϵ Gc (4.26)

where φ4 is an unknown constant. The point estimator for the given procedure in (4.26)
is defined as:

ˆ̄Y (3)
4 = φ4ū∗

r + (1 − φ4)ū∗
r

(
x̄∗∗

2m

v̄∗
2n

)
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Rewriting ˆ̄Y (3)
4 in term of error, we have
ˆ̄Y (3)

4 = φ4Ȳ (1 + ζ
′
0) + (1 − φ4)Ȳ

(
1 − ζ

′′
1 + ζ

′′2
1 + ζ

′′
2 − ζ

′′
1 ζ

′′
2 + ζ

′
0

−ζ
′
0ζ

′′
1 + ζ

′
0ζ

′′
2

)
Expanding and keeping terms up to first order of approximation, the bias and mean square
error of ˆ̄Y (3)

4 is given as

E( ˆ̄Y (3)
4 − Ȳ ) ∼= (φ4 − 1)Ȳ + (1 − φ4)Ȳ Πnm

(
C∗2

v − ρ∗
uvC∗

y C∗
v

)
and

MSE( ˆ̄Y (3)
4 ) ∼=

1
r

Ȳ 2C∗2
v + Πnm Ȳ 2

{
φ4(φ4 − 1)C∗2

v + 2(φ4 − 1)ρ∗
uvC∗

v C∗
u

}
(4.27)

The optimum value of φ4 is obtained as ∂MSE( ˆ̄Y (3)
4 )

∂φ4
= 0, then

φ4(opt.) = 1 − C∗
uρ∗

uv

C∗
v

Substituting the optimum value of φ4 in (4.27), the minimum mean squared error of ˆ̄Y (3)
4

is

MSE( ˆ̄Y (3)
4 )min. = 1

r
C2

uȲ 2
{(

1 − g1ρ2
uv

)
+ λρ2

uv

}
4.4. Situation 4: Non-response in X1 and X2 at first phase

�

Ŷj =


u∗∗

j if jϵ G

1
(1−g1)

[
γ1ū∗∗

r

x̄∗∗
2r

′

v̄∗
2r

− g1ū∗∗
r

]
if jϵ Gc (4.28)

where γ1 is a suitably chosen constant that makes the MSE minimum. The point estimator
for the population mean is defined as:

ˆ̄Y (4)
1 = γ1ū∗∗

r

x̄∗∗
2r′

v̄∗
2r

(4.29)

In term of error, the (4.29) can be written as
ˆ̄Y (4)

1 = γ1Ȳ
(
1 − ζ

′′′
1 + ζ

′′′2
1 + ζ

′′′
2 − ζ

′′′
1 ζ

′′′
2 + ζ

′′
0 − ζ

′′
0 ζ

′′′
1 + ζ

′′
0 ζ

′′′
2

)
Keeping terms up to first order of approximation, the bias and mean square error of ˆ̄Y (4)

1
is given as

E( ˆ̄Y (4)
1 − Ȳ ) ∼= Ȳ (γ1 − 1) + Πrr′ Ȳ γ1

(
C∗∗2

v − ρ∗∗
uvC∗∗

u C∗∗
v

)
and

MSE( ˆ̄Y (4)
1 ) ∼=

1
r

Ȳ 2∆2
1C∗∗2

u − 2Πrr′ Ȳ 2γ1

{(3
2

γ1 − 1
)

C∗∗2
v

−(2γ1 − 1)ρ∗∗
uvC∗∗

u C∗∗
v

}
+ Ȳ 2(γ1 − 1)2 (4.30)

The optimum value of γ1 is obtained by ∂MSE( ˆ̄Y (2)
1 )

∂γ1
= 0, as follow

γ1(opt.) = r∗C∗∗2
v − C∗∗

u ρyxr∗C∗∗
v − rr

′

3r∗C∗∗2
v − 4 C∗∗

u ρ∗∗
uvr∗C∗∗

v − r′ (C∗∗2
u + r)

(4.31)
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Substituting (4.31) in (4.30), the minimum mean squared error of ˆ̄Y (4)
1 is

MSE( ˆ̄Y (4)
1 )min.

∼=

[
r∗C∗∗

v

{
C∗∗

v

(
r∗C∗∗

v Λ′ + Γ′
)

− 2 rC∗∗
u r

′
ρ∗∗

uv

}
− rC∗∗2

u r
′ 2

]
Ȳ 2

3
{

r∗C∗∗2
v − 4

3 C∗∗
u ρ∗∗

uvr∗∗C∗∗
v − 1

3 r′
(
C∗∗2

u + r
)}

r′r

�

Ŷj =


u∗∗

j if jϵ G

1
(1−g1)

[
ū∗∗

r

(
x̄∗∗

2r
′

v̄∗
2r

)γ2

− g1ū∗∗
r

]
if jϵ Gc (4.32)

where γ2 is the suitably chosen constant. The point estimator is defined as:

ˆ̄Y (4)
2 = ūr

( x̄∗∗
2r′

v̄∗
2n

)γ2

(4.33)

Rewriting (4.33) in term of error, we have

ˆ̄Y (4)
2 = Ȳ

(
1 − γ2ζ

′′′
1 − 1

2
γ2(γ2 − 1)ζ ′′′2

1 + γζ
′′′
2 − γ2

2ζ
′′′
1 ζ

′′′
2 + ζ

′′
0

+1
2

γ2(γ2 − 1)ζ ′′′2
2 − ω2ζ

′′
0 ζ

′′′
1 + γ2ζ

′′
0 ζ

′′′
2

)
expanding and keeping terms up to first order approximation, the bias and mean square
error of ˆ̄Y (4)

2 is given as

E( ˆ̄Y (4)
2 − Ȳ ) ∼= Ȳ Πrr′ γ2

{1
2

(
γ2 − 1

)
C∗∗2

v − ρ∗∗
uvC∗∗

u C∗∗
v

}
and

MSE( ˆ̄Y (4)
2 ) ∼=

1
r

Ȳ 2C∗∗2
u + Πrr′ Ȳ 2

(
γ2

2C∗∗2
v − γ2ρ∗∗

uvC∗∗
u C∗∗

v

)
(4.34)

The optimum value of γ2 is obtained as ∂MSE( ˆ̄Y (4)
2 )

∂γ2
= 0, then

γ2(opt.) = ρ∗∗
uvC∗∗

u

C∗∗
v

(4.35)

Substituting (4.35) in (4.34), the minimum mean squared error of ˆ̄Y (4)
2 is

MSE( ˆ̄Y (4)
2 )min.

∼=
1
r

Ȳ 2C∗∗2
u

(
1 + λ

′
ρ∗∗2

uv

)
�

Ŷj =


u∗∗

j if jϵ G

1
(1−g1)

[
ū∗∗

r x̄∗∗
2r

′

γ3v̄∗
2r+(1−γ3)x̄∗∗

2r
′

− g1ū∗∗
r

]
if jϵ Gc (4.36)

where γ3 is the suitably chosen unknown value. The point estimator for the population
mean is defined as:

ˆ̄Y (4)
3 =

ū∗∗
r x̄∗∗

2r′

γ3v̄∗
2r + (1 − γ3)x̄∗∗

2r′

Rewriting the ˆ̄Y (4)
3 in term of error, we have

ˆ̄Y (4)
3 = Ȳ

(
1 − γ3ζ

′′′
1 + γ3ζ

′′′
1 − ζ

′′′
2 + ω

2
3ζ

′′′2
1 + γ

2
3ζ

′′′2
2 + ζ

′′′2
1 − 2γ

2
3ζ

′′′
1 ζ

′′′
2

−2γ3ζ
′′′
1 ζ

′′′
2 + 2γ3ζ

′′′2
2 + ζ

′′′
2 − γ1ζ

′′′
1 ζ

′′′
2 + γ3ζ

′′′
2 − ζ

′′′2
2

+ζ
′′′
0 − γ3ζ

′′
0 ζ

′′′
1 + γ3ζ

′′
0 ζ

′′′
2 − ζ

′′
0 ζ

′′′
2 + ζ

′′
0 ζ

′′′
2

)



Homogeneous Imputation under Two Phase PPS Sampling 1539

The bias and mean square error of ˆ̄Y (4)
4 is given as

E( ˆ̄Y (4)
3 − Ȳ ) ∼= Ȳ Πrr′ γ3

(
γ3C∗∗2

v − ρ∗∗
uvC∗∗

u C∗∗
v

)
and

MSE( ˆ̄Y (4)
3 ) ∼=

1
r

Ȳ 2C∗∗2
u + Πrr′ Ȳ 2

(
γ2

3C∗∗2
v − 2γ3ρ∗∗

uvC∗∗
x C∗∗

v

)
(4.37)

The suitable value of γ3 is obtained by setting ∂MSE( ˆ̄Y (4)
3 )

∂ω3
= 0, as follow

γ3(opt.) = C∗∗
u ρ∗∗

uv

C∗∗
v

Substituting the optimum value of γ3 in (4.37), the minimum mean squared error of ˆ̄Y (4)
3

is

MSE( ˆ̄Y (4)
2 )min.

∼=
1
r

Ȳ 2C∗∗2
u

(
1 + λ

′
ρ∗∗2

uv

)
�

Ŷj =


u∗∗

j if jϵ G

1
(1−g1)

[
γ4ū∗∗

r + (1 − γ4)ū∗∗
r

(
x̄∗∗

2r
′

v̄∗
2r

)
− g1ū∗∗

r

]
if jϵ Gc (4.38)

where γ4 is an unknown constant. The point estimator for the given procedure in (4.38)
is defined as:

ˆ̄Y (4)
4 = γ4ū∗∗

r + (1 − γ4)ū∗∗
r

( x̄∗∗
2r′

v̄∗
2r

)
(4.39)

Rewriting (4.39) in term of error, we have
ˆ̄Y (4)

4 = Ȳ γ4Ȳ (1 + ζ
′′
0 ) + (1 − γ4)Ȳ

(
1 − ζ

′′′
1 + ζ

′′′2
1 + ζ

′′′
2 − ζ

′′′
1 ζ

′′′
2

+ζ
′′
0 − γ2ζ

′′
0 ζ

′′′
1 + γ2ζ

′′
0 ζ

′′′
2

)
The bias and mean square error of ˆ̄Y (4)

4 is given as

E( ˆ̄Y (4)
4 − Ȳ ) ∼= (γ4 − ω4 − 1)Ȳ + (1 − γ4)Ȳ Πrr′

(
C∗∗2

v − ρ∗∗
uvC∗∗

u C∗∗
v

)
and

MSE( ˆ̄Y (4)
4 ) ∼=

1
r

Ȳ 2C∗∗2
u + Πrr′

{
γ4

(
γ4 − 1

)
C∗∗2

v + 2(γ4 − 1)ρ∗∗
uvC∗∗

v C∗∗
u

}
(4.40)

The optimum values of γ4 is obtained by ∂MSE( ˆ̄Y (4)
4 )

∂γ4
= 0, then

γ4(opt.) = 1 − C∗∗
u ρ∗∗

uv

C∗∗
v

Substituting the optimum value of γ4 in (4.40), the minimum mean squared error of ˆ̄Y (4)
4

is

MSE( ˆ̄Y (4)
4 )min.

∼=
1
r

Ȳ 2C∗∗2
u

(
1 + λ

′
ρ∗∗2

uv

)
(4.41)

5. Application
In this section, we discuss the numerical findings of the modified class of estimators

under two phase pps sampling scheme by using the two real life data sets at varying
response rate. The data description and method of bootstrapping for the previously
predefined situations are defined as follow:
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5.1. Situtation 1 and 2
Population 1: Source: [7]

y= Output in (000) rupees, x1 = Number of Workers and x2 = Fixed Capital in (000)
rupees.
N = 80, Ȳ = 84443.509, X̄ = 1338.756, Cu = 0.0609, Cv = 0.0274, ρuv = 0.8520.

Population 2: Source: [14]
y= Estimated number of fish caught by marine recreational fishermen in year 1995, x1=
estimated number of fish caught by marine recreational fishermen in year 1994 and x2=
estimated number of fish caught by marine recreational fishermen in year 1993.
N = 69, Ȳ = 4699.529, X̄ = 5218.194, Cu = 0.0401, Cv = 0.0335, ρuv = 0.6483.

5.2. Situtation 3 and 4
For the 3rd and 4th situation, we have no auxiliary information regarding the study

variable in advance. In such circumstances, we select the sample at first phase by SRS
and at second phase by pps sampling. The values of C∗

v , C∗∗
v , C∗∗

u , C∗∗
u , ρ∗

uv and ρ∗∗
uv are

obtained under bootstrap approach by using the population 1 and 2. Repeat the process
of the selection of the units 10000 (say H) times. The selection procedure of s from Ω is
define as follows:

First we select the m or r
′ units at first phase by SRS from N units of Ω. Then, form

the selected s, we select the n or r units by pps sampling, repeating the procedure H times
and then obtain the mean value of the C∗

v , C∗∗
v , C∗∗

u , C∗∗
u , ρ∗

uv and ρ∗∗
uv , and utilized such

values for the relative comparison of the modified estimators.
We use the following expression for calculating the percentage relative efficiencies of the

modified imputation strategies under two phase pps sampling than their counterpart, as
follow:

PRE(k) = V ar( ˆ̄Y q
M )

MSE( ˆ̄Y q
k )

, for k = 1 − 4 and q = 1 − 4 (5.1)

At the fixed response rate, the PRE’s are reported in Table 1 by using the population 1
and 2 respectively for the given situations.

Table 1. PRE(k) of the modified estimators

PRE(1) PRE(2) PRE(3) PRE(4)
Pop. Sitautation 1 (m = 50, n = 25, r = 15)

1 123.3124 127.8408 127.8408 127.8408
2 101.5064 109.3101 109.3101 109.3101

Situtation 2 (r
′ = 45, n = 25, r = 15)

1 167.8081 193.7795 193.7795 193.7795
2 101.7872 123.3457 123.3457 123.3457

Situtation 3 (m = 45, n = 25, r = 15)
1 119.6057 121.6906 121.6906 121.6906
2 100.9423 107.3416 107.3416 107.3416

Situtation 4 (m = 35, n = 25, r = 15)
1 138.6255 139.7692 139.7692 139.7692
2 100.8386 109.1891 109.1891 109.1891
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Table 2. PRE(.) for situtation 1

Population 1 Population 2
m n r PRE 1 PRE 2 PRE 3 PRE 4 PRE 1 PRE 2 PRE 3 PRE 4
50 25 15 123.3124 127.8408 127.8408 127.8408 101.5064 109.3101 109.3101 109.3101

10 115.7463 116.9844 116.9844 116.9844 102.3078 106.0199 106.0199 106.0199
5 110.7542 107.8275 107.8275 107.8275 104.4806 102.9220 102.9220 102.9220

15 12 152.0836 168.4970 168.4970 168.4970 102.2976 118.9042 118.9042 118.9042
8 131.2926 137.1764 137.1764 137.1764 103.3361 111.8557 111.8557 111.8557
4 117.8840 115.6746 115.6746 115.6746 106.0891 105.5961 105.5961 105.5961

10 9 177.7732 209.4966 209.4966 209.4966 103.6909 125.6932 125.6932 125.6932
6 143.4654 153.4787 153.4787 153.4787 105.0115 115.7775 115.7775 115.7775
3 123.6739 121.0979 121.0979 121.0979 108.6179 107.3119 107.3119 107.3119

30 20 15 119.0352 122.1719 122.1719 122.1719 101.4779 107.6399 107.6399 107.6399
10 113.2487 113.7640 113.7640 113.7640 102.2620 104.9668 104.9668 104.9668
5 109.6618 106.4389 106.4389 106.4389 104.4173 102.4232 102.4232 102.4232

12 9 139.0610 148.5147 148.5147 148.5147 103.0671 114.6470 114.6470 114.6470
6 125.2947 127.8408 127.8408 127.8408 104.3524 109.3101 109.3101 109.3101
3 117.0233 112.2194 112.2194 112.2194 107.9233 104.4480 104.4480 104.4480

8 6 152.1251 166.4609 166.4609 166.4609 105.2893 118.5042 118.5042 118.5042
4 133.0224 136.2717 136.2717 136.2717 107.1245 111.6194 111.6194 111.6194
2 122.8976 115.3517 115.3517 115.3517 112.3877 105.4907 105.4907 105.4907

20 15 12 115.3985 116.9844 116.9844 116.9844 101.8798 106.0199 106.0199 106.0199
8 111.3978 110.7162 110.7162 110.7162 102.8156 103.9343 103.9343 103.9343
4 109.6971 105.0856 105.0856 105.0856 105.4654 101.9292 101.9292 101.9292

12 9 124.1934 127.8408 127.8408 127.8408 102.7708 109.3101 109.3101 109.3101
6 117.1377 116.9844 116.9844 116.9844 104.0202 106.0199 106.0199 106.0199
3 113.6617 107.8275 107.8275 107.8275 107.5550 102.9220 102.9220 102.9220

8 6 140.0611 148.5147 148.5147 148.5147 104.8962 114.6470 114.6470 114.6470
4 126.9469 127.8408 127.8408 127.8408 106.7269 109.3101 109.3101 109.3101
2 120.5821 112.2194 112.2194 112.2194 111.9856 104.4480 104.4480 104.4480
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Table 3. PRE(.) for situtation 2

Population 1 Population 2
r

′
n r PRE 1 PRE 2 PRE 3 PRE 4 PRE 1 PRE 2 PRE 3 PRE 4

45 25 15 167.8081 193.7795 193.7795 193.7795 101.7872 123.3457 123.3457 123.3457
10 188.9941 229.6779 229.6779 229.6779 103.3534 128.3393 128.3393 128.3393
5 216.6503 281.9013 281.9013 281.9013 108.4160 133.7543 133.7543 133.7543

15 12 179.8966 213.8326 213.8326 213.8326 102.5535 126.2941 126.2941 126.2941
8 199.0975 248.0595 248.0595 248.0595 104.5885 130.4518 130.4518 130.4518
4 223.3483 295.3316 295.3316 295.3316 111.0223 134.8926 134.8926 134.8926

10 9 193.9084 238.5151 238.5151 238.5151 103.8983 129.3869 129.3869 129.3869
6 210.4242 269.6394 269.6394 269.6394 106.6993 132.635 132.635 132.635
3 230.6701 310.1056 310.1056 310.1056 115.4288 136.0504 136.0504 136.0504

25 20 15 132.8834 140.9184 140.9184 140.9184 101.5704 112.8111 112.8111 112.8111
10 157.9589 177.165 177.165 177.165 102.9807 120.5318 120.5318 120.5318
5 194.9796 238.5151 238.5151 238.5151 107.8771 129.3869 129.3869 129.3869

12 9 164.1675 186.7733 186.7733 186.7733 103.4939 122.2045 122.2045 122.2045
6 186.1982 223.0661 223.0661 223.0661 106.1959 127.5133 127.5133 127.5133
3 215.6277 276.8651 276.8651 276.8651 114.8066 133.3043 133.3043 133.3043

8 6 186.1982 223.0661 223.0661 223.0661 106.1959 127.5133 127.5133 127.5133
4 204.7075 256.2633 256.2633 256.2633 110.4448 131.3164 131.3164 131.3164
2 228.2551 301.069 301.069 301.069 123.7506 135.3534 135.3534 135.3534

15 10 8 141.1905 151.2321 151.2321 151.2321 103.5664 115.2723 115.2723 115.2723
6 159.0118 177.165 177.165 177.165 105.4951 120.5318 120.5318 120.5318
4 182.1334 213.8326 213.8326 213.8326 109.6182 126.2941 126.2941 126.2941

8 6 159.0118 177.165 177.165 177.165 105.4951 120.5318 120.5318 120.5318
4 182.1334 213.8326 213.8326 213.8326 109.6182 126.2941 126.2941 126.2941
2 213.9539 269.6394 269.6394 269.6394 122.7517 132.635 132.635 132.635

6 4 182.1334 213.8326 213.8326 213.8326 109.6182 126.2941 126.2941 126.2941
3 196.5896 238.5151 238.5151 238.5151 113.9058 129.3869 129.3869 129.3869
2 213.9539 269.6394 269.6394 269.6394 122.7517 132.635 132.635 132.635
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Table 4. PRE(.) for situtation 3

Population 1 Population 2
m n r PRE 1 PRE 2 PRE 3 PRE 4 PRE 1 PRE 2 PRE 3 PRE 4
45 25 15 119.6057 121.6906 121.6906 121.6906 100.9423 107.3416 107.3416 107.3416

10 113.5742 113.4658 113.4658 113.4658 102.1460 104.7511 104.7511 104.7511
5 109.7927 106.3086 106.3086 106.3086 105.2532 102.3332 102.3332 102.3332

15 12 148.0786 158.4113 158.4113 158.4113 105.5349 117.4324 117.4324 117.4324
8 130.4249 132.5194 132.5194 132.5194 107.2176 110.9650 110.9650 110.9650
4 120.4511 113.9926 113.9926 113.9926 112.4339 105.2015 105.2015 105.2015

10 9 174.7657 196.6369 196.6369 196.6369 114.7185 125.611 125.611 125.611
6 145.5935 148.6959 148.6959 148.6959 116.9741 115.6501 115.6501 115.6501
3 133.0882 119.5711 119.5711 119.5711 126.397 107.2814 107.2814 107.2814

30 20 15 117.0176 118.5384 118.5384 118.5384 100.3176 106.2655 106.2655 106.2655
10 111.4644 111.6438 111.6438 111.6438 100.5683 104.1267 104.1267 104.1267
5 107.3274 105.5083 105.5083 105.5083 102.6324 102.0046 102.0046 102.0046

12 9 136.9852 142.7462 142.7462 142.7462 104.0726 114.0326 114.0326 114.0326
6 123.9916 124.9023 124.9023 124.9023 105.3895 108.9407 108.9407 108.9407
3 116.0199 111.0531 111.0531 111.0531 109.1232 104.2475 104.2475 104.2475

8 6 151.3950 160.5782 160.5782 160.5782 112.0256 119.3809 119.3809 119.3809
4 133.9495 133.5281 133.5281 133.5281 113.8538 112.1130 112.1130 112.1130
2 126.5166 114.3838 114.3838 114.3838 121.2343 105.6933 105.6933 105.6933

20 15 12 112.4419 112.8691 112.8691 112.8691 100.2681 104.1939 104.1939 104.1939
8 108.5124 108.2521 108.2521 108.2521 100.3426 102.7052 102.7052 102.7052
4 105.4670 103.9598 103.9598 103.9598 101.6140 101.3509 101.3509 101.3509

12 9 120.5222 121.9266 121.9266 121.9266 100.3985 107.1552 107.1552 107.1552
6 113.6749 113.5814 113.5814 113.5814 101.4925 104.6421 104.6421 104.6421
3 108.7208 106.3603 106.3603 106.3603 103.3270 102.2875 102.2875 102.2875

8 6 135.8765 140.1535 140.1535 140.1535 103.8653 113.3375 113.3375 113.3375
4 123.4585 123.6419 123.6419 123.6419 105.1021 108.4416 108.4416 108.4416
2 115.7355 110.5456 110.5456 110.5456 109.1980 104.1017 104.1017 104.1017
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Table 5. PRE(.) for situtation 4

Population 1 Population 2
r

′
n r PRE 1 PRE 2 PRE 3 PRE 4 PRE 1 PRE 2 PRE 3 PRE 4

35 25 15 138.6255 139.7692 139.7692 139.7692 100.8386 109.1891 109.1891 109.1891
10 153.3283 155.1452 155.1452 155.1452 101.9139 111.5064 111.5064 111.5064
5 172.0155 174.7142 174.7142 174.7142 103.1092 114.3143 114.3143 114.3143

15 12 154.2364 160.3843 160.3843 160.3843 102.7001 115.0852 115.0852 115.0852
8 170.0231 178.7351 178.7351 178.7351 104.4348 118.2009 118.2009 118.2009
4 189.8148 202.1161 202.1161 202.1161 106.2724 121.7501 121.7501 121.7501

10 9 170.9669 184.4274 184.4274 184.4274 109.0338 121.6416 121.6416 121.6416
6 186.0077 204.0766 204.0766 204.0766 108.4835 124.3379 124.3379 124.3379
3 204.8966 229.1396 229.1396 229.1396 114.6697 127.8079 127.8079 127.8079

25 20 15 125.8821 127.1147 127.1147 127.1147 100.8819 107.3775 107.3775 107.3775
10 144.283 146.8567 146.8567 146.8567 101.5221 111.2629 111.2629 111.2629
5 169.1765 173.9383 173.9383 173.9383 102.9534 116.1377 116.1377 116.1377

12 9 154.4358 161.9805 161.9805 161.9805 104.7686 116.5543 116.5543 116.5543
6 171.8914 183.2653 183.2653 183.2653 109.7789 120.6860 120.6860 120.6860
3 193.9579 210.8838 210.8838 210.8838 111.3464 124.2724 124.2724 124.2724

8 6 176.3413 193.3752 193.3752 193.3752 104.8743 124.9147 124.9147 124.9147
4 192.0527 214.8227 214.8227 214.8227 108.0107 128.138 128.138 128.138
2 211.0831 240.7031 240.7031 240.7031 117.4007 131.5687 131.5687 131.5687

15 10 8 136.0069 140.3463 140.3463 140.3463 100.1882 112.5078 112.5078 112.5078
6 151.2405 158.5835 158.5835 158.5835 101.1974 116.5307 116.5307 116.5307
4 170.4139 182.3315 182.3315 182.3315 102.7417 121.3813 121.3813 121.3813

8 6 152.8711 161.8102 161.8102 161.8102 103.1252 118.1632 118.1632 118.1632
4 172.8094 187.5118 187.5118 187.5118 106.1244 123.1759 123.1759 123.1759
2 199.6618 223.3881 223.3881 223.3881 115.3648 128.6149 128.6149 128.6149

6 4 175.4890 193.1868 193.1868 193.1868 112.8095 126.2304 126.2304 126.2304
3 188.4202 211.0872 211.0872 211.0872 116.7172 129.1315 129.1315 129.1315
2 203.8417 232.8731 232.8731 232.8731 125.5094 132.5675 132.5675 132.5675
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In Table 1, we observe that the performance of modified imputation strategies under
two phase pps sampling. For all the previously mentioned situations 1-4, the estimation
procedure is more effective and reliable as compare to the simple mean estimator. In
Appendix, we consider the comprehensive examination of the suggested imputation pro-
cedure with varying response rate at first and second phase respectively. The percentage
relative efficiencies are reported in Table 2 and 3 is for first two situations, when the prob-
ability of selection of the observation units is known in advance. For last two, when the
selection probabilities are obtained through bootstrapping, then PREs reported in Table
4 and 5. In all the reported numerical findings in Appendix, the performance of modified
imputation strategies is better than their counterpart.

6. Conclusion
Imputation of missing values in sample surveys is a good practice, for dealing non-

response problem, in term of cost and duration. Several strategies have been proposed for
the purpose of bias reduction and efficient imputation. The current research dealt with
problem of non-response under four possible scenarios with respect to non-response oc-
currence under two phase pps sampling. A modified class of estimators is developed using
the available auxiliary information on both phases. The theoretical findings suggest that
the proposed class of estimators performs better then their counterparts under certain
constrains. Numerical studies are given to support the theoretical finding. The suggest
class of estimator is an efficient and might be cost effective alternative to the situations
where two phase sampling is feasible. This research can be extended for the stratified and
clustered populations.
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