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Abstract
A typical problem of interest is to compare the k + 1 normal means under the tree order
restriction θ0 ≤ θi for i = 1, . . . , k. In this paper, we propose new multiple comparisons
procedures for testing of the tree order constraint. New test procedures along with the
corresponding simultaneous confidence intervals are motivated by some new estimation
methods which are constructed based on a random decision and the Bayesian approach.
Also, these procedures are developed for two-sided tree order alternatives. We compare
the performance of the proposed methods with some existing test procedures, such as
likelihood ratio test and some multiple comparisons tests for the tree order constraint.
In some cases, the gains in power due to the proposed procedures are substantial. The
results for two sided alternative are similar to the one-sided hypotheses and new procedures
perform well for almost every configuration. We illustrate the efficiency of the proposed
methods by analyzing of the two bioassay numerical examples.
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1. Introduction
In many problems researchers are interested in testing equality of k + 1 normal means

constrained with the tree order restriction θ0 ≤ θi for i = 1, . . . , k. This restriction arises
naturally in experimental situations in which one wishes to compare several treatments
with a control when it is believed a priori that all of the treatments are as effective as
the control. Inclusion of this prior information about the mean parameters leads to more
powerful tests than the usual unrestricted tests which do not take the tree ordering of the
means into account. Some authors [1, 16] demonstrated that these order restricted tests
can be substantially more powerful than their usual unconstrained tests. The most well
known approach is the likelihood ratio test (LRT) method. Bartholomew [2] has developed
the LRT for testing equality of ordered normal means. But, LRT is not widely used in
practical applications. One crucial drawback lies in the difficulty of evaluating the null
distribution. Because of such practical problems in implementing the LRT, researchers
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have tried to develop alternative testing procedures. An influential approach is Dunnett’s
type-test. It is commonly used for testing the null hypothesis H0 : θ0 = θ1 = . . . = θk

against H1 : θ0 ≤ θi for all i ≥ 1 and for at least one i the inequality is strict. It
has been widely used in dose response studies. When the populations have a common
known variance, Dunnett’s test provide the simultaneous confidence intervals for contrast
of θi − θ0. Marcus and Talpaz [11] have proposed a class of multiple contrast tests, in
which each test is based on the maximum of k2k−1 contrast statistics. They recommended
to use the restricted maximum likelihood estimator (RMLE) instead of the unrestricted
estimator in Dunnett’s test statistic. Since under the tree order restriction, RMLE of
the control mean may perform poorly, so their procedure has a lower power for some
patterns of parameters. Hence, Peddada et al. [15] have proposed a test statistic based
on the estimation procedure of Hwang and Peddada [8]. Based on the modified RMLE in
analysis of covariance models, Betcher and Peddada [4] developed a general test procedure
and showed that their modified test has higher power than the other test procedures.

In this paper, we introduce three test statistics via the randomized, smoothed and the
weighted estimators which are constructed based on a random decision and a Bayesian
approach. By using a random device, we allocate a probability to the control group mean
and therefore the mean squared error (MSE) of the proposed estimator decreases. By
using of this estimator the first test statistic is constructed and for second test statistic we
apply a smoothed combination using of the expectation of actions in decision theory. In
the third test statistic, we apply a weighted restricted estimator in which the weights are
the posterior probabilities of the population orders and therefore the third test statistic is
constructed based on this weighted estimator.

The rest of this paper is as follows. In Section 2, we present several classical and
well known procedures for testing the equality of normal means against the tree order
constraint. The LRT in Bartholomew [2] and then the multiple comparisons tests in
[4, 11, 15] are also discussed. In Section 3, we propose three alternative test procedures
due to the proposed test statistic based on the nature of pair-wise comparisons of Dunnett’s
test. By using of a random decision, two test procedures are described in this section,. The
third test procedure provides a weighted test statistic based on the Bayesian approach.
Also by using of the improved procedures, the two-sided test statistic is constructed. In
Section 4, a large simulation study is carried out to compare the error rate and power of
the proposed methods with those of the other existing methods. Since similar results were
obtained for some patterns, we just report small representative sample of these results. For
various patterns of population parameters, it is concluded that the new test procedures
based on the random decision method, are more powerful than the other tests. Unlike
the LRT in [2] and test of Marcus and Talpaz [11], the power values of the proposed tests
appear to stabilize and slightly increase when k increases. As expected, the confidence
intervals constructed by these new statistics have smaller size than the alternative intervals.
In Section 5, two bioassay data sets discussed in [9, 15] are analyzed in details. A brief
discussion and concluding remarks are provided in Section 6.

2. LRT and three tests via to the multiple comparisons
In this section, we discuss LRT and several well known multiple comparisons tests which

are introduced by authors in the normal model. Suppose random samples Xi1, Xi2, . . . , Xini ,
i = 0, 1, . . . , k, are taken from independent normal populations with means θi and common
known variance σ2, where the mean parameters constrained with the tree order restriction
θ0 ≤ θi. The sample mean X̄i =

∑ni
j=1 Xij

ni
denotes the unrestricted maximum likelihood

estimator (UMLE) of θi and the index i = 0 refers to the control group. Under the tree
order restriction, the LRT for testing homogenous normal means (H0), versus H1, reject



A random decision for testing of the homogeneity 1549

the null hypothesis for large values of

χ̄2 =
k∑

i=0

ni

σ2 (θ̂RMLE
i − θ̂)2, (2.1)

where θ̂ =
∑k

i=0 niX̄i∑k

i=0 ni

is the overall mean estimator of the common population mean

under H0 and θ̂RMLE
i is the RMLE of θi under H1 which is the isotonic regression

of X̄ = (X̄0, X̄1, . . . , X̄k) with weights wi = ni
σ2 , i = 0, 1, . . . , k. Analytically, RMLE of

θ = (θ0, θ1, . . . , θk) can be derived as follow [10]:

θ̂RMLE
0 = min

S⊆K

∑
j∈S wjX̄j∑

j∈S wj
, (2.2)

where the minimization is taken over all subsets S of K = {0, 1, . . . , k} containing element
0. The RMLE of treatment means are then:

θ̂RMLE
i = max{θ̂RMLE

0 , X̄i} for i = 1, . . . , k. (2.3)

The null distribution of the LRT statistic is a mixture of chi-squared distributions in
which the mixing coefficients are the level probabilities obtained by a recursive approach
for k ≤ 4 in [1]. Unfortunately, its difficulty in computation of the distribution restricts the
practical application, especially for the general unequal sample sizes (unbalanced case).
Also, Cohen [5] observed that the inference based on the likelihood methodology in the
tree order restriction is unsatisfactory.

Another approach for testing of the tree order restriction is due to Dunnett [7] who gives
the simultaneous multiple comparisons between each treatment mean θi and the control
mean θ0, whereas Dunnett’s procedure is based on the UMLEs of θi. Under the tree order
restriction, Marcus and Talpaz [11] used RMLE of the population means θi instead of
the UMLE, which is a reasonable assumption for constrained parameter space. Their test
statistic (MT test) for equal sample sizes and common known variance σ2 is as follow:

MT = max
1≤i≤k

{√
n(θ̂RMLE

i − θ̂RMLE
0 )

σ

}
. (2.4)

The MT test statistic is similar to that of the multiple comparison test in [7], and can be
regarded as the maximum overall one-sided pair-wise comparisons θ̂RMLE

i versus θ̂RMLE
0 .

The MT test can handle for the case of unequal sample sizes that is general unbalanced
case design.

Under the tree order constraint, Lee [10] noticed that the RMLE of control group θ0 fails
to dominate corresponding UMLE in sense of MSE. Hence, the MT test performs poorly
in terms of the power. Peddada et al. [15] extended Dunnett’s procedure for modified
restricted estimators instead of the RMLEs. The basic idea is to replace the numerator
of the Dunnett’s test statistic by a suitable restricted estimator given by Hwang and
Peddada [8]. But their statistic depends on the chosen simple order between the treatment
means θ1, . . . , θk, and it is not defined uniquely. For this reason, Betcher and Peddada
[4] generalized this procedure by setting of the modified RMLE in the Dunnett’s test
statistic instead of their estimators. So, their test statistic is an analogue to MT-test,
where θ̂RMLE

i − θ̂RMLE
0 is replaced by the modified RMLEs, which are in the unequal

variances case:

θ̂BP
0 =

∑k
j=0(σ2

j )−1θ̂RMLE
0 (X̄0, X̄j)∑k

j=0(σ2
j )−1

; θ̂BP
i = max{θ̂BP

0 , θ̂RMLE
i }, for i ≥ 1. (2.5)

We adopt the same technique, except that we shall use improved estimators by suitable
approaches rather than the RMLEs, as described in the following section.
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3. Proposed test procedures
In this section under the tree order restriction on the mean parameters θ0 ≤ θi for all

i ≥ 1, we propose a new test statistic for testing equality of normal means H0 : θ0 =
θ1 = . . . , θk, when the common variance σ2 across populations is known. Based on the
considerations of Section 2 and by using of the proposed estimation methods which are
described in the next two subsections, we derive new test statistics. In the final subsection
a brief overview of two-sided test procedure is given.

3.1. Randomized and smoothed test statistics
The basic idea of the proposed test procedure is to invoke a probabilistic method by

using of a random device. Because of the restricted estimator θ̂RMLE
0 is decreasing in k,

by increasing of the number of treatments the chance of the occurrence of inappropriate
event {X̄i ≤ X̄0} for some i = 1, . . . , k may increased. In this case, the pressure of the
tree order constraint is on the control group estimator to satisfy the tree order restric-
tion. By consecutive occurrence of these events, θ̂RMLE

0 tends to infinity and therefore
the corresponding test statistic has no good performance. Motivated by the randomized
decision used in θ̂RMLE

0 , we give a chance to the sample mean of the control group via to
the allocated probability such that the obtained estimator does not have the drawback of
the RMLE and performs well in terms of the MSE and coverage probability ([13]). From
this stochastic mechanism, the pressure of the tree order on the control group mean is
decreased and hence the tree ordering is satisfied. Thus, on basis of the decision theory
we propose the randomized estimator as follows:

θ̂RE
0 =

{
X̄0 with propability; p

θ̂RMLE
0 with probability; 1 − p,

(3.1)

where p is derived based on the preliminary hypothesis testing in [13] which is given by:

p =
∑k

i=0 niI{X̄0≤X̄i}∑k
i=0 ni

, (3.2)

and the treatment estimators are:

θ̂RE
i = max{θ̂RE

0 , X̄i}, for i = 1, . . . , k. (3.3)

Hence, similar to Dunnett’s method and by using of the randomized estimator, the pro-
posed test statistic for testing H0 in favor of H1 is given by:

R = max
1≤i≤k

{ θ̂RE
i − θ̂RE

0

σ
√

1
ni

+ 1
n0

}
. (3.4)

We can modify the randomized estimator θ̂RE
0 to a smoothed estimator which is the expec-

tation of randomized estimator given sampling means. Hence, we use the expectation of
the randomized estimator based on the Theorem 3.1 in [3], whereas the obtained smoothed
estimator has a smaller MSE than that of the randomized estimator. The smoothed esti-
mators for θi’s are as follows:

θ̂SE
0 =

(∑k
i=0 niI{X̄0≤X̄i}∑k

i=0 ni

)
X̄0 +

(∑k
i=0 niI{X̄0>X̄i}∑k

i=0 ni

)
θ̂RMLE

0 , (3.5)

θ̂SE
i = max{θ̂SE

0 , X̄i}, for i = 1, . . . , k. (3.6)
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Unlike the RMLE of θ0, θ̂SE
0 does not fail for large k. By replacing (θ̂SE

0 , θ̂SE
i ) with

(θ̂RE
0 , θ̂RE

i ) in the Equation (3.4), we derive the following test statistic,

S = max
1≤i≤k

{ θ̂SE
i − θ̂SE

0

σ
√

1
ni

+ 1
n0

}
. (3.7)

In a simulation study in [13], it is found that the quantity p in (3.2) is a suitable choice to
reduce the MSE of the randomized and hence smoothed estimator, significantly. So, we
expect the test statistic (3.7) performs well in terms of the power and error rate.
In general unknown variance case, the null distribution of S-test statistic can be approxi-
mated by the following theorem.

Theorem 3.1. Suppose Z̄i ∼ N(0, 1), i = 1, . . . , k and U ∼ χ2
N−k−1 where N =

∑k
i=0 ni.

Let Z̄i and U are independently distributed and Ȳ = (Ȳ0, . . . , Ȳk) is the smoothed estimator
which is constructed by using Z̄ = (Z̄0, . . . , Z̄k), and satisfies in the tree order restriction.
Then under H0 we have,

Z = max
1≤i≤k

{ θ̂SE
i − θ̂SE

0

σ̂
√

1
ni

+ 1
n0

}
d= max

1≤i≤k


√

df(Ȳi − Ȳ0)
U

√
1
ni

+ 1
n0

 . (3.8)

For a proof of the theorem, one can use a similar argument in [4]. The upper percentile
of Z-test statistic denoted by zα and must be simulated. Also, the null distribution of
R-test statistic can be obtained similarly. Thus, we reject H0 at a level of significance α,
if

max
1≤i≤k

{ θ̂SE
i − θ̂SE

0

σ̂
√

1
ni

+ 1
n0

}
≥ zα, (3.9)

where the critical point zα is defined by

P (Z ≥ zα|θ0 = θ1 = . . . = θk) = P
(

max
1≤i≤k

{(θ̂SE
i − θ̂SE

0 )
σ̂

√
1
ni

+ 1
n0

}
≥ zα|θ0 = θ1 = . . . = θk

)
= α.

(3.10)
As done in [4], the critical values of Z-test can be applied for constructing (1 − α)100%

simultaneous confidence bounds for contrast between each treatment with the control, i.e.,
θi − θ0, i = 1, . . . , k. These simultaneous confidence bounds are

∩i∈{1,2,...,k}
{

(θi − θ0) ∈ (θ̂SE
i − θ̂SE

0 ) ± zασ̂

√
1
ni

+ 1
n0

}
, (3.11)

and the size of the above confidence hypercube is given by,

Size =
k∏

i=1

{
2(zασ̂)

√
1
ni

+ 1
n0

}
(3.12)

3.2. A test statistic based on the weighting method
Lee [10] demonstrated that by increasing of the weight of the control group mean w0,

the MSE reduction can be achieved. We propose an intuitively reasonable test procedure
utilizing the weighted restricted estimator ([12]). The weights are constructed by using of
the Bayesian approach. Under the tree order restriction with maintaining known inequal-
ities between θ0 and θi, i ≥ 1, all possible k! simple orderings of the parameters θ1, . . . , θk

are considered. Then by use of a non-informative prior distribution i.e., π(θ0, . . . , θk) = 1,
the joint posterior distribution is given by,

π(θ0, θ1, . . . , θk|x̄) = N(x̄0, σ2
x̄0).

k∏
i=1

TNθ−
0

(x̄i, σ2
x̄i

). (3.13)
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where TNθ−
0

(x̄i, σ2
x̄i

) is the truncated normal distribution with left truncation point θ−
0 .

Therefore, these posterior probabilities are proportional to N(x̄i, σ2
x̄i

) subject to the tree
order restriction. By considering all k! simple orders between θ1, . . . , θk, the posterior
probability for each simple order is estimated. The posterior probabilities of the order of
populations are now used to make weightings about k! simple orders and make evidence
about order of parameters θ1, . . . , θk. Therefore, by using of these posterior probabilities
as the weights, the weighted proposed estimators are as follows:

θ̂W A
0 =

k!∑
j=1

π(θ(j)
1 ≤ . . . ≤ θ

(j)
k |x̄)θ̂(j)

0 . (3.14)

θ̂W A
i = max{θ̂W A

0 , X̄i}, for i = 1, . . . , k, (3.15)

where θ̂
(j)
0 is the RMLE of the smallest parameter (i.e., control group) in jth simple order

and π(θ(j)
1 ≤ . . . ≤ θ

(j)
k |x̄) is the posterior probability of the jth simple order, where j is

corresponding to a permutation of the treatment groups {1, 2, . . . , k}. So, as in (3.4) and
according to the weighted estimator we now derive third new test statistic that is given
by:

WA = max
1≤i≤k

{ θ̂W A
i − θ̂W A

0

σ
√

1
ni

+ 1
n0

}
. (3.16)

We reject H0 if WA ≥ z∗
α, hence for WA-test statistic we have a similar expression as in

(3.10) to obtain the upper percentile z∗
α.

In many applications for practical reasons the number of treatments k is usually small,
frequently k ∈ {2, 3, 4, 5}. In these cases, the WA test statistic can be applied.
Due to the (3.11) in a similar way, by using of the WA statistic θ̂W A

i − θ̂W A
0 in place of

θ̂SE
i − θ̂SE

0 we propose the (1 − α)100% simultaneous confidence bounds and that is given
by:

∩i∈{1,2,...,k}
{

(θi − θ0) ∈ (θ̂W A
i − θ̂W A

0 ) ± z∗
ασ

√
1
ni

+ 1
n0

}
, (3.17)

where z∗
α is the upper α quantile of the WA-test statistic distribution.

3.3. Two-sided test procedures
In some applications, it is impossible to decide a priori on the direction of the inequal-

ities between the control and treatment groups. As dosage increases, it is unlikely that
the direction of the response mean changes arbitrarily, at different doses relative to the
control. Currently, the National Toxicology Program (NTP) [14] addresses this problem
by performing a test of two-sided alternative θ0 ̸= θi for each dose group i, that is ANOVA
test method. But, such an alternative does not consider a priori knowledge information
available in dose-response studies. So, the inclusion of prior information as the two-sided
alternative in the following leads to more powerful tests than those that do not take the
ordering of the means into account. To construct a two-sided test of size α, it is not ap-
propriate to combine the one-sided tests each of size α

2 . The union of the critical regions
of each hypothesis θ0 ≤ θi and θ0 ≥ θi for 1 ≤ i ≤ k leads to a size which is strictly less
than α for all simple members of the composite null hypothesis. The two-sided tree order
alternative is as follow:

H1 : {θ0 ≤ θi, i = 1, . . . , k} ∪ {θ0 ≥ θi, i = 1, . . . , k} − {θ0 = θ1 = . . . = θk}. (3.18)

Due to the two-sided reasonable idea and by using of the proposed smoothed estimators
in the two types of the tree orderings i.e., down-turn tree order θ0 ≤ θi and up-ward tree
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order θ0 ≥ θi for 1 ≤ i ≤ k, we define the two-sided critical region via to the random
decision as follow:

Stwo−sided = max
1≤i≤k

{
max(θ̂SE

i − θ̂SE
0 , θ̃SE

i − θ̃SE
0 )

σ
√

1
ni

+ 1
n0

}
≥ zα, (3.19)

where θ̃SE
i , i = 0, 1, . . . , k denote the proposed smoothed estimators subject to the up-ward

tree order restriction, θ0 ≥ θi for 1 ≤ i ≤ k, i.e.,

θ̃SE
0 =

(∑k
i=0 niI{X̄0≥X̄i}∑k

i=0 ni

)
X̄0 +

(∑k
i=0 niI{X̄0<X̄i}∑k

i=0 ni

)
θ̃RMLE

0 , (3.20)

θ̃SE
i = min{θ̃SE

0 , X̄i}, for i = 1, . . . , k, (3.21)

and RMLE in the θ̃SE
0 is derived based on the up-ward tree order restriction θ0 ≥ θi for

1 ≤ i ≤ k, which is given by:

θ̃RMLE
0 = max

S⊆k

∑
j∈S njX̄j∑

j∈S nj
. (3.22)

Similar to the one-sided case, we note that the simultaneous confidence bounds for the two-
sided multiple comparisons can be obtained. As before, the critical values are computed
approximately. Similarly, we can test the aforementioned two-sided test by using of the
WA-test statistic instead of the S-test statistic as in (3.19). All the remaining tests that
were mentioned in the previous section, were compared for one-sided alternative. Peddada
et al. [15] by using of the Hwang and Peddada’s estimator in [8] constructed the two-sided
test statistic.

4. Comparison of the power and error rate
In this section the power values and error rates of the three proposed tests (R, S and

WA) are compared with those of the LRT, Marcus and Talpaz (MT) in [11], Peddada
et al. (P) in [15] and Betcher and Peddada (BP) in [4]. Various configurations of mean
parameters are considered in Tables 1 and 3 for both one and two-sided tests, respectively.
The number of replications for each estimate is 10, 000 iterations. We estimate the type I
error rate by using 10000 simulation runs. According to the first rows in Tables 1 and 3,
it is seen in each case that the type I error is close to the nominal level of 0.05. For k = 5
and 10 normal populations with sample sizes ni = 5, mean parameters θ = (θ0, θ1, . . . , θk)
and σ2 = 1, the power values are estimated at the 5% level of significance for both one
and two-sided alternatives in Tables 1 and 3, respectively.

Table 1, gives the power comparison of the new proposed tests based on the randomized,
smoothed and weighted estimators with the other test methods that are listed in the
literatures for k = 5 and 10 treatment groups. Numerical results indicate that the gains
in the power of the proposed S-test can be substantial. For k = 5, the powers of the
LRT and MT are larger at the center than the edges of parameter space. But, the S-test
performs uniformly well, in both cases of the parameter space. For the least favorable case
θ = (θ0, θ1, . . . , θk) = (0, 0, . . . , 0), there is a little difference in the power values for all test
procedures. For the extreme points such as θ = (0, 0, . . . , 0, 1) the LRT and MT procedures
have higher power than the other tests, in which the proposed tests are better than the BP
test. When the mean parameter θ = (θ0, θ1, . . . , θk) is near to the center of the tree order
cone, both LRT and proposed tests are more powerful, and would be preferred. However,
for the interior configuration such as θ = (0, 1, . . . , 1) the proposed S-test is more powerful
than the other competitors. From Table 1, it is obvious that the proposed tests compete
well in terms of the power with the other tests. The S-test appears to have the most power
in the center points of the parameter space e.g., (0, 0.5, . . . , 0.5, 1, . . . , 1). For the extreme
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points such as (0, 0, . . . , 1) the MT procedure and then the proposed S-test have higher
power than the other tests, which is consistent with the previously published results in [4].
Only, in the near of the center parameter space e.g., (0, 0, 0, 1, 1, 1), the power of the LRT
is large. It is seen that the power of the proposed tests increases with k, but the opposite
is true for the LRT and MT tests.

Table 1. Power comparisons of LRT, MT, BP, R, S and WA. For k=5 and 10
treatments.

θ = (θ0, θ1, . . . , θ5) LRT MT BP R S WA
(0, 0, 0, 0, 0, 0) 0.049 0.050 0.051 0.051 0.048 0.049
(0, 0, 0, 0, 0, 1) 0.311 0.324 0.287 0.320 0.323 0.319

(0, 0.2, 0.4, 0.6, 0.8, 1) 0.315 0.312 0.355 0.345 0.355 0.350
(0, 0.5, 0.5, 0.5, 1, 1) 0.421 0.417 0.510 0.420 0.508 0.490

(0, 0, 0, 1, 1, 1) 0.471 0.459 0.445 0.459 0.463 0.460
(0, 1, 1, 1, 1, 1, 1) 0.412 0.507 0.541 0.523 0.542 0.531

θ = (θ0, θ1, . . . , θ10) LRT MT BP R S WA
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 0.050 0.048 0.052 0.050 0.051 0.051
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 0.528 0.555 0.497 0.531 0.550 0.541

(0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2) 0.999 0.998 0.997 0.997 0.999 0.990
(0, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1) 0.729 0.733 0.749 0.736 0.758 0.745

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 0.970 0.923 0.819 0.814 0.848 0.890
(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.639 0.786 0.842 0.825 0.849 0.836

In Table 2, the estimated size of simultaneous confidence intervals for θi − θ0, i =
1, . . . , k as in (3.12) are obtained. The critical constants are chosen so that the coverage
rate of the simultaneous confidence interval is 0.95. It is seen that the size of the proposed
simultaneous confidence intervals is smaller than that of MT procedure and compete well
with the BP test procedure. These results are true for a variety of patterns in this table.
Hence, the test based on the proposed simultaneous confidence intervals has larger power
than the corresponding test based on the MT test procedure and competes well with the
BP test method. In overall, as k increases the maximum powers of the S-test and WA-test
are always slightly higher than those of the LRT and tend to be slightly higher than those
of the MT tests.

Table 2. Size of simultaneous confidence intervals for θi −θ0, i = 1, . . . , k. (in log
scale).

σ k=5 k=10
MT BP R S WA MT BP R S WA

0.50 7.73 7.67 7.70 7.65 7.68 14.49 14.34 14.40 14.33 14.38
0.60 8.14 8.01 8.09 8.02 8.09 15.35 14.99 15.20 15.00 15.12
0.75 8.75 8.49 8.56 8.45 8.50 16.58 15.92 16.04 15.90 15.99

1 9.63 9.27 9.35 9.25 9.29 18.35 17.38 17.40 17.36 17.38
1.50 11.01 10.62 10.70 10.62 10.65 20.96 19.85 19.91 19.84 19.88

The results of our simulation experiment for two-sided alternative are summarized in
Table 3. Similar to the LRT, the BP and MT tests are not available in the literatures
for two-sided alternative hypotheses, therefore in our simulation study we investigate the
performance of the proposed procedures only with the Peddada’s procedure in [15] which
is constructed by the Hwang and Peddada’s estimator in [8]. The overall conclusions
are very similar for both one-sided as well as two-sided alternatives. It seems that all
two-sided test procedures (T, R, S and WA) attain the nominal type I error rate of 0.05,
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approximately. However, in some cases the gain in power due to the proposed procedures
R, S and WA is substantial for two-sided alternative hypotheses. As seen in Table 3, in
some situations the T-test in [15] may have smaller power than the proposed procedures
that are introduced in this paper. In contrast, the two new test procedures, R and S,
perform well for almost every configuration in two-sided hypothesis. Also, among the
two-sided testing procedures, the proposed S-test appears to have the largest power in all
configurations.

Table 3. Power comparisons of T, R, S and WA tests for two-sided alternative.
For ni = 5, σ = 1.

θ = (θ0, θ1, . . . , θ5) T R S WA
(0, 0, 0, 0, 0, 0) 0.046 0.051 0.050 0.049
(0, 0, 0, 0, 0, 2) 0.791 0.885 0.909 0.890
(0, 0, 0, 0, 2, 0) 0.785 0.876 0.896 0.880
(0, 0, 0, 2, 0, 0) 0.768 0.884 0.900 0.886
(0, 0, 2, 0, 0, 0) 0.751 0.885 0.903 0.891
(0, 2, 0, 0, 0, 0) 0.736 0.881 0.899 0.889
(0, 0, 0, 0, 1, 2) 0.801 0.868 0.892 0.872
(0, 1, 2, 0, 0, 0) 0.729 0.867 0.884 0.875
(0, 0, 0, 0, 2, 2) 0.912 0.948 0.965 0.956
(0, 0, 0, 2, 2, 2) 0.943 0.965 0.975 0.969
(0, 0, 2, 2, 2, 2) 0.945 0.970 0.975 0.970
(2, 2, 2, 2, 2, 2) 0.905 0.974 0.977 0.973

5. Application to analysis of bioassay data
In this section, by using of two bioassay data sets which are obtained from the NTP

[9, 14], the proposed methods are illustrated. In the first subsection, the one-sided test
procedure and in the second the two-sided test procedure are explained.

5.1. Application to the Estrogen-like compounds data
Kanno et al. [9] conducted a large Uterotrophic bioassay to evaluate the effects of

different compounds i.e., (1) Bisphenol A, (2) DBP, (3) DDT, (4) Genestein, (5) Ethinly
Estradiol (EE high dose), (6) Ethinly Estradiol (EE low dose) and (7) Methoxychloron rat
uterine weight of the Estrogen data. Their study consisted of ni animals across per groups.
Biological, Estrogen levels are effective on the rat uterine weight than the control level
(placebo). Hence when comparing seven compounds (treatments) with the control group,
we consider a tree order restriction on the mean uterine weight of log-transformed weights
θi, i = 0, 1, . . . , 7, as an alternative hypothesis. Based on the two-way ANOVA, Betcher
and Peddada [4] found that the body weight is a significant covariate (p − value < 0.05).
Hence, when the comparing of the above seven compounds with the control group is
interested, the uterine weight adjusted for the body weight of the animal. The sample
mean uterine weights (i.e., UMLEs) and standard errors (in parentheses) along with the
mean body weight necropsy and the corresponding standard errors (in parentheses) are
summarized in Table 4.

Since, the uterine weight has a skewed distribution, we then transform the logarithm of
the data. Therefore, θi, i = 0, 1, . . . , 7 represent the mean uterine weight of log transformed
weights. In this experiment, under the tree order restriction θ0 ≤ θi for 1 ≤ i ≤ 7, the
two proposed estimators, smoothed (SE) and weighted average (WA), are given in Table
4. For k = 7 and using of the simulated distribution of S-test statistic and WA statistic,
we obtain the critical values equal to 2.41 and 2.42, respectively. These critical values are
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Table 4. Comparison of the mean uterine weight relative to the control group
based on the confidence intervals of S and WA statistics.

Compound Sample size Uterine weight UMLE of
Uterine weight

Proposed
estimation (SE)

Proposed
estimation

(WA)

Confidence
intervals for

θi − θ0
(S-statistic)

Control 4 19(4.21) 2.90(0.12) 2.90 2.90 − − −−
Bisphenol A 4 27.75(5.35) 3.31(0.12) 3.31 3.315 0.41 ± 2.41(0.17)

DBP 6 17.33(3.79) 2.80(0.10) 2.90 2.908 0 ± 2.41(0.17)
DDT 4 70.25(8.50) 4.35(0.12) 4.35 4.348 1.45 ± 2.41(0.16)

Genestein 5 58.20(3.72) 3.99(0.11) 3.99 3.998 1.09 ± 2.41(0.16)
EE high dose 5 77.40(10.37) 4.33(0.10) 4.33 4.320 1.43 ± 2.41(0.16)
EE low dose 6 47.67(6.13) 3.79(0.10) 3.79 3.805 0.89 ± 2.41(0.16)

Methoxychlor 6 53.33(4.17) 3.98(0.10) 3.98 3.983 1.08 ± 2.41(0.16)

used for constructing 95% simultaneous confidence intervals for contrasts θi−θ0, 1 ≤ i ≤ 7.
For summary, since the results are same, these confidence intervals are given in Table 4
only for S-statistic method. Note that the 95% confidence intervals for the mean difference
of uterine weight of the DBP group relative to the control group contain, 0. Thus, there
exists no significance difference in the mean uterine weights between the DBP treated
animals and the control group. Also, none of the remaining confidence intervals contain
0. Therefore, the mean uterine volumes for all other Estrogen compounds differ from
that of the control group. These results are Consistent with previously published results
in [4] and except for treatment Bisphenol A, our results about other compounds agree
with the results in [9]. They did not conclude any significance difference between the test
compound Bisphenol A, with the control group.

5.2. Application to the red blood cells data
To evaluate the performance of the two-sided proposed procedures (R and S-test) with

the Peddada’s test procedure (i.e., T-test) in [15], we apply the blood count data from
core clinical pathology evaluation in [14]. The complete blood count contains a variety of
variables. Since the Haematology data consisted of multiple variables, the data for Mean
Corpuscular Volume (MCV) were arbitrarily selected for illustration. The MCV data for
male rats in the Prechronic study of Anthraquinone (NTP [14]) for this survey are utilized.
The corresponding group means (with standard errors in parentheses) presented in Table
5.

Table 5. Mean Corpuscular Volume (MCV) and confidence intervals of θi − θ0
at different levels.

Dose groups Mean and (SE)
of MCV

Confidence
intervals Using

T

Confidence
intervals Using

R

Confidence
intervals Using

S
0 61.1(0.2) − − −− − − −− − − −−

1875 ppm 60.2(0.2) (−0.344, 2.120) (−0.344, 2.11) (−0.342, 2.09)
3750 ppm 61.3(0.2) (−0.324, 1.448) (−0.315, 1.445) (−0.304, 1.435)
7500 ppm 61.4(0.2) (−0.228, 1.548) (−0.220, 1.535) (−0.218, 1.522)
15000 ppm 61.7(0.2) (0.072, 1.848) (0.079, 1.845) (0.080, 1.826)
30000 ppm 62.4(0.3) (0.772, 2.548) (0.781, 2.511) (0.785, 2.521)

Since often there exists a little information about direction of the toxicity compounds,
we tested a two-sided hypothesis. In theory, MCV would be expected to demonstrate
Erythrocyte volumes which are normally distributed. Thus, two proposed test methods
(S and WA) are compared with the T-test in [15] that obtained for two-sided alternative
in the normal distributions. The unknown population means for the dose groups (treat-
ments) are in the 0, 1875, 3750, 7500, 15000 and 30000 parts per million (ppm) which are
denoted by θ0, θ1, . . . , θ5, respectively. To illustrate the proposed methodology, we com-
pute 95% simultaneous confidence intervals for θi − θ0, i = 1, . . . , 5. Therefore, in Table 5
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the estimated 95% simultaneous confidence intervals for contrasts θi − θ0 for 1 ≤ i ≤ 5 are
given. These procedures identified a significance increase (α = 0.05) in MCV in the 30000
ppm level.

Furthermore, Dunnett’s test identified a significant decrease (α = 0.05) in MCV in
1875 ppm level. Also, both of proposed test procedures, R and S, detected a decrease in
MCV in 1875 ppm and increases in 15000 and 30000 ppm levels (α = 0.05). In fact, the
proposed methods (R and S) for these data identified an additional (lower) dose group
that may have been affected by anthraquinone treatment but was undetected by currently
methods in NTP studies (i.e., Dunnett’s test). Therefore, in this survey, the proposed
tests detected an additional affected dose level, i.e. 15000 ppm level. From a practical
point of view, both proposed R and S tests have shorter confidence intervals than that
of the T-test in [15]. Although, the T-test of [15] in the literature, were designed to test
the two-sided alternative, but this test is not unique. Because of the T- test statistic
is based on the arbitrary choice of the simple order. If this order departures from the
corresponding actual order, then the T-test is very liberal (i.e., exceeds of 0.05), and so
perform poorly. The randomized (R) and smooth (S) proposed methods have not these
drawbacks and detect the significance increase or decrease by the random device from
decision theory. So, similar to the results of simulation study for two-sided alternative in
Table 3, the proposed confidence intervals have larger power than the T-test in [15]. Thus,
the proposed methods in this paper will also be useful in the analysis of NTP data.

6. Concluding remarks
In this paper, we developed new test procedures as well as Dunnett’s test for comparing

the means of several dose groups with the mean of a control group, known as the tree order
restriction. For this purpose, the possibility of using the maximum of a finite number of
contrast statistic is considered for testing equality of normal means against the tree order
restriction among of mean parameters. We have successfully extended the technique of
building the maximum over several contrasts by comparison of each treatment with to the
control group. Also, we have considered both one-sided and two-sided tree alternatives.
For ordered hypotheses, because of the difficulties involved in applying LRT, several re-
searchers including [11, 15] and more recently [4] considered the testing of the equality
between normal means against the tree order constraint. The new tests are particularly
attractive when the LRT cannot be readily conducted due to difficulties in the determi-
nation of the null distribution of the test statistic. These new test methods are based on
the estimators which are constructed via to a random decision and the Bayesian method.

If it is believed that the treatment effects are reasonably homogeneous, this situation of
the restriction could be employed since it is quite powerful at the center of the tree order
cone. At the other extreme points, the proposed test procedures have good power if one of
the treatments is greater than the others and the other treatments are fairly homogeneous
that is θ0 < θ1 = θ2 = . . . = θk.

Simulation study revealed that the proposed tests have better ability to detect the
significant differences and have more power in comparison with the existing procedures
which are listed in the literatures. In some situations, the test based on the S statistic
would seem to be the preferred test. Although the proposed tests are not uniformly more
powerful than the competitor, they have higher power at some points in the alternative.

In general, the patterns of a dose-response can not arbitrarily change with dose. In dose-
response studies, an investigator may not be sure about the direction of the inequalities
between the control group and dose groups. In some experiments there exists a significant
dose-related increase in response mean, conversely in other trials there exists a significant
dose-response reduction in the mean of response variable. So, it is impossible to decide
a priori on the direction of the inequalities between the control group and dose groups.
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Since dose-related increases (or decreases) may be occur in response mean but cannot
be predicted, and little information often exists concerning the direction of compounds
in NTP studies, so we test a two-sided tree hypothesis based on the random decision in
which performed better than the methods that do not take into account the tree order
constraint. An important conclusion from proposed two-sided tests was the acceptable
power when the experimenter is unsure about the direction of the inequality in the tree
order restriction.

On the basis of two numerical examples that were studied in this paper, we find that the
new procedures compete well with Betcher and Peddada’s method in [4] for the one-sided
hypothesis, and they perform well with Peddada’s procedure in [15] when our interest is
two-sided hypothesis.

To summarize the results concerning the proposed tests for testing equality of tree order
normal means, note that the new procedures are easy to use and have a higher power than
the other procedures. As expected, the proposed methods perform accurately to achieve
the nominal level type I error rate. However, according to the underlying patterns of
parameters, the best test varies among the aforementioned tests, but in most cases the
new proposed tests perform better than both the MT and BP tests. If the alternative is
two-sided tree order restriction, then the proposed two-sided tests perform substantially
better than the Peddada’s test [15] in almost every situation.
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